首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new kallikrein-kinin system inhibitor, designated anophensin, was identified in the salivary glands of the malaria vector mosquito, Anopheles stephensi. In vitro reconstitution experiments showed that anophensin inhibits activation of the kallikrein-kinin system by inhibiting the reciprocal activation of factor XII (FXII) and prekallikrein (PK), and subsequent release of bradykinin. Additionally, anophensin inhibits activation of the kallikrein-kinin system on cultured human umbilical vein endothelial cells (HUVECs). Direct binding assays show that this inhibitory effect is due to Zn(2+)-dependent specific binding of anophensin to both FXII and high molecular weight kininogen (HK). Furthermore, anophensin interacts with both the N-terminus of FXII and domain D5 of HK, which are the binding domains for biological activating surfaces. These results suggest that anophensin inhibits activation of the kallikrein-kinin system by interfering with the association of FXII and HK with biological activating surfaces, resulting in the inhibition of bradykinin release in a host animal during insect blood-feeding.  相似文献   

2.
Two plasma kallikrein-kinin system inhibitors in the salivary glands of the kissing bug Triatoma infestans, designated triafestin-1 and triafestin-2, have been identified and characterized. Reconstitution experiments showed that triafestin-1 and triafestin-2 inhibit the activation of the kallikrein-kinin system by inhibiting the reciprocal activation of factor XII and prekallikrein, and subsequent release of bradykinin. Binding analyses showed that triafestin-1 and triafestin-2 specifically interact with factor XII and high molecular weight kininogen in a Zn2+-dependent manner, suggesting that they specifically recognize Zn2+-induced conformational changes in factor XII and high molecular weight kininogen. Triafestin-1 and triafestin-2 also inhibit factor XII and high molecular weight kininogen binding to negatively charged surfaces. Furthermore, they interact with both the N-terminus of factor XII and domain D5 of high molecular weight kininogen, which are the binding domains for biological activating surfaces. These results suggest that triafestin-1 and triafestin-2 inhibit activation of the kallikrein-kinin system by interfering with the association of factor XII and high molecular weight kininogen with biological activating surfaces, resulting in the inhibition of bradykinin release in an animal host during insect blood-feeding.  相似文献   

3.
Blood coagulation factor XII (FXII, Hageman factor) is a plasma serine protease which is autoactivated following contact with negatively charged surfaces in a reaction involving plasma kallikrein and high-molecular-weight kininogen (contact phase activation). Active FXII has the ability to initiate blood clotting via the intrinsic pathway of coagulation and inflammatory reactions via the kallikrein-kinin system. Here we have determined FXII-mediated bradykinin formation and clotting in plasma. Western blotting analysis with specific antibodies against various parts of the contact factors revealed that limited activation of FXII is sufficient to promote plasma kallikrein activation, resulting in the conversion of high-molecular-weight kininogen and bradykinin generation. The presence of platelets significantly promoted FXII-initiated bradykinin formation. Similarly, in vitro clotting assays revealed that platelets critically promoted FXII-driven thrombin and fibrin formation. In summary, our data suggest that FXII-initiated protease cascades may proceed on platelet surfaces, with implications for inflammation and clotting.  相似文献   

4.
Bradykinin is a potent inflammatory mediator that induces vasodilation, vascular leakage, and pain sensations. This short-lived peptide hormone is liberated from its large precursor protein high molecular weight kininogen (HK) through the contact system cascade involving coagulation factor XII and plasma kallikrein. Although bradykinin release is well established in vitro, the factors and mechanisms controlling bradykinin generation in vivo are still incompletely understood. In this study we demonstrate that binding of HK to glycosaminoglycans (GAGs) of the heparan and chondroitin sulfate type efficiently interferes with bradykinin release in plasma and on endothelial surfaces. Proteolytic bradykinin production on endothelial cells is restored following degradation of cell surface GAG through heparinase. Alternatively, application of HK fragments D3 or light chain, which compete with uncleaved HK for cell binding, promote kininogen proteolysis and bradykinin release. Intravital microscopy revealed that HK fragments increase bradykinin-mediated mesentery microvascular leakage. Topical application of D3 or light chain enhanced bradykinin generation and edema formation in the mouse skin. Our results demonstrate that bradykinin formation is controlled by HK binding to and detachment from GAGs. Separation of the precursor from cell surfaces is a prerequisite for its efficient proteolytic processing. By this means, fragments arising from HK processing propagate bradykinin generation, revealing a novel regulatory level for the kallikrein-kinin system.  相似文献   

5.
The release of circumsporozoite (CS) protein by Plasmodium falciparum sporozoites was investigated to identify factors regulating this process within infected Anopheles gambiae mosquitoes. The potential for sporozoites to release CS protein in vitro was not dependent upon their site-specific developmental stage (i.e., mature oocysts, hemolymph, salivary glands), their duration in the vector, or their exposure to mosquito-derived components such as salivary glands or hemolymph. The capacity of sporozoites to release CS protein was depressed by mosquito blood feeding during periods of sporozoite migration to the salivary glands, but the effect was only temporary and those sporozoites already in the glands were not affected. Free CS protein in the salivary glands was present in 93.3% of 45 infective mosquitoes. Sporozoites from these same, individual mosquitoes were also tested in vitro for CS protein release. In both cases, the amount of soluble CS protein increased as a function of sporozoite density but the total amount of CS protein per sporozoite became progressively less with increasing numbers of sporozoites. Further experiments showed that sporozoite contact with increasing amounts of soluble CS protein caused a down-regulation of CS protein release. Thus, a primary factor regulating the production and release of CS protein by sporozoites is their contact with soluble CS protein within the mosquito.  相似文献   

6.
To examine whether bradykinin generated by the activation of the contact phase of blood coagulation is involved in the pathogenesis of edema occurring after acute exposure to high altitude, 15 mountaineers were examined at 490 m and 1, 3, and 5 days after arrival at 4,559 m. The clotting activity levels of factor XII, factor XI, plasma prekallikrein, and high-molecular-weight kininogen (HMWK) were measured, and plasma kallikrein-induced proteolytic cleavage of HMWK was assessed by ligand blotting by use of radiolabeled factor XI. After an ascent on foot from 1,170 to 4,559 m in 3 days, three subjects developed high-altitude pulmonary edema, and four subjects presented facial edema. There was no evidence for activation of the contact system in any subject as demonstrated by the lack of proteolytic cleavage of HMWK at high altitude. The absence of contact system activation was further supported by stable plasma levels of the individual factors of contact activation. Therefore, we conclude that bradykinin generated by plasma kallikrein-induced cleavage of HMWK is not involved in the pathogenesis of edema due to acute exposure to high altitude.  相似文献   

7.
Cardiovascular disease is the number one cause of death in the United States. Vascular smooth muscle cells (VSMC) are an important constituent of the vessel wall that can bring about pathological changes leading to vascular disease. Depending on the environment, the function of VSMC can deviate profoundly from its normal contractile role. Despite advances in research, the underlying mechanisms that activate VSMC toward vascular disease are poorly understood. For the first time, we have observed that factor XII and high-molecular-weight kininogen, constituents of the blood plasma, can bind to VSMC in a Zn2+-dependent manner. In the presence of prekallikrein, this assembly of factor XII and high-molecular-weight kininogen on VSMC leads to the activation of prekallikrein to kallikrein with a rapid formation of bradykinin. The amount of bradykinin in the culture medium then decreases, presumably because of the presence of a kininase activity. p44/42 mitogen-activated protein kinase is rapidly phosphorylated in response to in situ-generated or in vitro-added bradykinin and is inhibited by bradykinin antagonist HOE-140. Binding of factor XII to VSMC also results in a concentration-dependent phosphorylation of p44/42 mitogen-activated protein kinase. This early mitogenic signal, which is also implicated in atherogenesis, may change the metabolic and proliferative activity of VSMC, which are key steps in the progression of atherosclerosis.  相似文献   

8.
Prekallikrein (PK) activation on human umbilical endothelial cells (HUVEC) presumably leads to bradykinin liberation. On HUVEC, PK activation requires the presence of cell-bound high-molecular-weight kininogen (HK) and Zn(2+). We examined the Zn(2+) requirement for HK binding to and the consequences of PK activation on endothelial cells. Optimal HK binding (14 pmol/10(6) HUVEC) is seen with no added Zn(2+) in HEPES-Tyrode buffer containing gelatin versus 16--32 microM added Zn(2+) in the same buffer containing bovine serum albumin. The affinity and number of HK binding sites on HUVEC are a dissociation constant of 9.6 +/- 1.8 nM and a maximal binding of 1.08 +/- 0.26 x 10(7) sites/cell (means +/- SD). PK is activated to kallikrein by an antipain-sensitive mechanism in the presence of HK and Zn(2+) on HUVEC, human microvascular endothelial cells, umbilical artery smooth muscle cells, and bovine pulmonary artery endothelial cells. Simultaneous with kallikrein formation, bradykinin (5.0 or 10.3 pmol/10(6) HUVEC in the absence or presence of lisinopril, respectively) is liberated from cell-bound HK. Liberated bradykinin stimulates the endothelial cell bradykinin B2 receptor to form nitric oxide. Assembly and activation of PK on endothelial cells modulates their physiological activities.  相似文献   

9.
We studied the characteristics of two monoclonal antibodies (mAbs), F1 and F3, against human coagulation factor XII (Hageman factor). Experiments with trypsin-digested 125I-factor XII revealed that the epitope for mAb F1 is located in the NH2-terminal Mr 40,100 portion of factor XII, whereas that for mAb F3 resides in the COOH-terminal Mr 30,000 portion of this protein. Factor XII in fresh plasma (single-chain factor XII) bound approximately 190 times less to mAb F1 than factor XII in dextran sulfate-activated plasma (cleaved factor XII). However, no difference in accessibility of the epitope for mAb F1 was observed between cleaved and single-chain factor XII when bound to glass. mAb F3 appeared to bind to both single-chain and cleaved factor XII in plasma as well as when bound to glass. Neither mAb F1, nor F3 affected the amidolytic activity of factor XIIa, whereas both mAb F1 and F3 inhibited factor XII-coagulant activity to about 15 and 70%, respectively, at a molar ratio of mAb to factor XII of 20 to 1. mAb F1, as well as F(ab')2 and F(ab') fragments of this antibody induced activation of the contact system in plasma, as reflected by the generation of factor XIIa. C1 inhibitor and kallikrein. C1 inhibitor complexes. Activation was induced neither upon incubation with mAb F3, nor with that of control mAbs. mAb F1-induced contact activation required the presence of factor XII, prekallikrein, and high molecular weight kininogen and, in contrast to activation by negatively charged surfaces, was not inhibited by the presence of Polybrene. Based on these results we propose that a conformational change in factor XII is a key event in the activation process of this molecule. This conformational change can be induced by binding of factor XII to a surface as well as by proteolytic cleavage. As mAb F1 can also induce this conformational change, this antibody may provide a unique tool in studies of the activation of factor XII.  相似文献   

10.
The activation of factor XII by the proteases factor XIIa and kallikrein is known to be greatly enhanced by certain negatively charged surfaces. Studies that compared factor XII surface binding to factor XII activation found that binding alone was insufficient to account for surface enhancement of the activation rate. The temperature dependence of the reaction showed unusual behavior that may be related to the conformational change of factor XII following binding; the rate of factor XII activation had a relatively low temperature optimum (0-47 degrees C) that was sensitive to choice of surface and salt concentration. In temperature studies, below 47 degrees C, the decrease in the activation rate was not related to the thermal denaturation of enzyme or substrate, nor to the choice of activator enzyme (factor XIIa or kallikrein), nor to the species of factor XII (human or bovine) but to a behavior, designated a thermal transition, associated with the surface or the protein-surface interaction. The previously reported surface selectivity of contact activation is possible due to the temperature characteristics and other properties of the thermal transition; a surface that has a low-temperature thermal transition and that is highly sensitive to salt will be a "poor" contact surface under the usual choice of reaction conditions (approximately 150 mM ionic strength and 37 degrees C). However, solution conditions were identified that allowed the following negatively charged surfaces to function, in nearly equal potency, in the activation of factor XII: phosphatidylserine, phosphatidylglycerol, phosphatidic acid, phosphatidylinositol 4-phosphate, heparin, and 5-kDa dextran sulfate, as well as the previously characterized sulfatide and 500-kDa dextran sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Hypozincemia is prevalent in severe acute respiratory syndrome coronavirus-2 (SARS-COV-2)-infected patients and has been considered as a risk factor in severe coronavirus disease-2019 (COVID-19). Whereas zinc might affect SARS-COV-2 replication and cell entry, the link between zinc deficiency and COVID-19 severity could also be attributed to the effects of COVID-19 on the body metabolism and immune response. Zinc deficiency is more prevalent in the elderly and patients with underlying chronic diseases, with established deleterious consequences such as the increased risk of respiratory infection. We reviewed the expected effects of zinc deficiency on COVID-19-related pathophysiological mechanisms focusing on both the renin–angiotensin and kinin-kallikrein systems. Mechanisms and effects were extrapolated from the available scientific literature. Zinc deficiency alters angiotensin-converting enzyme-2 (ACE2) function, leading to the accumulation of angiotensin II, des-Arg9-bradykinin and Lys-des-Arg9-bradykinin, which results in an exaggerated pro-inflammatory response, vasoconstriction and pro-thrombotic effects. Additionally, zinc deficiency blocks the activation of the plasma contact system, a protease cascade initiated by factor VII activation. Suggested mechanisms include the inhibition of Factor XII activation and limitation of high-molecular-weight kininogen, prekallikrein and Factor XII to bind to endothelial cells. The subsequent accumulation of Factor XII and deficiency in bradykinin are responsible for increased production of inflammatory mediators and marked hypercoagulability, as typically observed in COVID-19 patients. To conclude, zinc deficiency may affect both the renin–angiotensin and kinin-kallikrein systems, leading to the exaggerated inflammatory manifestations characteristic of severe COVID-19.  相似文献   

12.
Factor XII (FXII) is a protease that is mainly produced in the liver and circulates in plasma as a single chain zymogen. Following contact with negatively charged surfaces, FXII is converted into the two-chain active form, FXIIa. FXIIa initiates the intrinsic blood coagulation pathway via activation of factor XI. Furthermore, it converts plasma prekallikrein to kallikrein (PK), which reciprocally activates FXII and liberates bradykinin from high molecular weight kininogen. In addition, FXIIa initiates fibrinolysis via PK-mediated urokinase activation and activates the classical complement pathway. Even though the main function of FXII seems to relate to the activation of the intrinsic coagulation pathway and the kallikrein-kinin system, a growing body of evidence suggests that FXII may also directly regulate cellular responses. In this regard, it has been found that FXII/FXIIa induces the expression of inflammatory mediators, promotes cell proliferation, and enhances the migration of neutrophils and lung fibroblasts. In addition, it has been reported that genetic ablation of FXII protects against neuroinflammation, reduces the formation of atherosclerotic lesions in Apoe−/− mice, improves wound healing, and inhibits postnatal angiogenesis. Although the aforementioned effects can be partially explained by the downstream products of FXII activation, the ability of FXII/FXIIa to directly regulate cellular responses has recently emerged as an alternative hypothesis. These direct cellular reactions to FXII/FXIIa will be discussed in the review.  相似文献   

13.
Previous work has demonstrated that most strains of the human pathogen Streptococcus pyogenes bind kininogens through M protein, a fibrous surface protein and virulence determinant. Here we find that strains of several other pathogenic bacterial species, both Gram-positive and Gram-negative, isolated from patients with sepsis, also bind kininogens, especially H-kininogen (HK). The most pronounced interaction was seen between HK and Escherichia coli. Among clinical isolates of E. coli, the majority of the entero-haemorrhagic, enterotoxigenic, and sepsis strains, but none of the enteroinvasive and enteropathogenic strains, bound HK. Binding of HK to E. coli correlated with the expression of curli, another fibrous bacterial surface protein, and the binding of HK to purified curli was specific, saturable, and of high affinity; Ka = 9 107M-1. Other contact phase proteins such as factor XI, factor XII, and prekallikrein bound to curliated E. coli, but not to an isogenic curli-deficient mutant strain, suggesting that contact phase activation may occur at the surface of curliated bacteria. Kininogens are also precursor molecules of the vasoactive kinins. When incubated with human plasma, curli-expressing bacteria absorbed HK. Addition of purified plasma kallikrein to the HK-loaded bacteria resulted in a rapid and efficient release of bradykinin from surface-bound HK. The assembly of contact phase factors at the surface of pathogenic bacteria and the release of the potent proinflammatory and vasoactive peptide bradykinin, should have a major impact on the host-microbe relationship and may contribute to bacterial pathogencity and virulence.  相似文献   

14.
Plasma kallikrein kinin system (KKS) activation along with its cellular receptors expression are increased after injury and in patients with septic shock, hypotensive bacteremia and rhesus monkey infected with Salmonella typhimurium. KKS signaling cascade is activated by activated factor XII (FXIIa, Hageman factor)- and prolylcarboxypeptidase (PRCP)-dependent pathways on endothelial cells. Among the many entities that comprise the KKS, high molecular weight kininogen (HK), a bradykinin precursor, is critical in the assembly and activation of this system. HK is primarily expressed in the liver and secreted into the bloodstream. The activation of the KKS influences the permeability of the endothelium by liberating bradykinin (BK) from HK. BK is a potent inflammatory peptide which stimulates constitutive bradykinin B2 and inducible B1 receptors to release nitric oxide and prostacyclin. Regardless of the triggers, PK can only be activated on HK bound to the artificial negatively charged or to cell membrane surfaces. Since LPS has a negatively charged moiety and the ability to induce inflammatory responses in human, we determined the interaction between LPS and HK. HKH19 (HK cell binding site) and heparin inhibited LPS binding to HK with IC50s of 15 nM and 20 μg/ml, respectively. C1-inhibitor and N-acetylglucosamine glycan inhibited LPS binding to HK with IC50s of about 10 μg/ml and 10 mM, respectively. This novel study underscores the implication of HK in infection. We propose that HKH19, heparin, and C1-inhibitor present therapeutic potential for the treatment of sepsis and hypotensive bacteremia.  相似文献   

15.
When activated, factor XII (FXII) has been shown to play a role in a series of proteolytic cascades including systems as the fibrinolytic, the coagulation, the kallikrein-kinin and the complement. How FXII is activated in vivo remains poorly understood as the concentration and density of surface bound negative charges known to trigger the activation in vitro is far from sufficient in vivo. Specific binding of FXII to cellular receptors in the blood stream may, however, solve this problem which may be a question of inter molecular vicinity enhanced by binding to any surface. Here we report that the Zn(2+)-dependent binding of FXII to endothelial cells is rapid, saturable, specific and cooperative. Each endothelial cell from the human umbilical veins was found to bind (417 +/- 202) x 10(3) molecules of FXII with a Kd of (65 +/- 23) nM and a Hill coefficient of 2.1. The binding was inhibited by alpha-FXIIa but not by beta-FXIIa. The Kd for binding alpha-FXIIa was (50 +/- 27) nM. The rate of association was found to be 1.9 x 10(5) M(-1). min(-1). A confirmed inhibition by HK increased the Kd without affecting the maximal number of binding sites and the Hill coefficient. The concentration of HK in serum did not prevent binding of FXII/FXIIa to cells incubated with serum supplemented with Zn2+. The optimal concentration of Zn(2+) was 15 microM for binding factor XII/FXIIa whether purified or in serum.  相似文献   

16.
Kinetics of activation and autoactivation of human factor XII   总被引:3,自引:0,他引:3  
The kinetics of the enzymic reactions that participate in the contact activation system of human plasma were examined. These reactions are potentiated by dextran sulfate, a negatively charged solute that mimics many of the effects of glass or kaolin on this system. The reactions of reciprocal activation, consisting of activation of factor XII by kallikrein and of prekallikrein by activated factor XII, follow Michaelis-Menten kinetics; values of kcat and Km for each of these reactions were determined in the presence of dextran sulfate and in its absence. In the presence of dextran sulfate, the catalytic efficiency for factor XII activation was increased 11 000-fold, and that for prekallikrein was increased 70-fold. Autoactivation of factor XII in the presence of dextran sulfate also follows Michaelis-Menten kinetics with kcat = 0.033 s-1 and Km = 7.5 microM. This finding supports the concept that autoactivation is an enzymic process, initiated by traces of activated factor XII which are invariably present in factor XII preparations. At prekallikrein and factor XII levels equal to those in plasma, reciprocal activation is approximately 2000-fold more rapid than autoactivation. Thus, reciprocal activation is the predominant mode of factor XII activation in normal plasma.  相似文献   

17.
Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP) suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC) and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/-) mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin) system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other.  相似文献   

18.
J D Shore  D E Day  P E Bock  S T Olson 《Biochemistry》1987,26(8):2250-2258
The effect of divalent metal ions on the rate of dextran sulfate dependent autocatalytic activation of human blood coagulation factor XII was studied at pH 7.4 and 25 degrees C. Zn2+ and Cu2+, but not Co2+, increased the rate of factor XII activation induced by dextran sulfate with optimum effects at approximately 5 and 1 microM, respectively, while Ca2+ acceleration required much higher concentrations (millimolar). Further investigation of the effect of Zn2+ on factor XII activation demonstrated a complete dependence on the presence of dextran sulfate, lack of inhibition by soybean trypsin inhibitor, the appearance of alpha-XIIa as the primary reaction product, and reaction kinetics characteristic of an autocatalytic process. These results were consistent with Zn2+ affecting only the rate of surface-mediated factor XII autoactivation. The initial turnover velocity of dextran sulfate induced factor XII autoactivation increased linearly with factor XII concentration in the absence of Zn2+ up to 0.9 microM factor XII but showed saturation behavior over this same concentration range in the presence of 5 microM Zn2+, indicating that Zn2+ increased the reaction rate primarily by lowering the apparent Km. Comparison of the kinetics of autoactivation at mu = 0.15 and 0.24 revealed that the enhancement in the apparent kcat/Km brought about by Zn2+ increased from 19-fold to 520-fold, respectively, due to a differential dependence of the Zn2+-stimulated and unstimulated reactions on ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Xanthurenic acid (XA), produced as a byproduct during the biosynthesis of insect eye pigment (ommochromes), is a strong inducer of Plasmodium gametogenesis at very low concentrations. In previous studies, it was shown that XA is present in Anopheles stephensi (Diptera: Culicidae) mosquito salivary glands and that during blood feeding the mosquitoes ingested their own saliva into the midgut. Considering these two facts together, it is therefore likely that XA is discharged with saliva during blood feeding and is swallowed into the midgut where it exerts its effect on Plasmodium gametocytes. However, the quantities of XA in the salivary glands and midgut are unknown. In this study, we used high performance liquid chromatography with electrochemical detection to detect and quantify XA in the salivary glands and midgut. Based on the results of this study, we found 0.28+/-0.05 ng of XA in the salivary glands of the mosquitoes, accounting for 10% of the total XA content in the mosquito whole body. The amounts of XA in the salivary glands reduced to 0.13+/-0.06 ng after mosquitoes ingested a blood meal. Approximately 0.05+/-0.01 ng of XA was detected in the midgut of nonblood fed An. stephensi mosquitoes. By adding synthetic tryptophan as a source of XA into larval rearing water (2 mM) or in sugar meals (10 mM), we evaluated whether XA levels in the mosquito (salivary glands, midgut, and whole body) were boosted and the subsequent effect on infectivity of Plasmodium berghei in the treated mosquito groups. A female specific increase in XA content was observed in the whole body and in the midgut of mosquito groups where tryptophan was added either in the larval water or sugar meals. However, XA in the salivary glands was not affected by tryptophan addition to larval water, and surprisingly it reduced when tryptophan was added to sugar meals. The P. berghei oocyst loads in the mosquito midguts were lower in mosquitoes fed tryptophan treated sugar meals than in mosquitoes reared on tryptophan treated larval water. Our results suggest that mosquito nutrition may have a significant impact on whole body and midgut XA levels in mosquitoes. We discuss the observed parasite infectivity results in relation to XA's relationship with malaria parasite development in mosquitoes.  相似文献   

20.
Glycosylation enhancing factor (GEF) from rat T cells is a kallikrein-like enzyme and enhances the assembly of N-linked oligosaccharides to IgE binding factors during their biosynthesis, whereas another T cell factor, i.e., glycosylation inhibiting factor (GIF), is a fragment of phosphorylated lipomodulin (i.e., phospholipase inhibitor), which when dephosphorylated inhibits phospholipase and the glycosylation process. The two T cell factors compete with each other when they are added to normal mesenteric lymph node cells during the formation of IgE binding factors. The addition of GEF to T cell hybridoma 23A4 cell switches the cells from the formation of unglycosylated IgE binding factor to the formation of N-glycosylated IgE binding factor. However, GEF neither inactivated GIF nor inhibited the formation of GIF by the T cell hybridoma. Stimulation of the T cell hybridoma with either affinity-purified GEF or bradykinin resulted in the release of GIF from the cells. GIF released by GEF stimulation had a m.w. of approximately 15,000 and bound to monoclonal antibody against lipomodulin. GEF and bradykinin also induced normal mesenteric lymph node cells to release GIF. Incorporation of 14C-arachidonic acid into 23A4 cells, followed by stimulation of the cells with GEF, resulted in the release of 14C-arachidonate. The results suggest that lipomodulin, a phospholipase inhibitory protein, is present in lymphocytes, and indicate that GEF and bradykinin induce the activation of phospholipase by stimulating cells to release lipomodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号