首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium and ionic strength are both known to modify the force developed by skinned frog muscle fibers. To determine how these parameters affect the cross-bridge contraction mechanism, the isotonic velocity transients following step changes in load were studied in solutions in which calcium concentration and ionic strength were varied. Analysis of the motion showed that calcium has no effect on either the null time or the amplitude of the transients. In contrast, the transient amplitude was increased in high ionic strength and was suppressed in low ionic strength. These results are consistent with the idea that calcium affects force in skeletal muscle by modulating the number of force generators in a simple switchlike "on-off" manner and that the steady force at a given calcium level is proportional to cross-bridge number. On the other hand, the effect of ionic strength on force is associated with changes in the kinetic properties of the cross-bridge mechanism.  相似文献   

2.
The influences of [Ca(2+)] and Ca(2+) dissociation rate from troponin C (TnC) on the kinetics of contraction (k(Ca)) activated by photolysis of a caged Ca(2+) compound in skinned fast-twitch psoas and slow-twitch soleus fibers from rabbits were investigated at 15 degrees C. Increasing the amount of Ca(2+) released increased the amount of force in psoas and soleus fibers and increased k(Ca) in a curvilinear manner in psoas fibers approximately 5-fold but did not alter k(Ca) in soleus fibers. Reconstituting psoas fibers with mutants of TnC that in solution exhibited increased Ca(2+) affinity and approximately 2- to 5-fold decreased Ca(2+) dissociation rate (M82Q TnC) or decreased Ca(2+) affinity and approximately 2-fold increased Ca(2+) dissociation rate (NHdel TnC) did not affect maximal k(Ca). Thus the influence of [Ca(2+)] on k(Ca) is fiber type dependent and the maximum k(Ca) in psoas fibers is dominated by kinetics of cross-bridge cycling over kinetics of Ca(2+) exchange with TnC.  相似文献   

3.
We used single fibers from rabbit psoas muscle, chemically skinned with Triton X-100 nonionic detergent, to determine the salts best suited for adjusting ionic strength of bathing solutions for skinned fibers. As criteria we measured maximal calcium-activated force (Fmax), fiber swelling estimated optically, and protein extraction from single fibers determined by polyacrylamide gel electrophoresis with ultrasensitive silver staining. All things considered, the best uni-univalent salt was potassium methanesulfonate, while a number of uni-divalent potassium salts of phosphocreatine, hexamethylenediamine N,N,N',N'-tetraacetic acid, sulfate, and succinate were equally acceptable. Using these salts, we determined that changes in Fmax correlated best with variations of ionic strength (1/2 sigma ci z2i, where ci is the concentration of ion i, and zi is its valence) rather than ionic equivalents (1/2 sigma ci magnitude of zi). Our data indicate that increased ionic strength per sc decreases Fmax, probably by destabilizing the cross-bridge structure in addition to increasing electrostatic shielding of actomyosin interactions.  相似文献   

4.
Activation of skinned muscle fibers by calcium and strontium ions   总被引:1,自引:0,他引:1  
Intact and mechanically skinned skeletal muscle fibers of the crab Carcinus maenas have been used. The aim of the experiments was to determine the origin of the mechanical activity recorded in intact crab muscle fibers exhibiting an inward strontium current in strontium solution without calcium. To do so, the effect of strontium ions in inducing activation of contractile proteins and calcium release from the sarcoplasmic reticulum has been studied. The properties of the sarcoplasmic reticulum membrane towards strontium ions, i.e., the efficiency of the calcium ATPase towards strontium ions and the capability to release strontium ions have been investigated. Results show that the contractile proteins have a lower affinity for strontium than for calcium ions. However, the maximum bound strontium is identical to the maximum bound calcium. As for the sarcoplasmic reticulum, strontium ions can induce a calcium release and also can be taken up by the calcium ATPase and be released. We concluded that the mechanical activity in intact fibers bathed in a strontium medium has two origins: first, a direct and partial activation of the contractile proteins by strontium ions flowing through the calcium channel; second, a contractile proteins activation of calcium ions released by the sarcoplasmic reticulum by a "strontium-induced calcium release" mechanism.  相似文献   

5.
Skinned frog fibers were reversibly activated in Ca-free solutions containing 0 mM KCl, 23 microM free Mg, and having an ionic strength of approximately 50 mM. Contractile force was nearly maximal at 22 degrees - 25 degrees C and decreased at lower temperatures. Maximal force in Ca-free solution at 50 mM ionic strength was close to twice the calcium-activated force with pCa 5 and 190 mM ionic strength. The force in Ca-free solution could be reduced to zero by raising the concentration of free Mg from 23 microM to 1.0 mM at the same ionic strength (50 mM). On stretching the fiber from 2.0 to 3.2 micron the force decreased; this effect was similar to that seen with Ca-activated fiber and the data support the idea that Ca-free tension is made at the cross-bridge level. Isotonic contraction during Ca-free activation showed a velocity transient as in Ca-activated fiber at 190 mM ionic strength, but the transient in the present case was very much prolonged. This finding suggests that contraction mechanisms for force generation and for shortening are essentially the same in the two conditions, but that certain rate constants of cross-bridge turnover are slower for the Ca-free contraction. Also, the results indicate that, in low ionic strength, Ca binding to thin filaments is not essential for unmasking the cross-bridge attachment sites, which suggests that the steric blocking mechanism is modified under these conditions.  相似文献   

6.
Chloride-induced Ca release in skinned muscle fibers was studied by measuring isometric force transients and 45Ca loss from fiber to washout solutions. Skinned fibers prepared from muscles soaked in normal Ringer solution made large force transients in 120 mM Cl solution with 5 mM ATP and 1 mM Mg, but 3 mM Mg was inhibitory. Mg inhibition was antagonized by low temperature and by Cd, agents which slow active Ca uptake by the sarcoplasmic reticulum (SR). In low Mg++, Cl stimulated rapid 45Ca release from the SR in sufficient amounts to account for the force response. The increased 45Ca release was inhibited by EGTA, suggesting that release requires free Ca under these conditions. The 45Ca initially released was partially reaccumulated later. Reaccumulation was increased in higher Mg++. These results provide additional evidence that the Ca uptake rate is an important determinant of net release, and suggest that Mg++ acts primarily on this mechanism. Skinned fibers prepared from muscles soaked in low Cl solutions could give force responses to Cl solutions with 3 mM and 6 mM Mg. This observation suggests that the Cl stimulus varies with the [Cl] gradient across the internal membranes, and supports the hypothesis that applied Cl causes membrane depolarization.  相似文献   

7.
Magnesium effects on activation of skinned fibers from striated muscle   总被引:2,自引:0,他引:2  
The intracellular Ca movements that control contraction and relaxation of striated muscle are regulated by the membrane potential and influenced by Mg2+. In skinned fibers, the internal composition can be manipulated directly by Ca movements estimated from isometric force transients, net changes in sarcoplasmic reticulum (SR) Ca, and 45Ca flux between fiber and bath. Stimulated Ca release, unlike unstimulated 45Ca efflux at low external [Ca2+], is highly [Mg2+]-sensitive at 20 C. Force and tracer measurements indicate three major sites of Mg2+-Ca2+ interaction in situ: Mg2+ can stimulate the SR active Ca transport system, inhibit a Ca2+-dependent Ca efflux pathway of SR, and shift the force-[Ca2+] relation, presumably by reducing Ca2+ binding to myofilament regulatory sites. These mechanisms constrain the resting Ca flux and are adaptive during relaxation. However, analysis of CI-stimulated 45Ca release and reaccumulation suggests that the depolarization process may inhibit Mg2+-dependent Ca influx, the membrane potential controlling both efflux and influx; recent studies on voltage-clamped cut fibers support this hypothesis. The Ca2+ and Mg2+ dependence of caffeine-stimulated 45Ca efflux suggests that Mg2+ inhibition of the Ca2+-dependent efflux pathway is small during rapid Ca2+ efflux. Therefore, both Mg2+ mechanisms, which minimize net release, may be reversed during normal activation.  相似文献   

8.
9.
Bert A. Mobley 《BBA》1977,459(2):325-328
Rigor contractions were examined in skinned frog muscle fibers. The concentrations of calcium ions, pCa = 9.0?5.0, in the solutions which caused rigor were shown to affect the magnitude and time course of the contractions.  相似文献   

10.
Major questions in excitation--contraction coupling of fast skeletal muscle concern the mechanism of signal transmission between sarcolemma and sarcoplasmic reticulum (SR), the mechanism of SR Ca release, and operation of the SR active transport system during excitation. Intracellular Ca movement can be studied in skinned muscle fibers with more direct control, analysis of 45Ca flux, and simultaneous isometric force measurements. Ca release can be stimulated by bath Ca2+ itself, ionic "depolarization," Mg2+ reduction, or caffeine. The effectiveness of bath Ca2+ has suggested a possible role for Ca2+ in physiological release, but this response is difficult to analyze and evaluate. Related evidence emerged from analysis of other responses: with all agents studied, stimulation of 45Ca efflux is highly Ca2+-dependent. The presence of a Ca chelator prevents detectable stimulation by ionic "depolarization" or Mg2+ reduction and inhibits the potent caffeine stimulus; inhibition is graded with chelator concentration and caffeine concentration, and is synergistic with inhibition by increased Mg2+. The results indicate that a Ca2+-dependent pathway mediates most or all of stimulated 45Ca efflux in skinned fibers, and has properties compatible with a function in physiological Ca release.  相似文献   

11.
The effect of Mg on Ca movement between the sarcoplasmic reticulum (SR) and myofilament space (MFS) was studied in skinned muscle fibers by using isometric force as an indicator of MFS Ca. In Ca-loaded fibers at 20 degrees C, the large force spike induced by Ca in 1 mM Mg (5 mM ATP) was strongly inhibited in 3 mM Mg, and force development was extremely slow. After a brief Ca stimulus in 1 mM Mg, relaxation in Ca-free solution was significantly faster in 3 mM Mg. These changes were due to altered Ca movements, since the effect of 3 mM Mg on steady force in CaEGTA solutions was small. Changes in Mg alone induced force transients apparently due to altered Ca movement. In relaxed fibers, decreasing the Mg to 0.25 mM caused phasic force development. In contracting fibers in Ca solutions, increasing the Mg caused a large transient relaxation. The effects of increased Mg were antagonized by 0.5 mM Cd, an inhibitor of the SR Ca transport system. The results indicate that active Ca uptake by the SR in situ is stimulated by Mg, and that it can affect local MFS [Ca++] in the presence of a substantial Ca source. These results provide evidence that an increased rate of Ca uptake in 3 mM Mg could account for inhibition of the large force spike associated with Ca-induced Ca release in skinned fibers.  相似文献   

12.
Dystrophin is absent in muscle fibers of patients with Duchenne muscular dystrophy (DMD) and in muscle fibers from the mdx mouse, an animal model of DMD. Disrupted excitation-contraction (E-C) coupling has been postulated to be a functional consequence of the lack of dystrophin, although the evidence for this is not entirely clear. We used mechanically skinned fibers (with a sealed transverse tubular system) prepared from fast extensor digitorum longus muscles of wild-type control and dystrophic mdx mice to test the hypothesis that dystrophin deficiency would affect the depolarization-induced contractile response (DICR) and sarcoplasmic reticulum (SR) function. DICR was similar in muscle fibers from mdx and control mice, indicating normal voltage regulation of Ca2+ release. Nevertheless, rundown of DICR (<50% of initial) was reached more rapidly in fibers from mdx than control mice [control: 32 +/- 5 depolarizations (n = 14 fibers) vs. mdx: 18 +/- 1 depolarizations (n = 7) before rundown, P < 0.05]. The repriming rate for DICRs was decreased in fibers from mdx mice, with lower submaximal DICR observed after 5, 10, and 20 s of repriming compared with fibers from control mice (P < 0.05). SR Ca2+ reloading was not different in fibers from control and mdx mice, and no difference was observed in SR Ca2+ leak. Caffeine (2-7 mM)-induced contraction was diminished in fibers from mdx mice compared with control (P < 0.05), indicating depressed SR Ca2+ release channel activity. Our findings indicate that fast fibers from mdx mice exhibit some impairment in the events mediating E-C coupling and SR Ca2+ release channel activity.  相似文献   

13.
We have investigated (a) effects of varying proton concentration on force and shortening velocity of glycerinated muscle fibers, (b) differences between these effects on fibers from psoas (fast) and soleus (slow) muscles, possibly due to differences in the actomyosin ATPase kinetic cycles, and (c) whether changes in intracellular pH explain altered contractility typically associated with prolonged excitation of fast, glycolytic muscle. The pH range was chosen to cover the physiological pH range (6.0-7.5) as well as pH 8.0, which has often been used for in vitro measurements of myosin ATPase activity. Steady-state isometric force increased monotonically (by about threefold) as pH was increased from pH 6.0; force in soleus (slow) fibers was less affected by pH than in psoas (fast) fibers. For both fiber types, the velocity of unloaded shortening was maximum near resting intracellular pH in vivo and was decreased at acid pH (by about one-half). At pH 6.0, force increased when the pH buffer concentration was decreased from 100 mM, as predicted by inadequate pH buffering and pH heterogeneity in the fiber. This heterogeneity was modeled by net proton consumption within the fiber, due to production by the actomyosin ATPase coupled to consumption by the creatine kinase reaction, with replenishment by diffusion of protons in equilibrium with a mobile buffer. Lactate anion had little mechanical effect. Inorganic phosphate (15 mM total) had an additive effect of depressing force that was similar at pH 7.1 and 6.0. By directly affecting the actomyosin interaction, decreased pH is at least partly responsible for the observed decreases in force and velocity in stimulated muscle with sufficient glycolytic capacity to decrease pH.  相似文献   

14.
The action of ruthenium red (RR) on Ca2+ loading by and Ca2+ release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated. Ca2+ loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method. Ca2+ release was indirectly measured by following tension development evoked by caffeine. Stimulation of the Ca2+ loading rate by 5 microM RR was dependent on free Ca2+, being maximal at pCa 5.56. Isometric force development induced by 5 mM caffeine was reversibly antagonized by RR. IC50 for the rate of tension rise was 0.5 microM; that for the extent of tension was 4 microM. RR slightly shifted the steady state isometric force/pCa curve toward lower pCa values. At 5 microM RR, the pCa required for half-maximal force was 0.2 log units lower than that of the control, and maximal force was depressed by approximately 16%. These results suggest that RR inhibited Ca2+ release from the SR and stimulated Ca2+ loading into the SR by closing Ca2+-gated Ca2+ channels. Previous studies on isolated SR have indicated the selective presence of such channels in junctional terminal cisternae.  相似文献   

15.
Determination of ionic calcium in frog skeletal muscle fibers   总被引:3,自引:0,他引:3       下载免费PDF全文
Ionic calcium concentrations were measured in frog skeletal muscle fibers using Ca-selective microelectrodes. In fibers with resting membrane potentials more negative than -85 mV, the mean pCa value was 6.94 (0.12 microM). In fibers depolarized to -73 mV with 10-mM K the mean pCa was 6.43 (0.37 microM). This increase in the intracellular [Ca2+] could be related to the higher oxygen consumption and heat production (Solandt effect) reported to occur under these conditions. Caffeine, 3 mM, also produced an increase in the free ionic calcium to a pCa of 6.52 (0.31 microM) without changes in the membrane potential. Lower caffeine concentrations, 1 and 2 mM, did not change the fiber pCa. Lower Ca concentrations in the external medium effectively reduced the internal ionic calcium to an estimated pCa of 7.43 (0.03 microM).  相似文献   

16.
The ability of a number of calcium antagonistic drugs including nitrendipine, D600, and D890 to block contractures in single skinned (sarcolemma removed) muscle fibers of the frog Rana pipiens has been characterized. Contractures were initiated by ionic substitution, which is thought to depolarize resealed transverse tubules in this preparation. Depolarization of the transverse tubules is the physiological trigger for the release of calcium ion from the sarcoplasmic reticulum and thus of contractile protein activation. Since the transverse tubular membrane potential cannot be measured in this preparation, tension development is used as a measure of activation. Once stimulated, fibers become inactivated and do not respond to a second stimulus unless allowed to recover or reprime (Fill and Best, 1988). Fibers exposed to calcium antagonists while fully inactivated do not recover from inactivation (became blocked or paralyzed). The extent of drug-induced block was quantified by comparing the height of individual contractures. Reprimed fibers were significantly less sensitive to block by both nitrendipine (10 degrees C) and D600 (10 and 22 degrees C) than were inactivated fibers. Addition of D600 to fibers recovering from inactivation stopped further recovery, confirming preferential interaction of the drug with the inactivated state. A concerted model that assumed coupled transitions of independent drug-binding sites from the reprimed to the inactivated state adequately described the data obtained from reprimed fibers. Photoreversal of drug action left fibers inactivated even though the drug was initially added to fibers in the reprimed state. This result is consistent with the prediction from the model. The estimated KI for D600 (at 10 degrees and 22 degrees C) and for D890 (at 10 degrees C) was approximately 10 microM. The estimated KI for nitrendipine paralysis of inactivated fibers at 10 degrees C was 16 nM. The sensitivity of reprimed fibers to paralysis by D600 and D890 was similar. However, inactivated fibers were significantly less sensitive to the membrane-impermeant derivative (D890) than to the permeant species (D600), which suggests a change in the drug-binding site or its environment during the inactivation process. The enantomeric dihydropyridines (+) and (-) 202-791, reported to be calcium channel agonists and antagonists, respectively, both caused paralysis, which suggests that blockade of a transverse tubular membrane calcium flux is not the mechanism responsible for antagonist-induced paralysis. The data support a model of excitation-contraction coupling involving transverse tubular proteins that bind calcium antagonists.  相似文献   

17.
18.
The effect of ionic strength on the kinetics of myosin cross-bridges in the presence of the ATP analogue PP, has been examined. It was found that increasing ionic strength from moderate values (mu approximately 100 mM) to high values (mu approximately 200 mM) has three effects. It causes a big decrease in the half time for the force decay after a small stretch, it causes a significant decrease in the sigmoidicity of the nucleotide analogue concentration dependence of the "apparent rate constant" of force decay after a small stretch, and it causes a big decrease in the range of rate constants necessary to describe the multiexponential force decay. It causes the last of these by causing a much larger increase in the slowest rate constants of the decay than in the fastest rate constants. The results suggest that whereas the behavior of cross-bridges in the presence of ATP is well-described by the simple independent-head equilibrium cross-bridge model of Schoenberg (1985. Biophys. J. 48:467-475), cross-bridges in the presence of the ATP analogue PPi require the more complicated double-headed equilibrium cross-bridge model of Anderson and Schoenberg (1987. Biophys. J. 52: 1077-1082) to describe their behavior.  相似文献   

19.
Voltage-gated Na+ and K+ channels play key roles in the excitability of skeletal muscle fibers. In this study we investigated the steady-state and kinetic properties of voltage-gated Na+ and K+ currents of slow and fast skeletal muscle fibers in zebrafish ranging in age from 1 day postfertilization (dpf) to 4-6 dpf. The inner white (fast) fibers possess an A-type inactivating K+ current that increases in peak current density and accelerates its rise and decay times during development. As the muscle matured, the V50s of activation and inactivation of the A-type current became more depolarized, and then hyperpolarized again in older animals. The activation kinetics of the delayed outward K+ current in red (slow) fibers accelerated within the first week of development. The tail currents of the outward K+ currents were too small to allow an accurate determination of the V50s of activation. Red fibers did not show any evidence of inward Na+ currents; however, white fibers expressed Na+ currents that increased their peak current density, accelerated their inactivation kinetics, and hyperpolarized their V50 of inactivation during development. The action potentials of white fibers exhibited significant changes in the threshold voltage and the half width. These findings indicate that there are significant differences in the ionic current profiles between the red and white fibers and that a number of changes occur in the steady-state and kinetic properties of Na+ and K+ currents of developing zebrafish skeletal muscle fibers, with the most dramatic changes occurring around the end of the first day following egg fertilization.  相似文献   

20.
A. A. Klimov 《Biophysics》2006,51(5):744-751
A method and a device had been developed to directly measure the accumulation of calcium in the sarcoplasmic reticulum and its release from the sarcoplasmic reticulum, depending on the free Ca2+ concentration in the solution. The sarcoplasmic reticulum occupies to 30% of the volume of the swim bladder muscles of the oyster toadfish Opsanus tau. To isolate and skin muscle fibers and to remove the accumulated calcium from the sarcoplasmic reticulum, a set of solutions containing EGTA as a pCa buffer was used. To measure the calcium exchange between a fiber ~10 nl in volume and the solution in a 5-μl cuvette, instead of EGTA, 50–100 μM FURA2 or bisFURA2 was used both as pCa buffer and as a fluorescent indicator of the calcium concentration in the cuvette. An increase in fluorescence intensity meant an increase in the free FURA concentration in the solution surrounding the fiber since the calcium entering the sarcoplasmic reticulum was taken from this solution. The slope of the fluorescence curve corresponded to a rate of calcium accumulation in the sarcoplasmic reticulum of 1.6 μmol per second per liter of the solution in the cuvette or 2.6 mmol per second per liter of the sarcoplasmic reticulum. A solution without oxalate and ruthenium red may exhibit oscillations of the free FURA concentration, which can be explained by calcium-activated calcium release from the sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号