首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Twenty-four-hour metabolic profiles were performed twice in each of 15 diabetic children, once when they were receiving single daily injections of insulin (Monotard plus Actrapid) and once on a twice-daily regimen (Semitard plus Actrapid). Before the study control was optimised at home on each regimen. There were no differences in overall 24-hour diabetic control on the two regimens as measured by mean blood glucose concentration, area under the blood glucose curve, M value, and 24-hour urinary glucose excretion. Hyperglycaemia after breakfast occurred on both regimens. Significant differences were noted before breakfast, when blood glucose and ketone concentrations were lower and plasma free insulin higher on the single-injection regimen, and after supper and during the night, when blood glucose values were lower on the two-injection regimen and associated with a rise in plasma free insulin after the evening injection. Once-daily injections provided insufficient circulating insulin after the evening meal, while twice-daily injections did not last through the night. Plasma C peptide, indicating residual endogenous insulin secretion, was just detectable in two children but easily detectable in four children, whose 24-hour diabetic control was significantly better than that in the remaining 11 children.Conclusions about the superiority of one insulin regimen over another must be based on specific differences in diabetic control. Both regimens studied achieved adequate control, and though neither provided physiological control specific modifications to the regimens could help to produce more normal profiles.  相似文献   

2.
The effect of low-dose insulin infusion (4.8 U/h) in diabetic ketoacidosis was compared to that of low-dose insulin infusion (4.8 U/h) plus somatostatin (500 microgram/h IV). Treatment with insulin only in 20 patients caused normalization of blood glucose levels within 6 hours and resolution of ketoacidosis within 5 hours. During insulin plus somatostatin infusion in 7 patients, blood glucose levels returned to normal within 4 hours and acidosis was reduced within 3 hours. Correction of acidosis is the most important problem in diabetic ketoacidosis: in the severest cases cardiovascular and cerebral complications may ensue. The data presented show that addition of somatostatin to treatment with low doses of insulin reduces and resolves acidosis in a shorter time while plasma levels of glucagon and GH were concomitantly reduced.  相似文献   

3.
delta 9 desaturation of stearic (1-14C) acid has been estimated from incubation of liver microsomes of adult female spontaneously diabetic BB rat, an animal model resembling the spontaneous juvenile diabetes in humans, comparatively to adult female control Wistar rat. The animals were sacrificed, when hyperglycemic, 24 hours after the last insulin injection to the BB rats. Stearic acid delta 9 desaturase activity is drastically depressed in the BB rats when fatty acid composition of liver phospholipids and microsomal total liver lipids are changed in spite of the daily injection of insulin necessary for the BB rats survival.  相似文献   

4.
5.
The activities of various ammoniagenic, gluconeogenic, and glycolytic enzymes were measured in the renal cortex and also in the liver of rats made diabetic with streptozotocin. Five groups of animals were studied: normal, normoglycemic diabetic (insulin therapy), hyperglycemic, ketoacidotic, and ammonium chloride treated rats. Glutaminase I, glutamate dehydrogenase, glutamine synthetase, phosphoenolpyruvate carboxykinase (PEPCK), hexokinase, phosphofructokinase, fructose-1,6-diphosphatase, malate dehydrogenase, malic enzyme, and lactate dehydrogenase were measured. Renal glutaminase I activity rose during ketoacidosis and ammonium chloride acidosis. Glutamate dehydrogenase in the kidney rose only in ammonium chloride treated animals. Glutamine synthetase showed no particular variation. PEPCK rose in diabetic hyperglycemic animals and more so during ketoacidosis and ammonium chloride acidosis. It also rose in the liver of the diabetic animals. Hexokinase activity in the kidney rose in diabetic insulin-treated normoglycemic rats and also during ketoacidosis. The same pattern was observed in the liver of these diabetic rats. Renal and hepatic phosphofructokinase activities were elevated in all groups of experimental animals. Fructose-1,6-diphosphatase and malate dehydrogenase did not vary significantly in the kidney and the liver. Malic enzyme was lower in the kidney and liver of the hyperglycemic diabetic animals and also in the liver of the ketoacidotic rats. Lactate dehydrogenase fell slightly in the liver of diabetic hyperglycemic and NH4Cl acidotic animals. The present study indicates that glutaminase I is associated with the first step of increased renal ammoniagenesis during ketoacidosis. PEPCK activity is influenced both by hyperglycemia and ketoacidosis, acidosis playing an additional role. Insulin appears to prevent renal gluconeogenesis and to favour glycolysis. The latter would seem to remain operative in hyperglycemic and ketoacidotic diabetic animals.  相似文献   

6.
目的:探讨血必净注射液联合静脉胰岛素泵入治疗糖尿病酮症酸中毒的效果及对氧化应激反应的影响。方法:选择2016年8月至2018年8月我院收治的糖尿病酮症酸中毒患者80例,根据随机数表法分为观察组(n=41)和对照组(n=39)。对照组给予胰岛素泵治疗,观察组在对照组的基础上采用血必净注射液治疗。比较两组患者的临床疗效、治疗前后单核细胞趋化蛋白(MCP)、空腹血糖(FBG)、餐后血糖(PBG)、丙二醛(MDA)、超氧化物歧化酶(SOD)、总抗氧化能力(TAC)水平的变化及临床症状改善时间。结果:治疗后,两组单核细胞趋化蛋白水平均较治疗前显著下降,且观察组明显低于对照组(P0.05)。治疗后,观察组MDA低于对照组,SOD、TAC水平均显著高于对照组(P0.05);观察组血糖达标、尿酮体转阴、PH恢复时间及胰岛素用量均显著低于对照组(P0.05)。结论:血必净注射液联合胰岛素泵治疗糖尿病酮症酸中毒患者的效果显著明显优于单用血必净治疗,可能与其有效提高机体的抗氧化能力有关。  相似文献   

7.
Diabetes mellitus is accompanied by a variety of alterations in metabolic, cardiovascular, and neuronal function. This paper provides a comprehensive review of the ways in which these pathophysiological aspects of diabetes may impair thermoregulatory function. The influence of diabetic neuropathy and vasculopathy on the control of peripheral blood flow is reviewed and the additional effects of changing levels of blood glucose and insulin are discussed. Both hypoglycaemia and diabetic ketoacidosis are associated with hypothermia, but the reasons for this in ketoacidosis are not clear. Impairment of heat conservation may contribute to and could be a consequence of autonomic neuropathy. The final section of the paper describes a study of our own in which metabolic stability was maintained by infusing insulin intravenously before and during the determination of the thermoregulatory responses to acute cold stress. Under these conditions, there was impairment of reflex vasoconstriction in the limbs of diabetics with neuropathy. This failure to reduce heat loss resulted in half the diabetics with neuropathy shivering in response to moderate cooling, which in some subjects was accompanied by a fall in core temperature. Diabetics without neuropathy and nondiabetics neither shivered nor dropped core temperature.  相似文献   

8.
目的:比较不同胰岛素给药方式治疗糖尿病酮症酸中毒(DKA)的临床疗效。方法:82例DKA患者随机分为胰岛素泵持续皮下输液胰岛素(CSⅡ)组和微量泵持续静脉泵入胰岛素(CXqI)组各41例,分别给予胰岛素泵持续皮下输注胰岛素和小剂量胰岛素持续微量泵静脉泵入不同胰岛素给药方式,观察两组治疗后血糖变化、血糖达标时间、尿酮体变化、pH值变化、胰岛素平均日用量、平均低血糖次数及平均住院时间。结果:两组治疗后空腹血糖、餐后血糖显著下降及血糖达标时间显著缩短差异无统计学意义(P〉0.05);CSII组尿酮体转阴时间(22.3±7.4)h短于CVII组(32.1±12.1)h(P〈0.01);CSII组PH值恢复时间(9.4±2.5)h短于CVII组(15.7±3.5)h(P〈0.01);CSII组平均胰岛素日用量为(47±5)U比CVII组(58+7)U少(P〈0.01);CSII组人均低血糖次数为(0.6±O.5)次/人。少于CVII组(1.5±0.8)次/人(P〈O.01);CSII组住院时间(9.8±1.2)天明显比CVII组(12.5±2.0)天短(P〈0.01)。结论:CSII相较于CVII能更快更有效的纠正代谢紊乱,减少胰岛素日用量,缩短住院时间,从而提高临床疗效。具有较高的安全性及患者依从性。  相似文献   

9.
Gluconeogenesis and ketogenesis were studied in isolated hepatocytes obtained from normal and alloxan diabetic rats. Insulin treatment maintained near-normal blood glucose levels and caused an increase in glycogen deposition. The third day after insulin withdrawal the rats displayed a diabetic syndrome marked by progressive hyperglycemia and glycogen depletion. Net glucose production in liver cells isolated from alloxan diabetic rats progressively increased with time up to 72 hr after the last in vivo insulin injection. Maximal glucose production was observed at 72 hr with 10 mM alanine, lactate, pyruvate, or fructose. Glucose production decreased at 96 hr. The same pattern was observed with the incorporation of labeled bicarbonate into glucose. Ketogenesis in liver cells and hepatic lipid content also peaked at 72 hr.  相似文献   

10.
1. The infusion of sodium dichloroacetate into rats with severe diabetic ketoacidosis over 4h caused a 2mM decrease in blood glucose, and small falls in blood lactate and pyruvate concentrations. Similar findings had been reported in normal rats (Blackshear et al., 1974). In contrast there was a marked decrease in blood ketone-body concentration in the diabetic ketoacidotic rats after dichloroacetate treatment. 2. The infusion of insulin alone rapidly decreased blood glucose and ketone bodies, but caused an increase in blood lactate and pyruvate. 3. Dichloroacetate did not affect the response to insulin of blood glucose and ketone bodies, but abolished the increase of lactate and pyruvate seen after insulin infusion. 4. Neither insulin nor dichloroacetate stimulated glucose disappearance after functional hepatectomy, but both agents decreased the accumulation in blood of lactate, pyruvate and alanine. 5. Dichloroacetate inhibited 3-hydroxybutyrate uptake by the extra-splachnic tissues; insulin reversed this effect. Ketone-body production must have decreased, as hepatic ketone-body content was unchanged by dicholoracetate yet blood concentrations decreased. 6. It was concluded that: (a) dichloroacetate had qualitatively similar effects on glucose metabolism in severely ketotic rats to those observed in non-diabetic starved animals; (b) insulin and dichloroacetate both separately and together, decreased the net release of lactate, pyruvate and alanine from the extra-splachnic tissues, possibly through a similar mechanism; (c) insulin reversed the inhibition of 3-hydroxybutyrate uptake caused by dichloroacetate; (d) dichloroacetate inhibited ketone-body production in severe ketoacidosis.  相似文献   

11.
The rate of change of the concentration of various metabolites in blood in vivo and of the metbolism of free fatty acids by the perfused liver in vitro was sutidied as a function of time after the induction of acute insulin deficiency in rats by administration of guinea pig anti-insulin serum; the rate of reversal of these changes afte treatment of the anti-insulinserum diabetic ratss with insulin was also investigated. The concentrations of blood glucose and ketonebodies, and plasma-free fatty acids increased rapidly after injection of anti-insuli serum, while plasma triglycerides increased more slowly. These alterations were restored rapidly toward normal after treatment of the diabetic animals with insulin...  相似文献   

12.
Intracellular recordings were made in pontine slice preparations of the rat brain containing the locus coeruleus (LC). Ethanol at 100 mM, but not at 10 or 30 mM inhibited depolarizing responses to pressure-applied N-methyl-D-aspartate (NMDA) in LC neurons of ethanol-naive rats. Ethanol (100 mM) had a similar effect in LC neurons of ethanol-naive rats, of rats treated with ethanol for 14 days (3 g/kg daily, i.p.) and of rats treated with equicaloric amounts of saccharose (5 g/kg daily, i.p.). The blood concentration of ethanol was markedly decreased at 4 h, and was below the detection limit at 24 h after the last injection. Behavioral measurements in the open-field system demonstrated the development of tolerance in rats receiving ethanol for 14 days. Moreover, an anxiety-related reaction was shown to develop when the acute effect of the last ethanol injection vanished. Therefore, in subsequent in vitro experiments, ethanol (10 mM) was continuously present in the superfusion medium in order to mimic a steady blood concentration and to prevent a withdrawal-like situation. Under these conditions, ethanol (100 mM) still continued to inhibit the NMDA-induced depolarization in slices of untreated rats, but became ineffective in slices of ethanol-treated rats at 4 h after the last injection. By contrast, a supersensitivity to ethanol developed in brain slices at 24 h after the last ethanol injection. In conclusion, in vitro tolerance between systemically and locally applied ethanol at LC neurons could only be demonstrated when a low concentration of ethanol was added to the superfusion medium to simulate the blood concentration of this compound.  相似文献   

13.
Male rats were given streptozotocin (100 mg/kg) by intraperitoneal injection. Groups of control and streptozotocin-treated animals were sacrificed at daily intervals for 4 days after injection. Over this period, treated rats lost weight continuously while control animals progressively gained weight. Within 24 h of treatment blood glucose and plasma free fatty acids were raised to levels which were sustained for the remainder of the experiment. After 48 h blood ketone bodies, plasma cholesterol and triglycerides were maximally raised and liver glycogen and blood lactate similarly lowered. The percentage composition of major fatty acids in liver lipids was unchanged until 4 days after treatment when there were significant increases in the proportion of oleate and linoleate and reductions in stearate and arachidonate. The data confirm that streptozotocin induces a rapid and sustained diabetes. It is suggested that metabolic experiments, in streptozotocin-diabetic rats, may be performed 48 h after treatment.  相似文献   

14.
Normal male rats were made chronically diabetic by injection of alloxan or acutely diabetic by injection of anti-insulin serum. The concentration of cyclic AMP in epididymal adipose tissue was increased approximately 2 1/2-fold 24 h after alloxan administration and up to 7-fold 72 h post-alloxan. Treatment of alloxan-diabetic rats with insulin for 4 h completely suppressed lipolysis but only partially suppressed cyclic AMP levels; 6 h following insulin treatment cyclic AMP levels were normal. When segments of the epididymal fat bodies were incubated in vitro the high cyclic AMP levels were not maintained but instead decreased spontaneously. Addition of insulin to the incubation media decreased lipolysis in tissues of diabetic rats to levels measured in tissues of normal rats and accelerated the decline in cyclic AMP levels but did not return cyclic AMP levels to normal. Rats rendered acutely insulin deficient by injection of anti-insulin serum showed increased plasma glucose and free fatty acid levels and increased adipose tissue free fatty acid, and cyclic AMP levels 30 min following injection of the antiserum. Plasma glucagon levels increased but not until 2 h following anti-insulin serum, thereby excluding the possibility that an increment in plasma glucagon is the primary stimulus for the acceleration of lipolysis in diabetes. These data are consistent with the view that control of adipose tissue cyclic AMP levels in situ is an important physiologic action of insulin.  相似文献   

15.
Lactic acidosis is occasionally responsible for metabolic acidosis in diabetics. It may occur in the presence of normal blood levels of the ketone bodies, and such cases are often described as having “non-ketotic diabetic acidosis.” Lactic acid may contribute to the metabolic acidosis in patients with true diabetic ketoacidosis, but the blood lactate concentrations in these patients are not usually very high. In some patients the ketoacidosis is replaced by a lactic acidosis during treatment. This usually occurs in association with a serious underlying disorder and is associated with a poor prognosis. A transient increase in blood lactate concentration was in fact observed in most patients after the beginning of treatment, but the significance of this finding is uncertain.  相似文献   

16.
Abstract: This is a study of the effects of a single “therapeutic” dose of glycerol [2 g(22 mmol)/kg i.p.] on brain carbohydrate and energy metabolism in normal nursing weanling mice. Findings were correlated with brain water and electrolyte content and with metabolite changes in plasma, red blood cells, and liver. Plasma glycerol levels peaked at 21 mM 7.5 min after injection and returned to the control value, 0.16 mM, by 2 h. Plasma Na+ concentration decreased and plasma protein increased for as long as 2 h after injection. Although red blood cells were freely permeable to glycerol, there was no evidence for glycerol metabolism in these cells. Glycerol levels in liver paralleled those in plasma. Glycerol injection increased liver glucose concentration 23% and doubled hepatic glycerol-1-phosphate levels. Liver ATP levels were reduced 24% after glycerol injection. Brain water concentration was significantly reduced from 7.5 min to 30 min after glycerol injection; brain Na+ and K+ levels were unchanged. There was no evidence for glycerol entry into brain (the amount detected in brain tissue could be explained by the glycerol content in the blood of the brain). While plasma glucose increased 33%, brain glucose increased 87%. Concomitantly there were statistically significant increases in fructose-1,6-diphosphate, lactate, α-ketoglutarate, and malate levels. The disproportionately high brain glucose value suggests increased transport of glucose from the blood to the brain. Increases in fructose-1,6-diphosphate, lactate, α-ketoglutarate, and malate are compatible with an increased metabolic flux in the glycolytic pathway and Krebs citric acid cycle. As has been previously shown for urea and/or mannitol, these changes may result from the effects of the hyperosmolar glycerol solution on the blood-brain barrier and on cerebral glucose utilization. The sustained lowering of plasma Na+ concentration after a single “therapeutic” glycerol injection suggests a need for monitoring plasma Na+ levels in the clinical situation. Possible lowering of hepatic ATP levels by the use of glycerol in humans is another concern.  相似文献   

17.
I Zusman  P Yaffe  A Ornoy 《Teratology》1989,39(6):581-589
The effects of sera from different types of human diabetes (type I with and without ketoacidosis; type II treated with insulin or Daonil or untreated) on the in vitro development of early preimplantation mouse embryos were studied. In controls, 20% of blastocysts failed to develop successfully when grown for 72 h in RPMI medium supplemented with 10% fetal bovine serum and 50% nondiabetic human serum. In experiments using 50% diabetic serum, the highest embryotoxic effect was found in type-I diabetes with and without ketoacidosis: The percents of undeveloped embryos were 66 and 58, respectively. In type-II diabetes, embryotoxic effects were found among all studied types: The percent of undeveloped blastocysts varied from 36% in insulin-treated type-II diabetes to 44% in untreated type-II diabetes. A high correlation was found between the number of undeveloped embryos and the blood concentrations of metabolic diabetic factors: glucose (r = .53-.64 in type-I diabetes), B-HOB (r = .7-.77 in type-II diabetes untreated or treated with Daonil), acetoacetate (r = .66 in insulin-treated type-II diabetes), and HbA1c (r = .89 in insulin-treated type-II diabetes or .99 in Daonil-treated type-II diabetes). A concentration of 80% serum was embryo-toxic when obtained from nondiabetic or from diabetic human. The possible role of diabetic metabolic factors in causing increased risk of spontaneous abortions and infertility among diabetic women is discussed.  相似文献   

18.

Purpose

Studies in our laboratory are concerned with developing optional insulin delivery routes based on amidated pectin hydrogel matrix gel. We therefore investigated whether the application of pectin insulin (PI)-containing dermal patches of different insulin concentrations sustain controlled release of insulin into the bloodstream of streptozotocin (STZ)-induced diabetic rats with concomitant alleviation of diabetic symptoms in target tissues, most importantly, muscle and liver.

Methods

Oral glucose test (OGT) responses to PI dermal matrix patches (2.47, 3.99, 9.57, 16.80 µg/kg) prepared by dissolving pectin/insulin in deionised water and solidified with CaCl2 were monitored in diabetic rats given a glucose load after an 18-h fast. Short-term (5 weeks) metabolic effects were assessed in animals treated thrice daily with PI patches 8 hours apart. Animals treated with drug-free pectin and insulin (175 µg/kg, sc) acted as untreated and treated positive controls, respectively. Blood, muscle and liver samples were collected for measurements of selected biochemical parameters.

Results

After 5 weeks, untreated diabetic rats exhibited hyperglycaemia and depleted hepatic and muscle glycogen concentrations. Compared to untreated STZ-induced diabetic animals, OGT responses of diabetic rats transdermally applied PI patches exhibited lower blood glucose levels whilst short-term treatments restored hepatic and muscle glycogen concentrations. Plasma insulin concentrations of untreated diabetic rats were low compared with control non-diabetic rats. All PI treatments elevated plasma insulin concentrations of diabetic rats although the levels induced by high doses (9.57 and 16.80 µg/kg) were greater than those caused by low doses (2.47 and 3.99 µg/kg) but comparable to those in sc insulin treated animals.

Conclusions

The data suggest that the PI hydrogel matrix patch can deliver physiologically relevant amounts of pharmacologically active insulin.

Novelty of the Work

A new method to administer insulin into the bloodstream via a skin patch which could have potential future applications in diabetes management is reported.  相似文献   

19.
Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.  相似文献   

20.
The antiobesity and antidiabetic effects of the beta3-adrenergic agonists were investigated on nonobese type 2 diabetic MKR mice after injection with a beta3-adrenergic agonist, CL-316243. An intact response to acute CL-316243 treatment was observed in MKR mice. Chronic intraperitoneal CL-316243 treatment of MKR mice reduced blood glucose and serum insulin levels. Hyperinsulinemic euglycemic clamps exhibited improvement of the whole body insulin sensitivity and glucose homeostasis concurrently with enhanced insulin action in liver and adipose tissue. Treating MKR mice with CL-316243 significantly lowered serum and hepatic lipid levels, in part due to increased whole body triglyceride clearance and fatty acid oxidation in adipocytes. A significant reduction in total body fat content and epididymal fat weight was observed along with enhanced metabolic rate in both wild-type and MKR mice after treatment. These data demonstrate that beta3-adrenergic activation improves the diabetic state of nonobese diabetic MKR mice by potentiation of free fatty acid oxidation by adipose tissue, suggesting a potential therapeutic role for beta3-adrenergic agonists in nonobese diabetic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号