首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jacob, Brenner, and Cuzin pioneered the development of the F plasmid as a model system to study replication control, and these investigations led to the development of the "replicon model" (Jacob, F., Brenner, S., and Cuzin, F. (1964) Cold Spring Harbor Symp. Quant. Biol. 28, 329-348). To elucidate further the mechanism of initiation of replication of this plasmid and its control, we have reconstituted its replication in vitro with 21 purified host-encoded proteins and the plasmid-encoded initiator RepE. The replication in vitro was specifically initiated at the F ori (oriV) and required both the bacterial initiator protein DnaA and the plasmid-encoded initiator RepE. The wild type dimeric RepE was inactive in catalyzing replication, whereas a monomeric mutant form called RepE(*) (R118P) was capable of catalyzing vigorous replication. The replication topology was mostly of the Cairns form, and the fork movement was unidirectional and mostly from right to left. The replication was dependent on the HU protein, and the structurally and functionally related DNA bending protein IHF could not efficiently substitute for HU. The priming was dependent on DnaG primase. Many of the characteristics of the in vitro replication closely mimicked those of in vivo replication. We believe that the in vitro system should be very useful in unraveling the mechanism of replication initiation and its control.  相似文献   

2.
Summary DNA synthesis in vitro using intact duplex T7 DNA as template is dependent on a novel group of three phage T7-induced proteins: DNA-priming protein (activity which complements a cell extract lacking the T7 gene 4-protein), T7 DNA polymerase (gene 5-protein plus host factor), and T7 DNA-binding protein. The reaction requires, in addition to the four deoxyribonucleoside triphosphates, all four ribonucleoside triphosphates and is inhibited by low concentrations of actinomycin D. Evidence is presented that the priming protein serves as a novel RNA polymerase to form a priming segment which is subsequently extended by T7 DNA polymerase. T7 RNA polymerase (gene 1-protein) can only partially substitute for the DNA-priming protein. At 30°C, deoxyribonucleotide incorporation proceeds for more than 2 hours and the amount of newly synthesized DNA can exceed the amount of template DNA by 10-fold. The products of synthesis are not covalently attached to the template and sediment as short (12S) DNA chains in alkaline sucrose gradients. Sealing of these fragments into DNA of higher molecular weight requires the presence of E. coli DNA polymerase I and T7 ligase. Examination of the products in the electron microscope reveals many large, forked molecules and a few eye-shaped structures resembling the early replicative intermediates normally observed in vivo.  相似文献   

3.
The three replication origins of the antibiotic resistance plasmid R6K require for their activity in Escherichia coli a DNA segment containing seven 22 base-pair direct repeats and a plasmid-encoded initiation protein (pi). The pi protein functions in the negative control of R6K replication, in addition to its requirement for the initiation of replication. Construction of a plasmid containing the pi structural gene (pir) downstream from the inducible pR promoter of bacteriophage lambda provided high levels of production of pi protein in E. coli. The pi protein was purified and shown to possess general DNA binding properties with a preference for DNA fragments containing the gamma origin of replication, the operator region of the pir gene and the R6K beta-origin region. Velocity sedimentation analysis indicates that the pi protein exists as a dimer in its native form. Agarose gel electrophoresis analysis of pi-gamma-origin complexes suggests that one pi dimer binds to each copy of the 22 base-pair direct repeats in the gamma origin region. Purified mutant pi protein obtained from a temperature-sensitive initiation mutant (pir 105-ts) exhibited temperature-sensitive binding activity to the gamma-origin region, whereas two mutant proteins exhibiting a high copy number phenotype were unaltered (pir104-cop) or slightly reduced (pir1-cop) in binding activity. The patterns of DNase I protection and enhancement were similar for the wild-type and mutant proteins examined.  相似文献   

4.
The replication of adenovirus DNA with purified proteins   总被引:36,自引:0,他引:36  
B W Stillman 《Cell》1983,35(1):7-9
  相似文献   

5.
beta-Adrenergic receptors, the GTP-binding regulatory protein that stimulates adenylate cyclase (Gs), and adenylate cyclase were each purified and reconstituted into unilamellar vesicles composed of phosphatidylethanolamine and phosphatidylserine (3:2, w/w). The molar ratio of receptor:Gs:adenylate cyclase was estimated to be about 1:10:1. Adenylate cyclase activity in the vesicles was stimulated up to 2.6-fold by beta-adrenergic agonists. Stimulation was dependent on the presence of guanine nucleotide, displayed appropriate beta-adrenergic selectivity and stereoselectivity for agonists, and was blocked appropriately by beta-adrenergic antagonists. Therefore, while additional proteins may modulate adenylate cyclase activity in native membranes, these results show that these three proteins are sufficient for the expression of hormone-stimulated adenylate cyclase.  相似文献   

6.
Replication of antibiotic resistance plasmid R6K DNA in vitro.   总被引:7,自引:0,他引:7  
M Inuzuka  D R Helinski 《Biochemistry》1978,17(13):2567-2573
A soluble extract prepared from cells of an Escherichia coli strain carrying the antibiotic resistance plasmid R6K is capable of carrying out the complete process of R6K DNA replication. DNA synthesis in vitro is dependent on the four deoxyribo- and ribonucleotide triphosphates and is sensitive to rifampin and streptolydigin, inhibitors of DNA-dependent RNA polymerase. The incorporation of deoxyribonucleotides into R6K DNA also is sensitive to actinomycin D, novobiocin, arabinofuranosyl-CTP, and N-ethylmaleimide. Kinetics of synthesis are linear for 60 to 120 min. Replication proceeds semiconservatively and supercoiled closed-circular DNA molecules are synthesized. Analysis by alkaline sucrose gradient centrifugation indicated that the early R6K DNA products contain DNA fragments of approximately 18 S in size, corresponding to the length between the R6K alpha origin of replication and the terminus of replication observed in vivo. Addition of exogenous supercoiled R6K DNA is inhibitory to the in vitro system, whereas the addition of R6K DNA in the form of relaxation complex stimulates R6K DNA synthesis to a small extent.  相似文献   

7.
M Inuzuka 《FEBS letters》1985,181(2):236-240
DNA replication of plasmid R6K initiates at three unique sites, ori alpha, ori beta, and ori gamma. Replicating DNA molecules of a deletion derivative of R6K were synthesized in an in vitro system containing pi protein fraction from cells carrying a mini-R6K derivative that produced only this initiation protein as an R6K-encoded protein and analyzed by electron miscroscopy. Requirement of pi protein for the activity of all these three replication origins in vitro was verified. Frequencies of initiation at the three origins were almost equal.  相似文献   

8.
DNA replication was studied in vitro in the presence of native and esterified milk proteins [-lactalbumin (ALA), β-lactoglobulin (BLG) and β-casein (BCN)]. Addition of unmodified proteins to the PCR medium did not change the result of the reaction seen by electrophoresis, even at excessive ratios of basic amino acids in proteins:phosphate groups in DNA as high as 100:1. Addition of esterified proteins greatly reduced the intensity of the bands corresponding to the newly synthesized DNA, at ratios as low as 1:1 and 5:1 in case of methylated-BLG and methylated-ALA, respectively. The inhibitory effect of esterified proteins was directly proportional to their extent of esterification and strongly related to their DNA-binding capacity. Generally, inhibition of PCR with esterified proteins was similar to what can be observed with histones. However, stronger inhibition was observed with highly esterified proteins when using a higher ratio of basic:acid residues (1:1) when compared with 0.5:1 ratio in case of histones. Highly esterified BCN did not exert any inhibitory effect because of its relatively lower pI when compared with that of other esterified milk proteins and due to its lower positive net charge at the pH used for PCR. During a second PCR run, only the addition of new DNA template was able to reinitiate the reaction, giving rise to new synthesized DNA. Addition of Taq DNA polymerase did not enhance DNA synthesis, showing that inhibition was performed only by binding of DNA template and not by the inhibition of the polymerase.  相似文献   

9.
Using highly purified bacteriophage lambda and E. coli replication proteins, we were able to reconstitute an in vitro system capable of replication ori lambda-containing plasmid DNA. The addition of a new E. coli factor, the grpE gene product, to this replication system reduced the level of dnaK protein required for efficient DNA synthesis by at least 10-fold, and also allowed the isolation of a stable DNA replication intermediate. Based on all available information, we propose a molecular mechanism for the action of the dnaK and grpE proteins during the prepriming reaction leading to lambda DNA synthesis.  相似文献   

10.
The expression of incompatibility properties between the IncX plasmids R6K and R485 of Escherichia coli was examined. For small autonomously replicating derivatives of both plasmid elements, the requirements for incompatibility expression include a functional R485 replicon and an active R6K beta-origin region. Functional R6K alpha and gamma origins are not directly involved in incompatibility expression between R6K and R485. A trans-acting replication system was constructed for plasmid R485. It consists of a 3.2-(kb) DNA fragment of R485 that specifies a product(s) in trans which supports replication from an R485 origin plasmid. A minimal R485 origin region of 591 bp was derived utilizing this trans-acting replication system and the nucleotide sequence of this origin region determined. The most striking feature of the sequence is the presence of six tandem 22-bp nucleotide sequence direct repeats.  相似文献   

11.
S Wold  E Boye  S Slater  N Kleckner    K Skarstad 《The EMBO journal》1998,17(14):4158-4165
In vivo studies suggest that the Escherichia coli SeqA protein modulates replication initiation in two ways: by delaying initiation and by sequestering newly replicated origins from undergoing re-replication. As a first approach towards understanding the biochemical bases for these effects, we have examined the effects of purified SeqA protein on replication reactions performed in vitro on an oriC plasmid. Our results demonstrate that SeqA directly affects the biochemical events occurring at oriC. First, SeqA inhibits formation of the pre-priming complex. Secondly, SeqA can inhibit replication from an established pre-priming complex, without disrupting the complex. Thirdly, SeqA alters the dependence of the replication system on DnaA protein concentration, stimulating replication at low concentrations of DnaA. Our data suggest that SeqA participates in the assembly of initiation-competent complexes at oriC and, at a later stage, influences the behaviour of these complexes.  相似文献   

12.
Three novel R6K genes which are responsible for expression of DNA distortion polypeptides (DDP) were identified. The DDPs act in vivo in concert to induce similar stepwise DNA helix distortions within two long inverted repeats (αLIR and βLIR), which are essential elements for the two distally located R6K α and β DNA replication origins. DDP1 and DDP2 are encoded by two tandem genes located at the 5' end of αLIR, whereas a gene coding for DDP3 is located at the 3' end of βLIR. DDP1 and DDP2 are required for primary DNA distortion within αLIR or βLIR, while DDP3 is essential for generation of secondary DNA distortion in these LIR sequences. Creation of DNA distortion within αLIR depends on its specific interaction with DDP1 and on the presence of the R6K primase DNA-binding site. The possible relevance of these findings to R6K replication is discussed.  相似文献   

13.
S Ortega  E Lanka    R Diaz 《Nucleic acids research》1986,14(12):4865-4879
The in vitro replication of R1 miniplasmid promoted by purified preparations of the plasmid encoded RepA protein in cell extracts of E. coli is resistant to rifampicin and can be completely inhibited by antibodies against DnaG, the primase of the cell, as well as by antibodies against proteins DnaB and SSB. R1 replication is abolished in extracts deficient in the DnaA protein. This deficiency is efficiently complemented by purified preparations of the DnaA protein. The in vitro replication of plasmid R1 is also abolished in DnaC deficient extracts and by a 10 bp deletion (nucleotides 1463-1472) within the minimal origin region. These data indicate the requirement of the DnaA, DnaB, DnaC, DnaG and SSB replication proteins of the host, as well as of specific oriR1 sequences for the RepA dependent replication of plasmid R1. The implications of these results for the initiation of R1 replication are discussed.  相似文献   

14.
We have constructed and analyzed an in vitro system that will efficiently replicate plasmid RSF1010 and its derivatives. The system contains a partially purified extract from E.coli cells and three purified RSF1010-encoded proteins, the products of genes repA, repB (or mobA/repB), and repC. Replication in this system mimics the in vivo mechanism in that it (i) is initiated at oriV, the origin of vegetative DNA replication, (ii) proceeds in a population of plasmid molecules in both directions from this 396-base-pair origin region, and (iii) is absolutely dependent on the presence of each of the three rep gene products. In addition, we find that E.coli DNA gyrase, DnaZ protein (gamma subunit of poIIII holoenzyme) and SSB are required for in vitro plasmid synthesis. The bacterial RNA polymerase, the initiation protein DnaA, and the primosomal proteins DnaB, DnaC, DnaG and DnaT are not required. Furthermore, the replicative intermediates seen in the electron microscope suggest that replication in vitro begins with the simultaneous or non-simultaneous formation of two displacement loops that expand for a short stretch of DNA toward each other, and form a theta-type structure when the two displacing strands pass each other.  相似文献   

15.
16.
T A Kunkel  R M Schaaper  L A Loeb 《Biochemistry》1983,22(10):2378-2384
Removal of purine bases from phi X174 single-stranded DNA leads to increased reversion frequency of amber mutations when this DNA is copied in vitro with purified DNA polymerases. This depurination-induced mutagenesis is observed at three different genetic loci and with several different purified enzymes, including Escherichia coli DNA polymerases I and III, avian myeloblastosis virus DNA polymerase, and eukaryotic DNA polymerases alpha, beta, and gamma. The extent of mutagenesis correlates with the estimated frequency of bypass of the lesion and is greatest with inherently inaccurate DNA polymerases which lack proofreading capacity. With E. coli DNA polymerase I, conditions which diminish proofreading result in a 3-5-fold increase in depurination-induced mutagenesis, suggesting a role for proofreading in determining the frequency of bypass of apurinic sites. The addition of E. coli single-stranded DNA-binding protein to polymerase I catalyzed reactions with depurinated DNA had no effect on the extent of mutagenesis. Analysis of wild-type revertants produced during in vitro DNA synthesis by polymerase I or avian myeloblastosis virus DNA polymerase on depurinated phi X174 amber 3 DNA indicates a preference for insertion of dAMP opposite the putative apurinic site at position 587. These results are discussed in relation both to the mutagenic potential of apurinic sites in higher organisms and to studies on error-prone DNA synthesis.  相似文献   

17.
M Inuzuka  Y Wada 《FEBS letters》1988,228(1):7-11
Two kinds of mutations affecting the copy-number control of plasmid R6K were isolated and identified in an initiator pi protein by DNA sequencing. Firstly, a temperature-sensitive replication mutation, ts22, with decreased copy number results in a substitution of threonine to isoleucine at position 138 of the 305-amino-acid pi protein. Secondly, a high-copy-number (cop21) mutant was isolated from this ts mutant and was identified by an alteration of alanine to serine at position 162. This cop21 mutation suppressed the Ts character and was recessive to the wild-type allele in the copy control.  相似文献   

18.
Low molecular weight derivatives of the antibiotic resistance plasmid R6K have been constructed in vitro using the restriction endonucleases HindIII and HaeII. Common to all of the derivatives that replicate autonomously in Escherichia coli is a 2.1-kb segment of the DNA at the region of the origin of replication. This 2.1-kb region does not contain the asymmetric terminus of replication present in the parent plasmid. The derivatives replicate under relaxed control and are incompatible with intact R6K. A restriction endonuclease cleavage map of the plasmid is presented.  相似文献   

19.
The association of agonists with muscarinic receptors in membranes from bovine brain was affected only slightly by guanine nucleotides. However, solubilization of these membranes with deoxycholate and subsequent removal of detergent resulted in a preparation of receptors with increased affinity for agonists and a large increase in response to guanine nucleotides. Chromatography of deoxycholate extracts of membranes on DEAE-Sephacel resulted in the separation of receptors from 95% of the guanine nucleotide-binding activity. Guanine nucleotides had no effect on the binding of agonists to these resolved receptors. The effect of guanine nucleotides was restored after the addition of either of two purified guanine nucleotide-binding proteins from bovine brain. One of these proteins, presumably brain GI, is composed of subunits with the same molecular weights (alpha, 41,000; beta, 35,000; gamma, 11,000) and functions as the inhibitory guanine nucleotide-binding protein isolated from liver. The other protein, termed Go, is a novel guanine nucleotide-binding protein that possesses a similar subunit composition (alpha, 39,000; beta, 35,000; gamma, 11,000) but whose function is not yet known. Addition of either protein to the resolved receptor preparation increased agonist affinity by at least 10-20-fold, and low concentrations of guanine nucleotides specifically reversed this effect. Reconstitution of receptors with the resolved subunits of Go demonstrates that the beta subunit alone had no effect on agonist binding, but that this subunit does appear to enhance the effects observed with the alpha subunit alone.  相似文献   

20.
We previously constructed the cell-free nucleotide excision repair (NER) assay system with UV-irradiated SV40 minichromosomes to analyze the mechanism of NER reaction on chromatin DNA. Here we investigate the factor that acts especially on nucleosomal DNA during the damage excision reaction, and reconstitute the damage excision reaction on SV40 minichromosomes. NER-proficient HeLa whole cell extracts were fractionated, and the amounts of known NER factors involved in the column fractions were determined by immunoblot analyses. The column fractions were quantitatively and systematically replaced by highly purified NER factors. Finally, damage DNA excision reaction on SV40 minichromosomes was reconstituted with six highly purified NER factors, XPA, XPC-HR23B, XPF-ERCC1, XPG, RPA and TFIIH, as those essential for the reaction with naked DNA. Further analysis showed that the damages on chromosomal DNA were excised as the same efficiency as those on naked DNA for short incubation. At longer incubation time, however, the damage excision efficiency on nucleosomal DNA was decreased whereas naked DNA was still vigorously repaired. These observations suggest that although the six purified NER factors have a potential to eliminate the damage DNA from SV40 minichromosomes, the chromatin structure may still have some repressive effects on NER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号