首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The homeobox protein STF-1 appears to function as a master control switch for expression of the pancreatic program during development. Here we characterize a composite enhancer which directs STF-1 expression to pancreatic islet cells via two functional elements that recognize the nuclear factors HNF-3beta and BETA-2. In keeping with their inhibitory effects on islet cell maturation, glucocorticoids were found to repress STF-1 gene expression by interfering with HNF-3beta activity on the islet-specific enhancer. Overexpression of HNF-3beta suppressed glucocorticoid receptor-mediated inhibition of the STF-1 gene, and our results suggest that the expansion of pancreatic islet precursor cells during development may be restricted by hormonal cues which regulate STF-1 gene expression.  相似文献   

4.
5.
6.
The synergistic action of hepatocyte nuclear factor (HNF)-1alpha and HNF-4 plays an important role in expression of the alpha(1)-antitrypsin (alpha(1)-AT) gene in human hepatic and intestinal epithelial cells. Recent studies have indicated that the alpha(1)-AT gene is also expressed in human pulmonary alveolar epithelial cells, a potentially important local site of the lung antiprotease defense. In this study, we examined the possibility that alpha(1)-AT gene expression in a human pulmonary epithelial cell line H441 was also directed by the synergistic action of HNF-1alpha and HNF-4 and/or by the action of HNF-3, which has been shown to play a dominant role in gene expression in H441 cells. The results show that alpha(1)-AT gene expression in H441 cells is predominantly driven by HNF-1beta, even though HNF-1beta has no effect on alpha(1)-AT gene expression in human hepatic Hep G2 and human intestinal epithelial Caco-2 cell lines. Expression of alpha(1)-AT and HNF-1beta was also demonstrated in primary cultures of human respiratory epithelial cells. HNF-4 has no effect on alpha(1)-AT gene expression in H441 cells, even when it is cotransfected with HNF-1beta or HNF-1alpha. HNF-3 by itself has little effect on alpha(1)-AT gene expression in H441, Hep G2, or Caco-2 cells but tends to have an upregulating effect when cotransfected with HNF-1 in Hep G2 and Caco-2 cells. These results indicate the unique involvement of HNF-1beta in alpha(1)-AT gene expression in a cell line and primary cultures derived from human respiratory epithelium.  相似文献   

7.
8.
Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1alpha and HNF-1beta, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1alpha and mutant HNF-1beta in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1alpha and 13 mutant HNF-1alpha, as well as wild HNF-1beta and 2 mutant HNF-1beta, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1alpha and wild HNF-1beta significantly transactivated DPP-IV promoter, but mutant HNF-1alpha and mutant HNF-1beta exhibited low transactivation activity. Moreover, to study whether mutant HNF-1alpha and mutant HNF-1beta change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1alpha or wild HNF-1beta, or else respective dominant-negative mutant HNF-1alphaT539fsdelC or dominant-negative mutant HNF-1betaR177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1alpha cells and wild HNF-1beta cells, whereas they decreased in HNF-1alphaT539fsdelC cells and HNF-1betaR177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1alpha and wild HNF-1beta have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1alpha and mutant HNF-1beta attenuate the stimulatory effect.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Nesfatin-1 is a novel anorexigenic regulatory peptide. The peptide is the N-terminal part of nucleobindin 2 (NUCB2) and is expressed in brain areas regulating feeding. Outside the brain, nesfatin-1 expression has been reported in adipocytes, gastric endocrine cells and islet cells. We studied NUCB2 expression in human and rodent islets using immunocytochemistry, in situ hybridization and western blot. Furthermore, we investigated the potential influence of nesfatin-1 on secretion of insulin and glucagon in vitro and in vivo in mice and in INS-1 (832/13) cells. The impact of type 2 diabetes (T2D) and glucolipotoxicity on NUCB2 gene expression in human islets and its relationship to insulin secretory capacity and islet gene expression was studied using microarray. Nesfatin-1 immunoreactivity (IR) was abundant in human and rodent beta cells but absent in alpha, delta, PP and ghrelin cells. Importantly, in situ hybridization showed that NUCB2 mRNA is expressed in human and rat islets. Western blot analysis showed that nesfatin-1 IR represented full length NUCB2 in rodent islets. Human islet NUCB2 mRNA was reduced in T2D subjects but upregulated after culture in glucolipotoxic conditions. Furthermore, a positive correlation between NUCB2 and glucagon and insulin gene expression, as well as insulin secretory capacity, was evident. Nesfatin-1 enhanced glucagon secretion but had no effect on insulin secretion from mouse islets or INS-1 (832/13) cells. On the other hand, nesfatin-1 caused a small increase in insulin secretion and reduced glucose during IVGTT in mice. We conclude that nesfatin-1 is a novel glucagon-stimulatory peptide expressed in the beta cell and that its expression is decreased in T2D islets.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号