首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
放牧和异常降水对荒漠草原生态系统产生了显著的影响,群落物种组成及多样性因降水和载畜率的改变而变化。然而不同载畜率下荒漠草原植物群落物种组成及多样性对异常降水的响应尚不明晰。本研究以内蒙古短花针茅(Stipa breviflora)荒漠草原为研究对象,调查并分析不同载畜率(绵羊,CK:不放牧、LG:0.93、MG:1.82和HG:2.71羊单位hm-2半年-1)放牧区植物群落物种组成及其数量特征。结果表明:降水增加对群落数量特征和物种多样性促进作用显著,但对群落物种优势度指数有显著抑制作用;降水增加使得不同功能属性物种数目增多,引起建群种物种综合优势度降低,从而改变群落物种组成及多样性;不同功能属性物种对载畜率的响应存在差异,群落物种组成及多样性在响应异常降水变化时,降水与载畜率之间协同变化和相互制约,但直根系C3植物和群落总密度的变化主要受载畜率影响。异常降水可影响长期过度放牧引起的生态系统过程,对草地生态系统恢复有积极作用。  相似文献   

2.
Ungulate grazing is known to play a crucial role in regulating energy flow and nutrient cycling in grassland ecosystems. However, previous studies of the effect of grazing on soil N dynamics have showed controversial results. Some studies indicate that grazing stimulates N mineralization while others report that grazing suppresses N mineralization. In order to reconcile these contrasting results, we investigated the response pattern of nitrogen transformation to multiple grazing intensities in an Inner Mongolian steppe. In our study, we measured net nitrogen mineralization rates and nitrification rates during a whole growing season in a 17-year field experiment that had five grazing intensities (0.00, 1.33, 2.67, 4.00 and 5.33 sheep ha−1). Primarily because of changes in temperature and moisture conditions, net N mineralization rates varied substantially during the growing season with higher values occurring in late July. No consistent differences in net N mineralization rates were observed between grazing intensity treatments at the monthly time scale. Compared to mineralization rates, net nitrification rates were generally low with slightly higher values occurring in late July and late August. Ungulate grazing stimulated the cumulative net N transformations (mineralization, nitrification and ammonification) at the annual time scale, and the most stimulation occurred at a moderate grazing intensity of 4.00 sheep ha−1, whereas the highest grazing intensity of 5.33 sheep ha−1 and the lighter grazing intensity of 1.33 sheep ha−1 stimulated less. The general response of net N mineralization to grazing intensity gradient is roughly in the form of a normal distribution at the annual time scale. Our study demonstrated that grazing intensity in concert with soil moisture and temperature conditions imposed significant controls on soil N transformation and availability in this Inner Mongolian steppe.  相似文献   

3.
We conducted a quantitative assessment of forage biomass in Harshin district to determine its annual productive potential, carrying capacity, and stocking rates. The dominant Land Use and Land Cover include woodland (35.5%), shrubs (28.3%), grassland (10.6%), and bare land (25.5%). The region has browse‐rich shrubland that is edible to dromedary and goats, as well as massive grassland plains for sheep and cattle. The interannual rainfall variation is 16.5% which implies that the rangeland is a subsistence equilibrium system. The range of forage production is between 105 and 2,310 kg/ha, whereas the average productivity of the district is 742.6 kg/ha. The result indicates that the average carrying capacity of the district is 0.3 TLU ha?1 year?1 (4.9 ha TLU?1 year?1) while the existing stocking rate is 5.4 TLU ha?1 year?1 (0.18 ha TLU?1 year?1). This implies that the grazing intensity in the district is much higher than its carrying capacity (recommended rate), which has seen overstocking or grazing pressure excesses of 5.1 TLU/ha (7.2 cattle/ha). Thus, it clearly signals the risk of overgrazing in the district. If this trend continues, the grazing will not be sustainable and there will be shortage of forage as well as expansion of land degradation (due to overgrazing) in the near future.  相似文献   

4.
杨晨  王炜  汪诗平  梁存柱  王立新 《生态学报》2013,33(10):3092-3102
内蒙古典型草原,由于过度放牧利用,绝大部分草原处于退化状态.为了使退化草原得到较好的恢复,以锡林郭勒盟白音锡勒牧场典型草原为研究对象,比较分析了在不同起始状态下的草原群落,经过6a的自然恢复,其各自的群落组成,地上生物量及共有种的植株高度、节间长、叶长、叶宽,土壤紧实度和容重.结果表明:1)不同放牧率的植物群落,经过6a的禁牧恢复,群落类型发生了变化且群落趋于一致.2)当放牧率SR≤5.33羊/hm2(SR4)时,演替起始状态对草原群落地上生物量的恢复没有影响;当放牧率SR>5.33羊/hm2时,演替起始状态对草原群落地上生物量的恢复产生影响,其结果是导致当前生物量降低,不利于草原的恢复.3)不同放牧率植物群落的植物个体特征趋于一致,“个体小型化”现象消失.同时,也说明群落恢复演替的起点不同,正常化的时间没有太大的变化.4)不同放牧率植物群落的土壤紧实度和容重经过6a的禁牧恢复,没有得到完全恢复,但均达到一致的水平.  相似文献   

5.
Intercropping cotton (Gossypium hirsutum L.) and cowpea (Vigna unguiculata (L.) Walp) is one of the ways to improve food security and soil fertility whilst generating cash income of the rural poor. A study was carried out to find out the effect of cotton–cowpea intercropping on cowpea N2-fixation capacity, nitrogen balance and yield of a subsequent maize crop. Results showed that cowpea suppressed cotton yields but the reduction in yield was compensated for by cowpea grain yield. Cowpea grain yield was significantly different across treatments and the yields were as follows: sole cowpea (1.6 Mg ha−1), 1:1 intercrop (1.1 Mg ha−1), and 2:1 intercrop (0.7 Mg ha−1). Cotton lint yield was also significantly different across treatments and was sole cotton (2.5 Mg ha−1), 1:1 intercrop (0.9 Mg ha−1) and 2:1 intercrop (1.5 Mg ha−1). Intercropping cotton and cowpea increased the productivity with land equivalence ratios (LER) of 1.4 and 1.3 for 1:1 and 2:1 intercrop treatments, respectively. There was an increase in percentage of N fixation (%Ndfa) by cowpea in intercrops as compared to sole crops though the absolute amount fixed (Ndfa) was lower due to reduced plant population. Sole cowpea had %Ndfa of 73%, 1:1 intercrop had 85% and 2:1 intercrop had 77% while Ndfa was 138 kg ha−1 for sole cowpea, 128 kg ha−1 for 1:1 intercrop and 68 kg ha−1 for 2:1 intercrop and these were significantly different. Sole cowpea and the intercrops all showed positive N balances of 92 kg ha−1 for sole cowpea and 1:1 intercrop, and 48 kg ha−1 for 2:1 intercrop. Cowpea fixed N transferred to the companion cotton crop was very low with 1:1 intercrop recording 3.5 kg N ha−1 and 2:1 intercrop recording 0.5 kg N ha−1. Crop residues from intercrops and sole cowpea increased maize yields more than residues from sole cotton. Maize grain yield was, after sole cotton (1.4 Mg ha−1), sole cowpea (4.6 Mg ha−1), 1:1 intercrops (4.4 Mg ha−1) and 2:1 intercrops (3.9 Mg ha−1) and these were significantly different from each other. The LER, crop yields, %N fixation and, N balance and residual fertility showed that cotton–cowpea intercropping could be a potentially productive system that can easily fit into the current smallholder farming systems under rain-fed conditions. The fertilizer equivalency values show that substantial benefits do accrue and effort should be directed at maximizing the dry matter yield of the legume in the intercrop system while maintaining or improving the economic yield of the companion cash crop.  相似文献   

6.
Questions: What effect does sheep grazing have on the nutrient budgets of heathlands? Can grazing compensate for atmospheric nutrient loads in heathland ecosystems? What are the conclusions for heathland management? Location: Lüneburg Heath, NW Germany. Methods: During a one-year grazing experiment (stocking rate 1.1 sheep/ha) nutrient balances for N, Ca, K, Mg and P were calculated by quantifying input rates (atmospheric deposition, sheep excrement) and output rates (biomass removal, leaching). Results: Atmospheric nutrient deposition amounted to 22.8 kg.ha−1.a−1 for N and < 0.2 kg.ha−1.a−1 for P. Sheep excrement increased the inputs for N and P by ca. 3.5 and 0.2 kg.ha−1.a−1, respectively. Grazing reduced N- and P-stores in the above-ground biomass by 25.6 and 1.9 kg.ha−1.a−1, respectively. N-and P-losses via leaching amounted to 2.2 and < 0.2 kg.ha−1.a−1. Output:input ratios for P were high, indicating that grazing severely affected P-budgets of heaths. Conclusions: Our results suggest that sheep grazing has the potential to compensate for atmospheric nutrient loads (particularly for current N deposition rates). However, in the long term the combination of elevated N-deposition and P-loss due to grazing may cause a shift from N-(co-) limited to more P-(co-) limited plant growth. To counteract an aggravation of P-deficiency in the long term, grazing may be combined with management measures that affect P-budgets to a lesser extent (e.g. prescribed burning).  相似文献   

7.
Biometric inventories for 25 years, from 1983 to 2005, indicated that the Jianfengling tropical mountain rain forest in Hainan, China, was either a source or a modest sink of carbon. Overall, this forest was a small carbon sink with an accumulation rate of (0.56±0.22) Mg C ha−1yr−1, integrated from the long-term measurement data of two plots (P9201 and P8302). These findings were similar to those for African and American rain forests ((0.62±0.23) Mg C ha−1yr−1). The carbon density varied between (201.43±29.38) Mg C ha−1 and (229.16±39.2) Mg C ha−1, and averaged (214.17±32.42) Mg C ha−1 for plot P9201. Plot P8302, however, varied between (223.95±45.92) Mg C ha−1 and (254.85±48.86) Mg C ha−1, and averaged (243.35±47.64) Mg C ha−1. Quadratic relationships were found between the strength of carbon sequestration and heavy rainstorms and dry months. Precipitation and evapotranspiration are two major factors controlling carbon sequestration in the tropical mountain rain forest.  相似文献   

8.
Questions: How are heathland vegetation dynamics affected by different goat grazing management? Location: Cantabrian heathlands in Illano, Asturias, northern Spain. Methods: During 4 years, vegetation dynamics (structural composition, canopy height and floristic diversity) were studied under three goat grazing treatments with three replicates: high stocking rate (11.7 goats ha?1) with a local Celtiberic breed, and high (15 goats ha?1) and low (6.7 goats ha?1) stocking rates with a commercial Cashmere breed. Results: The relative cover of woody plants, particularly heather species, decreased more while herbaceous cover increased more under local Celtiberic than under Cashmere breed grazing. Within Cashmere treatments, the cover and height of live shrubs decreased more and the herbaceous cover increased more under high than under low stocking rate. Redundancy analysis showed a significant effect of treatment × year interaction on floristic composition. Greater species richness was recorded under local goat grazing, but Shannon diversity index fell in the fourth year on these plots because of dominance by two grass species. Conclusions: Local Celtiberic goat grazing at such a high stocking rate (11.7 goats ha?1) hinders the development of sustainable systems on these heathlands, both in environmental and productive terms, owing to the limitations in soil fertility. Nevertheless, Celtiberic goats could be useful for controlling excessive shrub encroachment and reducing fire hazard. Cashmere goat grazing at high stocking rate promoted the highest Shannon diversity by generating a better balance between woody and herbaceous plants, while shrub dominance was not altered under the low stocking rate.  相似文献   

9.
Livestock grazing is known to influence carbon (C) storage in vegetation and soil. Yet, for grazing management to be used to optimize C storage, large scale investigations that take into account the typically heterogeneous distribution of grazers and C across the landscape are required. In a landscape-scale grazing experiment in the Scottish uplands, we quantified C stored in swards dominated by the widespread tussock-forming grass species Molinia caerulea. The impact of three sheep stocking treatments (‘commercial’ 2.7 ewes ha?1 y?1, ‘low’ 0.9 ewes ha?1 y?1 and no livestock) on plant C stocks was determined at three spatial scales; tussock, sward and landscape, and these data were used to predict long-term changes in soil organic carbon (SOC). We found that tussocks were particularly dense C stores (that is, high C mass per unit area) and that grazing reduced their abundance and thus influenced C stocks held in M. caerulea swards across the landscape; C stocks were 3.83, 5.01 and 6.85 Mg C ha?1 under commercial sheep grazing, low sheep grazing and no grazing, respectively. Measured vegetation C in the three grazing treatments provided annual C inputs to RothC, an organic matter turnover model, to predict changes in SOC over 100 years. RothC predicted SOC to decline under commercial sheep stocking and increase under low sheep grazing and no grazing. Our findings suggest that no sheep and low-intensity sheep grazing are better upland management practices for enhancing plant and soil C sequestration than commercial sheep grazing. This is evaluated in the context of other upland management objectives.  相似文献   

10.
Old growth forest soils are large C reservoirs, but the impacts of tree-fall gaps on soil C in these forests are not well understood. The effects of forest gaps on soil C dynamics in old growth northern hardwood–hemlock forests in the upper Great Lakes region, USA, were assessed from measurements of litter and soil C stocks, surface C efflux, and soil microbial indices over two consecutive growing seasons. Forest floor C was significantly less in gaps (19.0 Mg C ha−1) compared to gap-edges (39.5 Mg C ha−1) and the closed forest (38.0 Mg C ha−1). Labile soil C (coarse particulate organic matter, cPOM) was significantly less in gaps and edges (11.1 and 11.2 Mg C ha−1) compared to forest plots (15.3 Mg C ha−1). In situ surface C efflux was significantly greater in gaps (12.0 Mg C ha−1 y−1) compared to edges and the closed forest (9.2 and 8.9 Mg C ha−1 y−1). Microbial biomass N (MBN) was significantly greater in edges (0.14 Mg N ha−1) than in the contiguous forest (0.09 Mg N ha−1). The metabolic quotient (qCO2) was significantly greater in the forest (0.0031 mg CO2 h−1 g−1/mg MBC g−1) relative to gaps or edges (0.0014 mg CO2 h−1 g−1/mg MBC g−1). A case is made for gaps as alleviators of old growth forest soil C saturation. Relative to the undisturbed closed forest, gaps have significantly less labile C, significantly greater in situ surface C efflux, and significantly lower decreased qCO2 values.  相似文献   

11.
Species in the Miscanthus genus have been proposed as biofuel crops that have potential to mitigate elevated atmospheric carbon dioxide (CO2) levels and nitrous oxide (N2O) and methane (CH4) emissions. Miscanthus sinensis is widespread throughout Japan and has been used for biomass production for centuries. We assessed the carbon (C) budget and N2O and CH4 emissions over the growing season for 2 years in a M. sinensis‐dominated grassland that was naturally established around 1972 in Tomakomai, Hokkaido, Japan, which is near the northern limit for M. sinensis grassland establishment on Andisols. Average C budget was ?0.31 Mg C ha?1, which indicates C was released from the grassland ecosystem to the atmosphere. Dominant components in the C budget appeared to be aboveground net primary production of plants (1.94–2.80 Mg C ha?1) and heterotrophic respiration (2.27–3.11 Mg C ha?1). The measurement of belowground net primary production (BNPP) of plants in the M. sinensis grassland was extremely variable, thus only an approximate value could be calculated. Mean C budget calculated with the approximated BNPP value was 1.47 and ?0.23 Mg C ha?1 for 2008 and 2009, respectively. Given belowground biomass (9.46–9.86 Mg C ha?1) was 3.1–6.5 times higher than that of aboveground biomass may provide additional evidence suggesting this grassland represents a C sink. Average CH4 emissions across years of ?1.34 kg C ha?1 would indicate this grassland acts as an atmospheric CH4 sink. Furthermore, average N2O emissions across years were 0.22 kg N ha?1. While the site may contribute N2O to the atmosphere, this value is lower compared with other grassland types. Global warming potential calculated with the approximated BNPP value was ?5.40 and 0.95 Mg CO2 Eq ha?1 for 2008 and 2009, respectively, and indicates this grassland could contribute to mitigation of global warming.  相似文献   

12.
Wildfire is a major disturbance in Baikiaea plurijuga Harms woodland savannas. We tested the hypothesis that the timing and intensity of herbivory influence fuel loads. We used three stocking rates namely light (three cows and four goats ha?1), medium (six cows and eight goats ha?1) and heavy (eleven cows and sixteen goats ha?1) and three times of grazing namely early‐, middle‐ and late‐growing seasons. Season of grazing and stocking rate influenced herbaceous phytomass. Phytomass was generally the highest (53.5 g DM m?2) in paddocks grazed during the early growing season and the lowest (27.8 g DM m?2) in those grazed during the late growing season. Phytomass was also generally the highest (40.4 g DM m?2) in lightly stocked paddocks and the lowest (32.7 g DM m?2) in heavily stocked ones. Litter mass was the lowest (160.8 g DM m?2) in paddocks grazed during the early season whereas there were no differences in ungrazed paddocks and those grazed during either mid‐ or late growing seasons (205.4 g DM m?2). There was a negative relationship between litter mass and stocking rate. Baikiaea Benth. woodlands should be grazed during either the mid‐ or late‐growing season at stocking rates greater than 0.1 LU ha?1 to reduce grass fuel loads.  相似文献   

13.
Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha−1 during the growing season in the Inner Mongolia steppe. Shiping Wang and He Zhou contributed equally to this work.  相似文献   

14.
Woody debris (WD) is an important component of forest C budgets, both as a C reservoir and source of CO2 to the atmosphere. We used an infrared gas analyzer and closed dynamic chamber to measure CO2 efflux from downed coarse WD (CWD; diameter≥7.5 cm) and fine WD (FWD; 7.5 cm>diameter≥2 cm) to assess respiration in a selectively logged forest and a maturing forest (control site) in the northeastern USA. We developed two linear regression models to predict WD respiration: one based on WD temperature, moisture, and size (R 2=0.57), and the other on decay class and air temperature (R 2=0.32). WD respiration (0.28±0.09 Mg C ha−1 year−1) contributed only ≈2% of total ecosystem respiration (12.3±0.7 Mg C ha−1 year−1, 1999–2003), but net C flux from CWD accounted for up to 30% of net ecosystem exchange in the maturing forest. C flux from CWD on the logged site increased modestly, from 0.61±0.29 Mg C ha−1 year−1 prior to logging to 0.77±0.23 Mg C ha−1 year−1 after logging, reflecting increased CWD stocks. FWD biomass and associated respiration flux were ≈7 times and ≈5 times greater, respectively, in the logged site than the control site. The net C flux associated with CWD, including inputs and respiratory outputs, was 0.35±0.19 Mg C ha−1 year−1 (net C sink) in the control site and −0.30±0.30 Mg C ha−1 year−1 (net C source) in the logged site. We infer that accumulation of WD may represent a small net C sink in maturing northern hardwood forests. Disturbance, such as selective logging, can enlarge the WD pool, increasing the net C flux from the WD pool to the atmosphere and potentially causing it to become a net C source.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
载畜率是衡量草原生产能力的指标之一,研究荒漠草原冷蒿(Artemisia frigida)植物种群在不同载畜率下的耐牧程度和空间分布特征,对退化草原的恢复具有重要的指导意义。以短花针茅荒漠草原优势种冷蒿为研究对象,在4个不同载畜率放牧试验设计(对照区CK(0只/hm~2)、轻度放牧区LG(0.93只/hm~2)、中度放牧区MG(1.82只/hm~2)和重度放牧区HG(2.71只/hm~2))小区中选择代表性样地(面积为40m×40m),采用机械取样法进行取样,记录冷蒿植物种群的密度,使用SAS 9.4软件对其进行描述性统计和方差分析,并用地统计学软件GS+9.0进行空间异质性统计分析。结果表明:荒漠草原优势种冷蒿密度、出现频率和单位均值上的变异值随载畜率增大都明显下降,其植物种群空间分布的决定性因素随载畜率增大由结构性因素转变为随机性因素。LG和HG处理区的空间自相关距离较大,但这两者表现结果的影响因素存在差异。在CK和HG区,冷蒿空间分布斑块化较为明显,LG区的冷蒿空间分布的特征表现为带状分布,MG区冷蒿空间分布形成了一处大的条带和零星的几块斑块。基于上述研究结果可以得出,随着载畜率...  相似文献   

16.
In grazing ecosystems, mature seeds fall directly to the soil to form the soil seed bank (SSB), or are ingested by grazing livestock to become part of the dung seed bank (DSB; i.e., seed circulation). Both the SSB and DSB form the basis for the natural regeneration of vegetation. However, little is known about the relationships between the SSB, DSB, and aboveground vegetation (AGV) community under different stocking rates (SRs). This study investigated the relationships between the SSB, seeds in Tan sheep (Ovis aries) dung, and AGV at different SRs (0, 2.7, 5.3, and 8.7 sheep ha–1) in a semiarid region of the Loess Plateau in China. We found that Tan sheep grazing increased the species richness heterogeneity of grassland vegetation, and negatively influenced the density of AGV. Under natural conditions, 17 species from soil‐borne seeds and 10 species from Tan sheep dung germinated. There was low species similarity between the soil and DSBs and AGV. Sheep SR and the seed banks (soil and dung) were negatively correlated with AGV. Seeds are cycled from herbage to livestock to soil during cold season grazing; the seasonal nature of this seed dispersal is an adaptation to harsh, semiarid environments. Increased seed bank diversity under sheep grazing facilitates grassland regeneration on the Loess Plateau, similarly to other semiarid regions globally.  相似文献   

17.
Coarse woody debris mass and nutrients in forest ecosystems of Korea   总被引:3,自引:0,他引:3  
Coarse woody debris (CWD) is an essential component of forests. However, quantification of both the mass and nutrient content of CWD within a given environment tends to be a fairly labor-intensive proposition that requires long-term studies to be conducted for viable data to be obtained. As a result, various aspects of CWD in forest ecosystems remain somewhat poorly understood. In this review, we have compiled all available estimates of CWD mass and nutrients from both coniferous and deciduous forests in Korea. The CWD mass data varied substantially by forest type, age, location, and sampling time, ranging from 1.5 to 24.5 Mg ha−1, and for the amount (kg ha−1) of nutrients in the CWD, ranging from 3.5 to 23.6 for nitrogen (N), 0.8 to 4.7 for phosphorus (P), 3.9 to 13.3 for potassium (K), 25.9 to 30.9 for calcium (Ca), 1.4 to 4.2 for magnesium (Mg), and 0.1 to 0.6 for sodium (Na). The mass of CWD transferred from live trees to the forest floor ranged between 0.1 and 4.9 Mg ha−1 year−1, and these values were roughly equivalent to 26–42% of the annual litterfall inputs (2.5–10.8 Mg ha−1 year−1) for mixed Quercus spp. forests within the relevant region. Annual nutrients inputs (kg ha−1 year−1) through CWD decomposition were 0.7–1.6 for N, 0.04–0.3 for P, 0.3–1.0 for K, 1.7–3.1 for Ca, and 0.1–0.3 for Mg. Consequently, these results revealed that the ecological value of CWD for C and nutrient cycling was relatively insignificant. However, only a limited number of studies have been conducted on CWD in different coniferous or mixed deciduous forests in the region. As a direct result of this paucity of data, further long-term studies on CWD mass and nutrients in a variety of forest types are required in order to be able to evaluate accurately the ecological value of CWD on biodiversity and physical properties in Korean forest ecosystems.  相似文献   

18.
Tree species and wood ash application in plantations of short-rotation woody crops (SRWC) may have important effects on the soil productive capacity through their influence on soil organic matter (SOM) and exchangeable cations. An experiment was conducted to assess changes in soil C and N contents and pH within the 0–50 cm depth, and exchangeable cation (Ca2+, Mg2+, K+, and Na+) and extractable acidity concentrations within the 0–10 cm depth. The effects of different species (European larch [Larix decidua P. Mill.], aspen [Populus tremula L. × Populus tremuloides Michx.], and four poplar [Populus spp.] clones) and wood ash applications (0, 9, and 18 Mg ha−1) on soil properties were evaluated, using a common garden experiment (N = 70 stands) over 7 years of management in Michigan’s Upper Peninsula. Soils were of the Onaway series (fine-loamy, mixed, active, frigid Inceptic Hapludalfs). The NM-6 poplar clone had the greatest soil C and N contents in almost all ash treatment levels. Soil C contents were 7.5, 19.4, and 10.7 Mg C ha−1 greater under the NM-6 poplar than under larch in the ash-free, medium-, and high-level plots, respectively. Within the surface layer, ash application increased soil C and N contents (P < 0.05) through the addition of about 0.7 Mg C ha−1 and 3 kg N ha−1 with the 9 Mg ha−1 ash application (twofold greater C and N amounts were added with the 18 Mg ha−1 application). During a decadal time scale, tree species had no effects—except for K+—on the concentrations of the exchangeable cations, pH, and extractable acidity. In contrast, ash application increased soil pH and the concentration of Ca2+ (P < 0.05), from 5.2 ± 0.4 cmolc kg−1 (ash-free plots) to 8.6 ± 0.4 cmolc kg−1 (high-level ash plots), and tended to increase the concentration of Mg2+ (P < 0.1), while extractable acidity was reduced (P < 0.05) from 5.6 ± 0.2 cmolc kg−1 (ash-free plots) to 3.7 ± 0.2 cmolc kg−1 (high-level plots). Wood ash application, within certain limits, not only had a beneficial effect on soil properties important to the long-term productivity of fast-growing plantations but also enhanced long-term soil C sequestration.  相似文献   

19.
Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17μmol.m−2.s−1) and clipping (2.06μmol.m−2.s−1) than under grazing (1.65μmol.m−2.s−1) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.  相似文献   

20.
Nitrous oxide (N2O) emissions from grazed grasslands are estimated to be approximately 28% of global anthropogenic N2O emissions. Estimating the N2O flux from grassland soils is difficult because of its episodic nature. This study aimed to quantify the N2O emissions, the annual N2O flux and the emission factor (EF), and also to investigate the influence of environmental and soil variables controlling N2O emissions from grazed grassland. Nitrous oxide emissions were measured using static chambers at eight different grasslands in the South of Ireland from September 2007 to August 2009. The instantaneous N2O flux values ranged from -186 to 885.6 μg N2O-N m−2 h−1 and the annual sum ranged from 2 ± 3.51 to 12.55 ± 2.83 kg N2O-N ha−1 y−1 for managed sites. The emission factor ranged from 1.3 to 3.4%. The overall EF of 1.81% is about 69% higher than the Intergovernmental Panel on Climate Change (IPCC) default EF value of 1.25% which is currently used by the Irish Environmental Protection Agency (EPA) to estimate N2O emission in Ireland. At an N applied of approximately 300 kg ha−1 y−1, the N2O emissions are approximately 5.0 kg N2O-N ha−1 y−1, whereas the N2O emissions double to approximately 10 kg N ha−1 for an N applied of 400 kg N ha−1 y−1. The sites with higher fluxes were associated with intensive N-input and frequent cattle grazing. The N2O flux at 17°C was five times greater than that at 5°C. Similarly, the N2O emissions increased with increasing water filled pore space (WFPS) with maximum N2O emissions occurring at 60–80% WFPS. We conclude that N application below 300 kg ha−1 y−1 and restricted grazing on seasonally wet soils will reduce N2O emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号