首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In experiments designed to test the reversibility of ADP-dependent inactivation and Pi-dependent activation of pyruvate, Pi dikinase , it was found that the preferred substrate for Pi dependent activation is the catalytically non-phosphorylated form of pyruvate, Pi dikinase . Only the second of the two partial reactions catalysed by pyruvate, Pi dikinase is inhibited when pyruvate, Pi dikinase is inactivated by ADP-dependent phosphorylation. Neither ADP-dependent inactivation nor Pi-dependent activation reactions were found to be reversible.  相似文献   

2.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum was modified with pyridoxal 5'-phosphate and then reduced with sodium borohydride. Both carboxylase and oxygenase activities were lost when one molecule of pyridoxal 5'-phosphate was bound per enzyme dimer. Peptide maps of modified enzyme showed one N6-(phosphopyridoxal)lysine-containing peptide. This peptide was isolated by gel filtration and cation-exchange chromatography and its sequence determined as Ala-Leu-Gly-Arg-Pro-Glu-Val-Asp-(PLP-Lys)-Gly-Thr-Leu-Val-Ile-Lys. Since activation of the enzyme with Mg2+/CO2 enhances pyridoxal 5'-phosphate modification and subsequent inactivation and the substrate ribulose bisphosphate protects against modification, the modified lysyl group is most certainly at the catalytic site and not at the activation site of the enzyme.  相似文献   

3.
Chemical modification studies with pyridoxal 5'-phosphate have indicated that lysine(s) appear to be at or near the active site of Escherichia coli glutamine synthetase (Colanduoni, J., and Villafranca, J. J. (1985) J. Biol. Chem. 260, 15042-15050; Whitley, E. J., Jr., and Ginsburg, A. (1978) J. Biol. Chem. 253, 7017-7025). Enzyme samples were prepared that contained approximately 1, approximately 2, and approximately 3 pyridoxamine 5'-phosphate residues/50,000-Da monomer; the activity of each sample was 100, 25, and 14% of the activity of unmodified enzyme, respectively. Cyanogen bromide cleavage of each enzyme sample was performed, the peptides were separated by high performance liquid chromatography, and the peptides containing pyridoxamine 5'-phosphate were identified by their absorbance at 320 nm. These isolated peptides were analyzed for amino acid composition and sequenced. The N terminus of the protein (a serine residue) was modified by pyridoxal 5'-phosphate at a stoichiometry of approximately 1/50,000 Da and this modified enzyme had full catalytic activity. Beyond a stoichiometry of approximately 1, lysines 383 and 352 reacted with pyridoxal 5'-phosphate and each modification results in a partial loss of activity. When various combinations of substrates and substrate analogs (ADP/Pi or L-methionine-SR-sulfoximine phosphate/ADP) were used to protect the enzyme from modification, Lys-352 was protected from modification indicating that this residue is at the active site. Under all experimental conditions employed, Lys-47, which reacts with the ATP analog 5'-p-fluorosulfonylbenzoyl-adenosine does not react with pyridoxal 5'-phosphate.  相似文献   

4.
N F Phillips  N H Goss  H G Wood 《Biochemistry》1983,22(10):2518-2523
Pyruvate, phosphate dikinase from Bacteroides symbiosus is strongly inhibited by low concentrations of pyridoxal 5'-phosphate. The inactivation follows pseudo-first-order kinetics over an inhibitor concentration range of 0.1-2 mM. The inactivation is highly specific since pyridoxine and pyridoxamine 5'-phosphate, analogues of pyridoxal 5'-phosphate, which lack an aldehyde group, caused little or no inhibition even at high concentrations. The unreduced dikinase-pyridoxal 5'-phosphate complex displays an absorption maxima near 420 nm, typical for Schiff base formation. Following reduction of the Schiff base with sodium borohydride, N6-pyridoxyllysine was identified in the acid hydrolysate. When the enzyme was incubated in the presence of pyridoxal 5'-phosphate and reducing agent, the ATP/AMP, Pi/PPi, and pyruvate/phosphoenolpyruvate isotopic exchange reactions were inhibited to approximately the same extent, suggesting that the modification of the lysyl moiety causes changes in the enzyme that affect the reactivity of the pivotal histidyl residue. Phosphorylation of the histidyl group appears to prevent the inhibitor from attacking the lysine residue. On the other hand, addition of pyridoxal 5'-phosphate to the pyrophosphorylated enzyme promotes release of the pyrophosphate and yields the free enzyme which is subject to inhibition.  相似文献   

5.
Pyruvate,Pi dikinase regulatory protein (PDRP) has been highly purified from maize leaves, and its role in catalyzing both ADP-mediated inactivation (due to phosphorylation of a threonine residue) and Pi-mediated activation (due to dephosphorylation by phosphorolysis) of pyruvate,Pi dikinase has been confirmed. These reactions account for the dark/light-mediated regulation of pyruvate,Pi dikinase observed in the leaves of C4 plants. During purification to apparent homogeneity the ratio of these two activities remained constant. The molecular weight of the native PDRP was about 180,000 at pH 8.3 and 90,000 at pH 7.5. Its monomeric molecular weight was 45,000. It was confirmed that inactive pyruvate,Pi dikinase free of a phosphate group on a catalytic histidine was the preferred substrate for activation. Michaelis constants for orthophosphate and the above form of active pyruvate,Pi dikinase were determined, as well as the mechanism of inhibition of the PDRP-catalyzed reaction by ATP, ADP, AMP, and PPi. For the inactivation reaction, Km values were 1.2 microM for the active pyruvate,Pi dikinase and 52 microM for ADP. CDP and GDP but not UDP could substitute for ADP. The inactivation reaction is inhibited by inactive pyruvate,Pi dikinase competitively with respect to both active pyruvate,Pi dikinase and ADP. Both the activation and inactivation reactions catalyzed by PDRP have a broad pH optimum between 7.8 and 8.3. The results are discussed in terms of the likely mechanism of dark/light regulation of pyruvate,Pi dikinase in vivo.  相似文献   

6.
The effect of pyridoxal 5'-phosphate on the activity of ox liver glutamate dehydrogenase towards different amino acid substrates was investigated. Both alanine and glutamate activities decreased steadily in the presence of pyridoxal 5'-phosphate. The alanine/glutamate activity ratio increased as a function of inactivation by pyridoxal 5'-phosphate, indicating that glutamate activity is lost more rapidly than alanine activity. A mixture of NADH, GTP and 2-oxoglutarate completely protected the alanine and glutamate activities against inactivation by pyridoxal 5'-phosphate. The activity of glutamate dehydrogenase towards glutamate and leucine decreased steadily in a constant ratio in the presence of pyridoxal 5'-phosphate. The effect of leucine on the alanine and glutamate activities as a function of inactivation by pyridoxal 5'-phosphate was studied. The results are interpreted to suggest that the subunits of glutamate dehydrogenase hexamer are kinetically non-equivalent with regard to activity towards the two monocarboxylic amino acids as well as glutamate, and that all three substrates share the same active centre. However, leucine is also able to bind at a separate regulatory site.  相似文献   

7.
Pyridoxal 5'-phosphate rapidly abolished the DNA-hydrolyzing activities as well as DNA-dependent ATP-ase activity of the recBC enzyme of Escherichia coli. Pyridoxal also had an inhibitory effect on the enzyme but less effective than that of pyridoxal 5'-phosphate. Pyridoxamine 5'-phosphate, pyridoxamine, or pyridoxine had no effect on the activities of the enzyme. The inhibition was rapidly reversed by dilution but could be made irreversible by reduction with sodium borohydride prior to dilution. This suggests the formation of Schiff base between pyridoxal 5'-phosphate and an epsilon-amino group of a lysine residue which is essential for the enzyme activity. Pyridoxal 5'-phosphate is a competitive inhibitor of DNA substrate but not of ATP. Furthermore, the presence of DNA substrate protected the enzyme from inactivation by the reduction but the presence of ATP showed no effect. Thus, the recBC enzyme appears to have an essential lysine residue at or near the DNA binding site of the enzyme, and the enzyme possesses two independent catalytic sites, such as a DNA binding site and an ATP binding site.  相似文献   

8.
These studies provide further information regarding the mechanism of the light/dark-mediated regulation of pyruvate,Pi dikinase in leaves. It is shown that a catalysis-linked phosphorylation of pyruvate,Pi dikinase can be demonstrated following incubation of the enzyme with [32P]phosphoenolpyruvate or [beta-32P]ATP plus Pi, that the enzyme-bound phosphate is located on a histidine residue, and that this phosphate is retained during ADP-mediated inactivation. Further evidence is provided that phosphorylation of this histidine is a prerequisite for ADP-mediated inactivation through phosphorylation of a threonine residue from the beta-phosphate of ADP. It is demonstrated that diethylpyrocarbonate (which forms a derivative with histidine residues) prevents [32P]phosphoenolpyruvate-dependent labeling (catalytic labeling) and [beta-32P]ADP-dependent labeling (inactivation labeling) of the enzyme. In addition, it is demonstrated that oxalate, an analog of pyruvate, competitively inhibits ADP-dependent inactivation with respect to ADP. The significance of these results is discussed with regard to the mechanism of regulation of pyruvate,Pi dikinase in vivo.  相似文献   

9.
P F Guidinger  T Nowak 《Biochemistry》1991,30(36):8851-8861
The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 +/- 0.025 M-1 min-1. Inactivation by pyridoxal 5'-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7700 +/- 860 M-1 min-1. A second-order rate constant of inactivation for the irreversible reaction catalyzed by the enzyme is 1434 +/- 110 M-1 min-1. Treatment of the enzyme with pyridoxal 5'-phosphate gives incorporation of 1 mol of pyridoxal 5'-phosphate per mole of enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of kobs vs pH suggests this active-site lysine has a pKa of 8.1 and a pH-independent rate constant of inactivation of 47,700 M-1 min-1. The phosphate-containing substrates IDP, ITP, and phosphoenolpyruvate offer almost complete protection against inactivation by pyridoxal 5'-phosphate. Modified, inactive enzyme exhibits little change in Mn2+ binding as shown by EPR. Proton relaxation rate measurements suggest that pyridoxal 5'-phosphate modification alters binding of the phosphate-containing substrates. 31P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme.Mn2+.substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5'-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.  相似文献   

10.
The protein substrate specificity of the maize (Zea mays) leaf ADP: protein phosphotransferase (regulatory protein, RP) was studied in terms of its relative ability to inactivate/phosphorylate pyruvate, orthophosphate dikinase from Zea mays and the non-sulphur purple photosynthetic bacterium Rhodospirillum rubrum. The dimeric bacterial dikinase was inactivated by the maize leaf RP via phosphorylation, with a stoichiometry of approximately 1 mol of phosphate incorporated/mol of 92.7-kDa protomer. Inactivation required both ADP and ATP, with ADP being the specific donor for regulatory phosphorylation. The requirements for inactivation/phosphorylation in this heterologous system were identical with those previously established for the tetrameric maize leaf dikinase. The ADP-dependent maize leaf RP did not phosphorylate alternative protein substrates such as casein or phosvitin, and its activity was not affected by cyclic nucleotides, Ca2+ or calmodulin. The regulation of the maize leaf ADP: protein phosphotransferase was studied in terms of changes in adenylate energy charge and pyruvate concentration. The change in adenylate energy charge necessary to substantially inhibit phosphorylation of maize leaf dikinase was not suggestive of it being a physiological modulator of phosphotransferase activity. Pyruvate was a potent competitive inhibitor of regulatory phosphorylation (Ki = 80 microM), consistent with its interaction with the catalytic phosphorylated intermediate of dikinase, the true protein substrate for ADP-dependent phosphorylation/inactivation.  相似文献   

11.
Fatty acid synthase from the uropygial gland of goose was inhibited by treatment with pyridoxal 5'-phosphate by selectively modifying a lysine residue at the NADPH binding site of the enoyl reductase domain (A. J. Poulose and P. E. Kolattukudy (1980) Arch. Biochem. Biophys. 201, 313-321). Distribution of radioactivity in tryptic peptides generated from the synthase treated with pyridoxal 5'-phosphate/NaB3H4 in the presence and absence of 2'-monophosphoadenosine-5'-diphosphoribose, which protects the enzyme from inactivation by pyridoxal phosphate, showed that modification of one specific peptide was prevented by the protector. This peptide was purified by a combination of Sephadex G-25 column chromatography, anion-exchange chromatography, and high-performance liquid chromatography. The primary structure of this peptide is Val-Phe-Thr-Thr-Val-Gly-Ser-Ala-Glu-Lys(Pxy)-Arg.  相似文献   

12.
Glycerol stabilizes the activity of pyruvate, orthophosphate dikinase extracted from darkened or illuminated maize leaves. It serves as a better protectant of activity than dithiothreitol for the active day-form and the glycerol concentration needed for full protection is inversely related to the level of protein. The night-form of the enzyme is also protected by glycerol not only against inactivation, but also against partial reactivation in storage. Glycerol does not prevent the Pi-dependent activation nor the ADP-dependent inactivation of pyruvate, orthophosphate dikinase, but the rates of both processes are substantially decreased. The ability of the inactive night-form for Pi-dependent activation is also sustained by glycerol for at least 2 h at 20°C, apparently through stabilization of the labile regulatory protein.Abbreviations BSA bovine serum albumin - G-6-P glucose-6-phosphate - MDH malate dehydrogenase - PCMB p-chloromercuribenzoate - PEP phosphoenolpyruvate - PEPCase phosphoenol-pyruvate carboxylase - PPDK pyruvate, orthophosphate dikinase - PVP polyvinylpyrrolidone  相似文献   

13.
To examine the role of lysyl residues in the activity of the enzyme, phosphoglyceromutase (PGM) from chicken breast muscle was chemically modified with trinitrobenzenesulfonate (TNBS) and pyridoxal 5'-phosphate. Trinitrophenylation resulted in modification of about nine lysines per mole of PGM with almost complete activity loss. Substrate (3-PGA) offered some protection to TNBS inactivation but cofactor (2,3-DPGA) did not. Reduction of the Schiff's base complex between pyridoxal 5'-phosphate and PGM gave irreversible inactivation of the enzyme. Inactivation was due to incorporation of 1 mol of pyridoxal 5'-phosphate per mole of PGM dimer through the epsilon-amino group of a lysyl residue. The effect of pyridoxal 5'-phosphate was specific for intact native enzyme and reaction with only one lysine per dimer was not due to induced conformational changes nor to dissociation of the reacted enzyme. 3-PGA prevented much of the reaction with pyridoxal 5'-phosphate with preservation of 70% of the activity and was a competitive inhibitor of the active site directed reagent. Cofactor (2,3-DPGA) acting noncompetitively, reduced the rate at which inactivation occurred with pyridoxal 5'-phosphate. Incorporation of 2,3-[32P]DPGA into PGM irreversibly inactivated with pyridoxal 5'-phosphate and NaBH4 was incomplete indicating hindrance to phosphorylation in the modified enzyme. The results indicate that a lysyl residue is located at or near the active site of PGM and that it is probably involved in the binding of 3-PGA.  相似文献   

14.
Low molecular weight acid phosphatase from bovine brain was purified to homogeneity using affinity chromatography on p-aminobenzylphosphonic acid-agarose to obtain the enzyme with both high specific activity (110 mumol min-1 mg-1 measured at pH 5.5 and 37 degrees C with p-nitrophenyl phosphate as substrate) and good yields. The enzyme was characterized with respect to molecular weight, amino acid composition, pH optimum, Km and Vmax in varying substrates, and to the Ki of varying inhibitors. Furthermore, transphosphorylation to glycerol was demonstrated by measuring the released p-nitrophenol/Pi concentration ratio during the initial phase of the catalyzed reaction. The enzyme was inactivated by iodoacetate and 1,2-cycloexanedione. Inorganic phosphate, a competitive inhibitor, protected the enzyme from being inactivated by the above compounds, demonstrating the involvement of both cysteine(s) and arginine(s) at the active site of the enzyme. Furthermore, the strong inhibition exerted by pyridoxal 5'-phosphate and the low inhibitory capacity possessed by the pyridoxal 5'-phosphate analogues pyridoxamine 5'-phosphate and pyridoxal, indicate that at least one lysine residue is present at the active site.  相似文献   

15.
These studies provide information about the mechanism of the light/dark-mediated regulation of pyruvate, Pi dikinase (EC 2.7.9.1) in leaves. It is shown that inactivation is due to a phosphorylation of the enzyme from the beta-phosphate of ADP, and that activation occurs by phosphorolysis to remove the enzyme phosphate group. During ADP plus ATP-dependent inactivation of pyruvate, Pi dikinase in chloroplast extracts, 32P was incorporated into the enzyme from [beta-32P]ADP. Approximately 1 mol of phosphate was incorporated per mol of monomeric enzyme subunit inactivated. There was very little incorporation of label from ADP or ATP labeled variously in other positions with 32P or from the nucleotides labeled with 3H in the purine ring. Purified pyruvate, Pi dikinase was also labeled from [beta-32P]ADP during inactivation. In this system, phosphorylation of the enzyme required the addition of the "regulatory protein" shown previously to be essential for catalyzing inactivation and activation. During orthophosphate-dependent reactivation of pyruvate, Pi dikinase, it was shown that the enzyme loses 32P label and that pyrophosphate is produced. The significance of these findings in relation to regulation of the enzyme in vivo is discussed.  相似文献   

16.
Phosphoenolpyruvate carboxylase from maize leaves was inactivated by pyridoxal 5'-phosphate in the dark and in the light. A two-step reversible mechanism is proposed for inactivation in the dark, which involves the formation of a noncovalent complex prior to a Schiff base with amino groups of the enzyme. Spectral analysis of pyridoxal 5'-phosphate-modified phosphoenolpyruvate carboxylase showed absorption maxima at 432 and 327 nm, before and after reduction with NaBH4, respectively, suggesting that epsilon-amino groups of lysine residues are the reactive groups in the enzyme. A correlation between spectral data and the maximal inactivation obtained with several concentrations of inhibitor allowed us to establish that the incorporation of 4 mol of pyridoxal 5'-phosphate per mole of holoenzyme accounts for total inactivation. The absence of modifier bound to phosphoenolpyruvate carboxylase when the modification was carried out in the presence of phosphoenolpyruvate and MgCl2 suggests the existence of an essential lysine residue at the catalytic site of the enzyme. Modification of phosphoenolpyruvate carboxylase in the light under an oxygen atmosphere resulted in an irreversible inactivation, which was completely protected by phosphoenolpyruvate and MgCl2. Spectral analysis of the photomodified enzyme showed an absorption peak of 320 nm, suggesting light-mediated addition of a nucleophilic residue (probably an imidazole group) to the pyridoxal 5'-phosphate-lysine azomethine bond.  相似文献   

17.
Escherichia coli pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate by the FMN oxidation of pyridoxine 5'-phosphate forming FMNH(2) and H(2)O(2). Recent studies have shown that in addition to the active site, pyridoxine 5'-phosphate oxidase contains a non-catalytic site that binds pyridoxal 5'-phosphate tightly. The crystal structure of pyridoxine 5'-phosphate oxidase from E. coli with one or two molecules of pyridoxal 5'-phosphate bound to each monomer has been determined to 2.0 A resolution. One of the pyridoxal 5'-phosphate molecules is clearly bound at the active site with the aldehyde at C4' of pyridoxal 5'-phosphate near N5 of the bound FMN. A protein conformational change has occurred that partially closes the active site. The orientation of the bound pyridoxal 5'-phosphate suggests that the enzyme catalyzes a hydride ion transfer between C4' of pyridoxal 5'-phosphate and N5 of FMN. When the crystals are soaked with excess pyridoxal 5'-phosphate an additional molecule of this cofactor is also bound about 11 A from the active site. A possible tunnel exists between the two sites so that pyridoxal 5'-phosphate formed at the active site may transfer to the non-catalytic site without passing though the solvent.  相似文献   

18.
1. Mouse C4 lactate dehydrogenase treated in the dark with pyridoxal 5'-phosphate at pH8.7 and 25 degrees C loses activity gradually; 1mM-pyridoxal 5'-phosphate causes 83% inactivation, and higher concentrations of the reagent cause no further loss of activity. 2. The final extent of inactivation is very pH-dependent, greater inactivation occurring at the high pH values. 3. Inactivation may be fully reversed by addition of cysteine, or made permanent by reducing the enzyme with NaBH4. 4. The absorption spectrum of inactivated reduced enzyme indicates modification of lysine residues. Inactivation by 80% corresponds to modification of at least 1.8 mol of lysine/mol of enzyme subunit. 5. There is no loss of free thiol groups after inactivation with pyridoxal 5'-phosphate and reduction of the enzyme. 6. NAD+ or NADH gives complete protection against inactivation. protection studies with coenzyme fragments indicate that the AMP moiety is largely responsible for the protective effect. Lactate (10 mM) gives no protection in the absence of added nucleotides, but greatly enhances the protection given by ADP-ribose (1 mM). Thus ADP-ribose is able to trigger the binding of lactate. 7. Pyridoxal 5'-phosphate also acts as a non-covalent inhibitor of mouse C4 lactate dehydrogenase. The inhibition is non-competitive with respect to both NAD+ and lactate. 8. Km values for the enzyme at pH 8.0 and 25 degrees C, with the non-varied substrate saturating, are 0.3 mM-lactate and 5 microM-NAD+. 9. These results are discussed and compared with pyridoxal 5'-phosphate modification of other lactate dehydrogenase isoenzymes and related dehydrogenases.  相似文献   

19.
Pyridoxamine (pyridoxine)-5'-phosphate oxidase (EC 1.4.3.5) from rabbit liver is inactivated by diethylpyrocarbonate in an all-or-none fashion with first order kinetics with respect to modifier concentration. The rate of inactivation increases with pH and reflects a group with a pKa of 7.5. Inactivated enzyme is in the holo form with intact FMN. Four histidyls and a cysteinyl residue are modified by excess reagent. The restoration of enzymatic activity by hydroxylamine, the spectrophotometric and colorimetric amino acid analyses, and our previous studies on cysteine modification (Tsuge, H., and McCormick, D.B. (1979) in Flavins and Flavoproteins (Yamano, T., and Yagi, K., eds) Japan Scientific Societies Press, Tokyo, in press) all suggest that inactivation occurs solely by modification of histidine. Analyses by kinetic and statistical methods indicate that three histidines are modified slowly and are not critical for activity, while one histidine is modified nine times more rapidly and accounts for the observed inactivation. Inactivated enzyme shows no significant perturbations in structure, as evidenced by absorption, CD, fluorescence, and gel filtration, but is unable to bind the product, pyridoxal 5'-phosphate. Furthermore, the substrate-competitive inhibitor, pyridoxal 5'-phosphate oxime, protects from inactivation. Hence, diethylpyrocarbonate inactivates this enzyme by modifying a crucial histidyl residue at the substrate/product-binding site.  相似文献   

20.
The reversible inactivation of porcine heart mitochondrial malate dehydrogenase by pyridoxal 5'-phosphate yields an irreversible modification upon sodium borohydride reduction. A 200-fold molar excess of pyridoxal-5'-P over enzyme results in inactivation to the extent of 54%, and incorporation of 5.7 mol of inactivator per mol of enzyme. The same inactivation carried out in the presence of 80 mM coenzyme, NADH, produces malate dehydrogenase which is approximately 94% active and contains 4.6 mol of pyridoxal-5'-P per mol of enzyme. The incorporation difference between inactivated and protected samples suggests, for total inactivation, the modification of 2 residues per mol of enzyme (i.e. 1 residue per subunit, or 1 per enzymatic active site). This specificity was confirmed by the isolation of a single pyridoxyl-5'-P-labeled "difference peptide" obtained by comparison of the Dowex 1-X2 elution profiles of tryptic digests of protected and inactivated samples, respectively. Amino acid analysis of the peptide demonstrated the presence of N6-pyridoxyl-L-lysine (Lys(Pyx)), establishing the existence of an essential lysing residue in the active center of malate dehydrogenase. The amino acid sequence of the active center hexapeptide has been determined to be: H2NLys(Pyx)Pro-Gly-Met-Thr-Arg-COOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号