首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During oviposition, many endoparasitic wasps inject virus-like particles into their insect hosts that enable these parasitoids to evade or directly suppress their hosts' immune system, especially encapsulation by hemocytes. These particles are defined as virions that belong to viruses of the two genera that comprise the family Polydnaviridae, bracoviruses (genus Bracovirus) transmitted by braconid wasps, and ichnoviruses (genus Ichnovirus) transmitted by ichneumonid wasps. Structurally, bracovirus virions resemble nudivirus and baculovirus virions (family Baculoviridae), and ichnovirus virions resemble those of ascoviruses (family Ascoviridae). Whereas nudiviruses, baculoviruses and ascoviruses replicate their DNA and produce progeny virions, polydnavirus DNA is integrated into and replicated from the wasp genome, which also directs virion synthesis. The structural similarity of polydnavirus virions to those of viruses that attack the wasps' lepidopteran hosts, along with polydnavirus transmission and replication biology, suggest that these viruses evolved from insect DNA viruses by symbiogenesis, the same process by which mitochondia and chloroplasts evolved from bacteria. Molecular evidence supporting this hypothesis comes from similarities among structural proteins of ascoviruses and the Campoletis sonorensis ichnovirus. Implications of this hypothesis are that polydnaviruses evolved from viruses, but are no longer viruses, and that DNA packaged into polydnavirus virions is not viral genomic DNA per se, but rather wasp genomic DNA consisting primarily of wasp genes and non-coding DNA. Thus, we suggest that a better understanding of polydnaviruses would result by viewing these not as viruses, but rather as a wasp organelle system that evolved to shuttle wasp genes and proteins into hosts to evade and suppress their immune response.  相似文献   

2.
Ascoviruses are disseminated among larvae in lepidopteran populations by parasitic wasps during oviposition. Ascovirus relationships with these wasps vary from pathogenic to mutualistic, and experimentally can be shown possibly to be commensal non-pathogenic virus having little or no effect. Most ascoviruses are pathogens that female wasps vector mechanically. Other ascoviruses have a more intimate relationship with their wasp vectors in that their genome is stably maintained in all wasp nuclei through several generations by vertical transmission. In this relationship, these viruses are mutualistic, enhancing the successful development of the wasp larvae by suppressing lepidopteran defence mechanisms. The DpAV4 ascovirus is a mutualist in certain Diadromus wasps but is pathogenic or not when vectored by other species of this genus. These various biologies suggest that ascovirus/wasp relationships depend on wasp regulatory factors that control virus replication. Thus, certain ascoviruses can potentially have either a pathogenic, mutualistic, or non-pathogenic relationship with a specific wasp vector, the type of relationship being dependent upon the species system in which the relationship evolved. Finally, because ascoviruses appear to be related to ichnoviruses (Polydnaviridae), the DpAV4/Diadromus system constitutes a possible interesting intermediate between the pathogenic ascoviruses and symbiotic viruses that evolved to be ichnoviruses.  相似文献   

3.

Background

Polydnaviruses, double-stranded DNA viruses with segmented genomes, have evolved as obligate endosymbionts of parasitoid wasps. Virus particles are replication deficient and produced by female wasps from proviral sequences integrated into the wasp genome. These particles are co-injected with eggs into caterpillar hosts, where viral gene expression facilitates parasitoid survival and, thereby, survival of proviral DNA. Here we characterize and compare the encapsidated viral genome sequences of bracoviruses in the family Polydnaviridae associated with Glyptapanteles gypsy moth parasitoids, along with near complete proviral sequences from which both viral genomes are derived.

Results

The encapsidated Glyptapanteles indiensis and Glyptapanteles flavicoxis bracoviral genomes, each composed of 29 different size segments, total approximately 517 and 594 kbp, respectively. They are generated from a minimum of seven distinct loci in the wasp genome. Annotation of these sequences revealed numerous novel features for polydnaviruses, including insect-like sugar transporter genes and transposable elements. Evolutionary analyses suggest that positive selection is widespread among bracoviral genes.

Conclusions

The structure and organization of G. indiensis and G. flavicoxis bracovirus proviral segments as multiple loci containing one to many viral segments, flanked and separated by wasp gene-encoding DNA, is confirmed. Rapid evolution of bracovirus genes supports the hypothesis of bracovirus genes in an 'arms race' between bracovirus and caterpillar. Phylogenetic analyses of the bracoviral genes encoding sugar transporters provides the first robust evidence of a wasp origin for some polydnavirus genes. We hypothesize transposable elements, such as those described here, could facilitate transfer of genes between proviral segments and host DNA.  相似文献   

4.
Polydnaviruses are double-stranded DNA viruses associated with some subfamilies of ichneumonoid parasitoid wasps. Polydnavirus virions are delivered during wasp parasitization of a host, and virus gene expression in the host induces alterations of host physiology. Infection of susceptible host caterpillars by the polydnavirus Campoletis sonorensis ichnovirus (CsIV) leads to expression of virus genes, resulting in immune and developmental disruptions. CsIV carries four homologues of insect gap junction genes (innexins) termed vinnexins, which are expressed in multiple tissues of infected caterpillars. Previously, we demonstrated that two of these, VinnexinD and VinnexinG, form functional gap junctions in paired Xenopus oocytes. Here we show that VinnexinQ1 and VinnexinQ2, likewise, form junctions in this heterologous system. Moreover, we demonstrate that the vinnexins interact differentially with the Innexin2 orthologue of an ichnovirus host, Spodoptera frugiperda. Cell pairs coexpressing a vinnexin and Innexin2 or pairs in which one cell expresses a vinnexin and the neighboring cell Innexin2 assemble functional junctions with properties that differ from those of junctions composed of Innexin2 alone. These data suggest that altered gap junctional intercellular communication may underlie certain cellular pathologies associated with ichnovirus infection of caterpillar hosts.  相似文献   

5.

Background  

Figs and fig-pollinating wasps are obligate mutualists that have coevolved for ca 90 million years. They have radiated together, but do not show strict cospeciation. In particular, it is now clear that many fig species host two wasp species, so there is more wasp speciation than fig speciation. However, little is known about how fig wasps speciate.  相似文献   

6.

Background  

Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps.  相似文献   

7.
During evolution, certain endoparasitoid wasps have developed mechanisms to suppress the defence systems of their hosts. For this purpose, these species, all of which belong to the families Ichneumonidae and Braconidae, inject various kinds of virus-like particles. The most studied of these particles are classified as polydnaviruses (family Polydnaviridae) which are symbiotic viruses. Over the past decade, it has also been shown that several wasp species harbour reoviruses (family Reoviridae), and that two of these suppress host defence, allowing the development of the parasitoid eggs. In this paper, we summarize the key features of these viruses and their relationships with their wasp hosts. Five reoviruses are known that appear to be non-pathogenic for the wasps. Three of these, McRVLP, HeRV, OpRVLP, use their wasp hosts as vectors, and do not appear to be involved in host defence suppression. The fourth, DpRV-1, is a commensal reovirus detected in most field populations of the wasp, Diadromus pulchellus. This reovirus is always found associated with an ascovirus, DpAV-4a, which is indispensable for host immune suppression. Although DpRV-1 has not been shown to directly increase D. pulchellus parasitic success, it may contribute to this success by retarding DpAV-4a replication in the wasp. The fifth reovirus, DpRV-2, occurs in a specific population of D. pulchellus in which DpRV-1 and DpAV-4 are absent. This virus has a mutualistic relationship with its wasp host, as its injection by females during oviposition is essential for host immunosuppression. Interestingly, these viruses belong to several different reovirus genera.  相似文献   

8.

Background

The ascovirus, DpAV4a (family Ascoviridae), is a symbiotic virus that markedly increases the fitness of its vector, the parasitic ichneumonid wasp, Diadromus puchellus, by increasing survival of wasp eggs and larvae in their lepidopteran host, Acrolepiopsis assectella. Previous phylogenetic studies have indicated that DpAV4a is related to the pathogenic ascoviruses, such as the Spodoptera frugiperda ascovirus 1a (SfAV1a) and the lepidopteran iridovirus (family Iridoviridae), Chilo iridescent virus (CIV), and is also likely related to the ancestral source of certain ichnoviruses (family Polydnaviridae).

Methodology/Principal Findings

To clarify the evolutionary relationships of these large double-stranded DNA viruses, we sequenced the genome of DpAV4a and undertook phylogenetic analyses of the above viruses and others, including iridoviruses pathogenic to vertebrates. The DpAV4a genome consisted of 119,343 bp and contained at least 119 open reading frames (ORFs), the analysis of which confirmed the relatedness of this virus to iridoviruses and other ascoviruses.

Conclusions

Analyses of core DpAV4a genes confirmed that ascoviruses and iridoviruses are evolutionary related. Nevertheless, our results suggested that the symbiotic DpAV4a had a separate origin in the iridoviruses from the pathogenic ascoviruses, and that these two types shared parallel evolutionary paths, which converged with respect to virion structure (icosahedral to bacilliform), genome configuration (linear to circular), and cytopathology (plasmalemma blebbing to virion-containing vesicles). Our analyses also revealed that DpAV4a shared more core genes with CIV than with other ascoviruses and iridoviruses, providing additional evidence that DpAV4a represents a separate lineage. Given the differences in the biology of the various iridoviruses and ascoviruses studied, these results provide an interesting model for how viruses of different families evolved from one another.  相似文献   

9.
10.
Bracoviruses are used by parasitoid wasps to allow development of their progeny within the body of lepidopteran hosts. In parasitoid wasps, the bracovirus exists as a provirus, integrated in a wasp chromosome. Viral replication occurs in wasp ovaries and leads to formation of particles containing dsDNA circles (segments) that are injected into the host body during wasp oviposition. We identified a large DNA transposon Maverick in a parasitoid wasp bracovirus. Closely related elements are present in parasitoid wasp genomes indicating that the element in CcBV corresponds to the insertion of an endogenous wasp Maverick in CcBV provirus. The presence of the Maverick in a bracovirus genome suggests the possibility of transposon transfers from parasitoids to lepidoptera via bracoviruses.  相似文献   

11.

Background

Bracoviruses (BVs), a group of double-stranded DNA viruses with segmented genomes, are mutualistic endosymbionts of parasitoid wasps. Virus particles are replication deficient and are produced only by female wasps from proviral sequences integrated into the wasp genome. Virus particles are injected along with eggs into caterpillar hosts, where viral gene expression facilitates parasitoid survival and therefore perpetuation of proviral DNA. Here we describe a 223 kbp region of Glyptapanteles indiensis genomic DNA which contains a part of the G. indiensis bracovirus (GiBV) proviral genome.

Results

Eighteen of ~24 GiBV viral segment sequences are encoded by 7 non-overlapping sets of BAC clones, revealing that some proviral segment sequences are separated by long stretches of intervening DNA. Two overlapping BACs, which contain a locus of 8 tandemly arrayed proviral segments flanked on either side by ~35 kbp of non-packaged DNA, were sequenced and annotated. Structural and compositional analyses of this cluster revealed it exhibits a G+C and nucleotide composition distinct from the flanking DNA. By analyzing sequence polymorphisms in the 8 GiBV viral segment sequences, we found evidence for widespread selection acting on both protein-coding and non-coding DNA. Comparative analysis of viral and proviral segment sequences revealed a sequence motif involved in the excision of proviral genome segments which is highly conserved in two other bracoviruses.

Conclusion

Contrary to current concepts of bracovirus proviral genome organization our results demonstrate that some but not all GiBV proviral segment sequences exist in a tandem array. Unexpectedly, non-coding DNA in the 8 proviral genome segments which typically occupies ~70% of BV viral genomes is under selection pressure suggesting it serves some function(s). We hypothesize that selection acting on GiBV proviral sequences maintains the genetic island-like nature of the cluster of proviral genome segments described herein. In contrast to large differences in the predicted gene composition of BV genomes, sequences that appear to mediate processes of viral segment formation, such as proviral segment excision and circularization, appear to be highly conserved, supporting the hypothesis of a single origin for BVs.  相似文献   

12.

Background  

In pathogens, certain genes encoding proteins that directly interact with host defences coevolve with their host and are subject to positive selection. In the lepidopteran host-wasp parasitoid system, one of the most original strategies developed by the wasps to defeat host defences is the injection of a symbiotic polydnavirus at the same time as the wasp eggs. The virus is essential for wasp parasitism success since viral gene expression alters the immune system and development of the host. As a wasp mutualist symbiont, the virus is expected to exhibit a reduction in genome complexity and evolve under wasp phyletic constraints. However, as a lepidopteran host pathogenic symbiont, the virus is likely undergoing strong selective pressures for the acquisition of new functions by gene acquisition or duplication. To understand the constraints imposed by this particular system on virus evolution, we studied a polydnavirus gene family encoding cyteine protease inhibitors of the cystatin superfamily.  相似文献   

13.
During oviposition, the parasitic wasp Diachasmimorpha longicaudata introduces an entomopoxvirus (DlEPV) and a rhabdovirus (DlRhV) into larvae of its tephritid fruit fly host Anastrepha suspensa. DlEPV and DlRhV replicate, respectively, in host hemocytes and epidermal cells. Both viruses, like many beneficial viruses of parasitic wasps, are retained in all wasp generations but their avenue(s) of transmission are unknown. This study tests the hypothesis that DlRhV is transmitted transovarially or through larval feeding on infected host hemolymph. Transmission electron microscopy (TEM) revealed no virions in pre-vitellogenic or vitellogenic ova, or in the lateral oviduct of D. longicaudata females. However, numerous virions occurred in subchorionic regions of 33-36-h-old oviposited eggs. This suggests that DlRhV is introduced into the egg either as (a) intact virions after chorionogenesis but prior to oviposition and/or as (b) unencapsidated RNA molecules, undetectable by TEM in pre-vitellogenic ova, that subsequently replicate and assemble into mature virions. DlRhV particles also occurred in the midgut lumen of 20-24-h-old wasp first instars, suggesting that they were ingested. These virions may have been released from the egg into the hemolymph during hatching or may have come from virions introduced by the female wasp directly into the host, separate from the egg. DlRhV particles were also evident in the intracellular vesicles and intercellular spaces of the larval midgut. Taken together, these data support the hypothesis that DlRhV is transovarially transmitted as virions and/or as unencapsidated RNA. Further studies are needed to determine whether the DlRhV that ultimately resides within the female wasp's accessory gland filaments is the progeny of the virus from the egg and/or larval midgut cells.  相似文献   

14.
The relationship between parasitoid wasps and polydnaviruses constitutes one of the few known mutualisms between viruses and eukaryotes. Viral particles are injected with the wasp eggs into parasitized larvae, and the viral genes thus introduced are used to manipulate lepidopteran host physiology. The genome packaged in the particles is composed of 35 double-stranded DNA (dsDNA) circles produced in wasp ovaries by amplification of viral sequences from proviral segments integrated in tandem arrays in the wasp genome. These segments and their flanking regions within the genome of the wasp Cotesia congregata were recently isolated, allowing extensive mapping of amplified sequences. The bracovirus DNAs packaged in the particles were found to be amplified within more than 12 replication units. Strikingly, the nudiviral cluster, the genes of which encode particle structural components, was also amplified, although not encapsidated. Amplification of bracoviral sequences was shown to involve successive head-to-head and tail-to-tail concatemers, which was not expected given the nudiviral origin of bracoviruses.  相似文献   

15.
This guideline describes a standardised form of extended laboratory test for evaluating the effects of plant protection products on the parasitic wasp, Aphidius rhopalosiphi (De Stefani-Perez) (Hymenoptera, Braconidae), both in terms of acute treatment effects (i.e. mortality over a 48 h exposure period) and sub-lethal treatment effects (i.e. changes in the reproductive capacity of surviving wasps). The test method involves the treatment of a 3-dimensional test substrate (barley seedlings), over which the test insects (laboratory-bred female wasps, less than 48-h-old) are confined for 48 h. Surviving wasps are then individually confined over untreated aphid-infested plants for 24 h and the numbers of parasitised aphids in which wasp pupae subsequently develop are recorded. Acute mortality after 48 h and the mean number of ‘mummies’ (the pupal stage of the wasps) produced per female are used as assessment endpoints for the test.  相似文献   

16.
Virus or not? Phylogenetics of polydnaviruses and their wasp carriers   总被引:4,自引:0,他引:4  
Our current, still limited, understanding of the comparative biology and evolution of polydnaviruses (PDVs) is reviewed, especially in the context of the possible origins of these parasitoid viruses and of their coevolution with carrier wasps. A hypothetical scenario of evolution of PDVs from ascovirus (or ascovirus-like) ancestors is presented, with examples of apparent extant transitional forms. PDVs appear, in the case of bracoviruses, to show phylogenetic relationships that mirror those of their wasp carriers: with ichnoviruses, the picture is less clear. Ongoing sequencing studies of entire PDV genomes from diverse wasp species are likely to greatly contribute to our understanding of PDV evolution.  相似文献   

17.

Background  

The interactions of fig wasps and their host figs provide a model for investigating co-evolution. Fig wasps have specialized morphological characters and lifestyles thought to be adaptations to living in the fig's syconium. Although these aspects of natural history are well documented, the genetic mechanism(s) underlying these changes remain(s) unknown. Fig wasp olfaction is the key to host-specificity. The Or83b gene class, an unusual member of olfactory receptor family, plays a critical role in enabling the function of conventional olfactory receptors. Four Or83b orthologous genes from one pollinator (PFW) (Ceratosolen solmsi) and three non-pollinator fig wasps (NPFWs) (Apocrypta bakeri, Philotrypesis pilosa and Philotrypesis sp.) associated with one species of fig (Ficus hispida) can be used to better understand the molecular mechanism underlying the fig wasp's adaptation to its host. We made a comparison of spatial tissue-specific expression patterns and substitution rates of one orthologous gene in these fig wasps and sought evidence for selection pressures.  相似文献   

18.

Background

Host-parasite interactions are among the most important biotic relationships. Host species should evolve mechanisms to detect their enemies and employ appropriate counterstrategies. Parasites, in turn, should evolve mechanisms to evade detection and thus maximize their success. Females of the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae) hunt exclusively honeybee workers as food for their progeny. The brood cells containing the paralyzed bees are severely threatened by a highly specialized cuckoo wasp (Hedychrum rutilans, Hymenoptera, Chrysididae). Female cuckoo wasps enter beewolf nests to oviposit on paralyzed bees that are temporarily couched in the nest burrow. The cuckoo wasp larva kills the beewolf larva and feeds on it and the bees. Here, we investigated whether H. rutilans evades detection by its host. Since chemical senses are most important in the dark nest, we hypothesized that the cuckoo wasp might employ chemical camouflage.

Results

Field observations suggest that cuckoo wasps are attacked by beewolves in front of their nest, most probably after being recognized visually. In contrast, beewolves seem not to detect signs of the presence of these parasitoids neither when these had visited the nest nor when directly encountered in the dark nest burrow. In a recognition bioassay in observation cages, beewolf females responded significantly less frequently to filter paper discs treated with a cuticular extract from H. rutilans females, than to filter paper discs treated with an extract from another cuckoo wasp species (Chrysis viridula). The behavior to paper discs treated with a cuticular extract from H. rutilans females did not differ significantly from the behavior towards filter paper discs treated with the solvent only. We hypothesized that cuckoo wasps either mimic the chemistry of their beewolf host or their host's prey. We tested this hypothesis using GC-MS analyses of the cuticles of male and female beewolves, cuckoo wasps, and honeybee workers. Cuticle extracts of Hedychrum nobile (Hymenoptera: Chrysididae) and Cerceris arenaria (Hymenoptera: Crabronidae) were used as outgroups. There was little congruence with regard to cuticular compounds between H. rutilans females and honeybees as well as females of C. arenaria and H. nobile. However, there was a considerable similarity between beewolf females and H. rutilans females. Beewolf females show a striking dimorphism regarding their cuticular hydrocarbons with one morph having (Z)-9-C25:1 and the other morph having (Z)-9-C27:1 as the major component. H. rutilans females were more similar to the morph having (Z)-9-C27:1 as the main component.

Conclusion

We conclude that H. rutilans females closely mimic the composition of cuticular compounds of their host species P. triangulum. The occurrence of isomeric forms of certain compounds on the cuticles of the cuckoo wasps but their absence on beewolf females suggests that cuckoo wasps synthesize the cuticular compounds rather than sequester them from their host. Thus, the behavioral data and the chemical analysis provide evidence that a specialized cuckoo wasp exhibits chemical mimicry of the odor of its host. This probably allows the cuckoo wasp to enter the nest with a reduced risk of being detected by olfaction and without leaving traitorous chemical traces.  相似文献   

19.
Ascoviruses (family Ascoviridae) are double-stranded DNA viruses with circular genomes that attack lepidopterans, where they produce large, enveloped virions, 150 by 400 nm, and cause a chronic, fatal disease with a cytopathology resembling that of apoptosis. After infection, host cell DNA is degraded, the nucleus fragments, and the cell then cleaves into large virion-containing vesicles. These vesicles and virions circulate in the hemolymph, where they are acquired by parasitic wasps during oviposition and subsequently transmitted to new hosts. To develop a better understanding of ascovirus biology, we sequenced the genome of the type species Spodoptera frugiperda ascovirus 1a (SfAV-1a). The genome consisted of 156,922 bp, with a G+C ratio of 49.2%, and contained 123 putative open reading frames coding for a variety of enzymes and virion structural proteins, of which tentative functions were assigned to 44. Among the most interesting enzymes, due to their potential role in apoptosis and viral vesicle formation, were a caspase, a cathepsin B, several kinases, E3 ubiquitin ligases, and especially several enzymes involved in lipid metabolism, including a fatty acid elongase, a sphingomyelinase, a phosphate acyltransferase, and a patatin-like phospholipase. Comparison of SfAV-1a proteins with those of other viruses showed that 10% were orthologs of Chilo iridescent virus proteins, the highest correspondence with any virus, providing further evidence that ascoviruses evolved from a lepidopteran iridovirus. The SfAV-1a genome sequence will facilitate the determination of how ascoviruses manipulate apoptosis to generate the novel virion-containing vesicles characteristic of these viruses and enable study of their origin and evolution.  相似文献   

20.
The family Polydnaviridae is of interest because it provides the best example of viruses that have evolved a mutualistic association with their animal hosts. Polydnaviruses in the genus Bracovirus are strictly associated with parasitoid wasps in the family Braconidae, and evolved ∼100 million years ago from a nudivirus. Each wasp species relies on its associated bracovirus to parasitize hosts, while each bracovirus relies on its wasp for vertical transmission. Prior studies establish that bracovirus genomes consist of proviral segments and nudivirus-like replication genes, but how these components are organized in the genomes of wasps is unknown. Here, we sequenced the genome of the wasp Microplitis demolitor to characterize the proviral genome of M. demolitor bracovirus (MdBV). Unlike nudiviruses, bracoviruses produce virions that package multiple circular, double-stranded DNAs. DNA segments packaged into MdBV virions resided in eight dispersed loci in the M. demolitor genome. Each proviral segment was bounded by homologous motifs that guide processing to form mature viral DNAs. Rapid evolution of proviral segments obscured homology between other bracovirus-carrying wasps and MdBV. However, some domains flanking MdBV proviral loci were shared with other species. All MdBV genes previously identified to encode proteins required for replication were identified. Some of these genes resided in a multigene cluster but others, including subunits of the RNA polymerase that transcribes structural genes and integrases that process proviral segments, were widely dispersed in the M. demolitor genome. Overall, our results indicate that genome dispersal is a key feature in the evolution of bracoviruses into mutualists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号