首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Gene》1997,192(1):79-85
Several experimental approaches have provided evidence suggesting that a domain within the C-terminal region of the TcpA pilin, delineated by the single disulfide loop, is directly responsible for the colonization function mediated by the toxin coregulated pilus (TCP) of Vibrio cholerae. This evidence includes the mapping of domains recognized by protective monoclonal antibodies to this region, the ability of peptides from within this region to elicit cholera protective antibody, the construction of tcpA missense mutations that abolish TCP function, and the requirement of a periplasmic disulfide isomerase to produce functional TCP.  相似文献   

2.
The toxin-coregulated pilus (TCP) of Vibrio cholerae O1 is required for successful infection of the host. TcpA, the structural subunit of TCP, belongs to the type IV family of pilins, which includes the PilE pilin of Neisseria gonorrhoeae . Recently, single amino acid changes in the N-terminus of PilE were found to abolish autoagglutination in gonococci. As type IV pilins demonstrate some similarities in function and amino acid sequence, site-directed mutagenesis and allelic exchange were used to create corresponding mutations in TcpA. All four mutant strains demonstrated autoagglutination defects, and all were highly defective for colonization in the infant mouse model. These results support the previously proposed correlation between autoagglutination and colonization. Finally, all four mutants are serum sensitive, indicating that TcpA plays a role in serum resistance, a phenotype previously attributed to TcpC. As the mutations have similar effects in N. gonorrhoeae and V. cholerae , our results support the idea that type IV pilins have similar functions in a variety of pathogenic bacteria.  相似文献   

3.
The Vibrio cholerae toxin co-regulated pilus (TCP) is a type 4b pilus that mediates bacterial microcolony formation, which is essential for intestinal colonization. Structural analyses have defined a surface domain of the TcpA pilin subunit that is displayed repeatedly around the pilus filament surface and forms the molecular basis for pilus-pilus interactions required for microcolony formation. The physical attributes of this domain that lead to pilus-pilus association between bacteria are not known. Mutational analysis has revealed alterations within this domain that allow pilus-pilus interactions among pili expressed by individual bacteria, but do not allow pilus-pilus mediated association between bacteria. We characterized these altered strains using conventional microscopy, as well as three-dimensional high-resolution field emission scanning electron microscopy (FESEM), to reveal the physical difference between nonproductive and productive pilus associations that lead to interactions among multiple bacteria and result in microcolony formation. These findings pave the way towards investigation of the biophysical parameters involved in this basic bacterial property that promotes colonization of intestinal and other biological surfaces.  相似文献   

4.
《Gene》1997,192(1):71-77
Defined chromosomal mutations that lead to assembly failure of the toxin coregulated pilus (TCP) of Vibrio cholerae provide useful insights into the biogenesis of a type-4 pilus. Mutants in rfb affecting LPS O-antigen biosynthesis, and strains depleted of the cytoplasmic membrane-associated ATP-binding protein TcpT, provide contrasting TCP export-defective phenotypes acting at different locations. Mutants in the perosamine biosynthesis pathway of V. cholerae 569B result in an rfb phenotype with an LPS consisting only of core oligosaccharide and lipid A. Such strains are unable to assemble TCP, and TcpA subunits are found in the periplasm and membrane fractions. In both rfb and tcpT mutants, the export defect is specific and complete. TcpT is a member of a large family of cytoplasmic membrane-associated ATP-binding proteins which are essential in type-4 pilin systems and in many non-pilin outer membrane transporters in Gram-negative bacteria. The behaviour of translocation-arrested TcpA in rfb and tcpT mutants is indistinguishable from that within assembled pilus under a range of conditions including flotation in density gradients, chemical cross-linking, and detergent extraction experiments. From the data presently available, it would appear that TcpA requires TcpT-mediated translocation from the cytoplasmic membrane and that TcpT stabilizes the subunit at or immediately beyond this stage, before crossing the outer membrane.  相似文献   

5.
《Gene》1997,192(1):63-70
The toxin co-regulated pilus (TCP) has been identified as a critical colonization factor in both animal models and humans for Vibrio cholerae O1. The major pilin subunit, TcpA (and also TcpB), is similar to type-4 pilins but TCP probably more appropriately belongs to a sub-class which includes the bundle-forming pilus of enteropathogenic Escherichia coli. The genes for TCP biosynthesis and assembly are clustered with the exception of housekeeping functions such as TcpG (=DsbA, a periplasmic disulfide bond epimerase). The nt sequences from El Tor and classical strains show only minor differences corresponding to the major regulatory regions and in TcpA itself. These differences are thought to account for the alternate conditions required for expression of TCP by the two biotypes and the antigenic variation and lack of cross-protection. Aside from the TcpA only a few of the proteins have had their roles in TCP biogenesis defined. Regulation of TCP is controlled by the ToxR regulon via ToxT with a possible involvement of TcpP and the cAMP-CRP system. Experiments using the infant mouse cholera model have now shown that TCP is a colonization factor and protective antigen for both classical and El Tor O1 strains and in the O139 Bengal serotype and that the mannose-sensitive haemagglutinin pilus does not appear to play a comparable role.  相似文献   

6.
The toxin-coregulated pilus (TCP) of Vibrio cholerae is a type 4-related fimbrial adhesin and a useful model for the study of type 4 pilus biogenesis and related bacterial macromolecular transport pathways. Transposon mutagenesis of the putative perosamine biosynthesis genes in the rfb operon of V. cholerae 569B eliminates lipopolysaccharide (LPS) O-antigen biosynthesis but also leads to a specific defect in TCP export. Localization of TcpA is made difficult by the hydrophobic nature of this bundle-forming pilin, which floats anomalously in sucrose density gradients, but the processed form of TcpA can be found in membrane and periplasmic fractions prepared from these strains. While TcpA cannot be detected by surface immunogold labelling in transmission electron microscope preparations, EDTA pretreatment facilitates immunofluorescent antibody labelling of whole cells, and ultrathin cryosectioning techniques confirm membrane and periplasmic accumulation of TcpA. Salt and detergent extraction, protease accessibility, and chemical cross-linking experiments suggest that although TcpA has not been assembled on the cell surface, subunit interactions are otherwise identical to those within TCP. In addition, TcpA-mediated fucose-resistant hemagglutination of murine erythrocytes is preserved in whole-cell lysates, suggesting that TcpA has obtained its mature conformation. These data localize a stage of type 4 pilin translocation to the outer membrane, at which stage export failure leads to the accumulation of pilin subunits in a configuration similar to that within the mature fiber. Possible candidates for the outer membrane defect are discussed.  相似文献   

7.
Hermanns U  Sebbel P  Eggli V  Glockshuber R 《Biochemistry》2000,39(38):11564-11570
Assembly of type 1 pili from Escherichia coli is mediated by FimC, a periplasmic chaperone (assembly factor) consisting of two immunoglobulin-like domains. FimC is assumed to recognize the individual pilus subunits in the periplasm mainly via their conserved C-terminal segments and to deliver the subunits to an assembly platform in the outer membrane. Here we present the first biochemical characterization of a periplasmic pilus chaperone and analyze the importance of the two chaperone domains for stability and function. Comparison of the isolated C-terminal domain with wild-type FimC revealed a strongly reduced thermodynamic stability, indicating strong interdomain interactions. The affinity of FimC toward a peptide corresponding to the 11 C-terminal residues of the type 1 pilus adhesin FimH is at least 1000-fold lower compared to binding of intact FimH, confirming that bacterial pilus chaperones, unlike other chaperones, specifically interact with folded pilus subunits.  相似文献   

8.
Colonization of the human small intestine by Vibrio cholerae requires the type 4 toxin co-regulated pilus (TCP). Genes encoding the structure and biogenesis functions of TCP are organized within an operon located on the Vibrio Pathogenicity Island (VPI). In an effort to elucidate the functions of proteins involved in TCP biogenesis, in frame deletions of all of the genes within the tcp operon coding for putative pilus biogenesis proteins have been constructed and the resulting mutants characterized with respect to the assembly and function of TCP. As a result of this analysis, we have identified the product of one of these genes, tcpF, as a novel secreted colonization factor. Chromosomal deletion of tcpF yields a mutant that retains in vitro phenotypes associated with the assembly of functional TCP yet is severely attenuated for colonization of the infant mouse intestine. Furthermore, we have determined that the mechanism by which TcpF is translocated across the bacterial outer membrane requires the TCP biogenesis machinery and is independent of the type II extracellular protein secretion (EPS) system. These results suggest a dual role for the TCP biogenesis apparatus in V. cholerae pathogenesis and a novel mechanism of intestinal colonization mediated by a soluble factor.  相似文献   

9.
Colonization of the human small intestine by Vibrio cholerae is an essential step in pathogenesis that requires the type IV toxin-coregulated pilus (TCP). To date, three functions of TCP have been characterized: it serves as the CTXΦ receptor, secretes the colonization factor TcpF, and functions in microcolony formation by mediating bacterium-bacterium interactions. Although type IV pili in other pathogenic bacteria have been characterized as playing a major role in attachment to epithelial cells, there are very few studies to suggest that TCP acts as an attachment factor. Taking this into consideration, we investigated the function of TCP in attachment to Caco-2 cells and found that mutants lacking TCP were defective in attachment compared to the wild type. Overexpression of ToxT, the activator of TCP, significantly increased attachment of wild-type V. cholerae to Caco-2 cells. Using field-emission scanning electron microscopy (FESEM), we also observed TCP-mediated attachment to the small intestines of infected infant mice by using antibodies specific to TCP and V. cholerae. Remarkably, we also visualized matrices comprised of TCP appearing to engulf V. cholerae during infection, and we demonstrated that these matrices protected the bacteria from a component of bile, disclosing a possible new role of this pilus in protection of the bacterial cells from antimicrobial agents. This study provides new insights into TCP's function in V. cholerae colonization of the small intestine, describing additional roles in mediating attachment and protection of V. cholerae bacterial cells.  相似文献   

10.
The chaperone/usher (CU) pathway is a conserved bacterial secretion system that assembles adhesive fibres termed pili or fimbriae. Pilus biogenesis by the CU pathway requires a periplasmic chaperone and an outer membrane (OM) assembly platform termed the usher. The usher catalyses formation of subunit-subunit interactions to promote polymerization of the pilus fibre and provides the channel for fibre secretion. The mechanism by which the usher catalyses pilus assembly is not known. Using the P and type 1 pilus systems of uropathogenic Escherichia coli, we show that a conserved N-terminal disulphide region of the PapC and FimD ushers, as well as residue F4 of FimD, are required for the catalytic activity of the ushers. PapC disulphide loop mutants were able to bind PapDG chaperone-subunit complexes, but did not assemble PapG into pilus fibres. FimD disulphide loop and F4 mutants were able to bind chaperone-subunit complexes and initiate assembly of pilus fibres, but were defective for extending the pilus fibres, as measured using in vivo co-purification and in vitro pilus polymerization assays. These results suggest that the catalytic activity of PapC is required to initiate pilus biogenesis, whereas the catalytic activity of FimD is required for extension of the pilus fibre.  相似文献   

11.
The pathogenesis of cholera begins with colonization of the host intestine by Vibrio cholerae . The toxin co-regulated pilus (TCP), a fimbrial structure produced by V . cholerae , is absolutely required for colonization (i.e. the persistence, survival and growth of V . cholerae in the upper intestinal milieu), but many other aspects of the colonization process are not well understood. In this study, we use signature-tagged transposon mutagenesis (STM) to conduct a screen for random insertion mutations that affect colonization in the suckling mouse model for cholera. Of approximately 1100 mutants screened, five mutants (approximately 0.5%) with transposon insertions in TCP biogenesis genes were isolated, validating the use of STM to identify attenuated mutants. Insertions in lipopolysaccharide, biotin and purine biosynthetic genes were also found to cause colonization defects. Similar results were observed for mutations in homologues of pta and ptfA , two genes involved in phosphate transfer. Finally, our screen identified several novel genes, disruption of which also caused colonization defects in the mouse model. These results demonstrate that STM is a powerful method for isolating colonization-defective mutants of V . cholerae .  相似文献   

12.
Capitani G  Eidam O  Grütter MG 《Proteins》2006,65(4):816-823
Many pathogenic bacteria possess adhesive surface organelles (called pili), anchored to their outer membrane, which mediate the first step of infection by binding to host tissue. Pilus biogenesis occurs via the "chaperone-usher" pathway: the usher, a large outer membrane protein, binds complexes of a periplasmic chaperone with pilus subunits, unloads the subunits from the chaperone, and assembles them into the pilus, which is extruded into the extracellular space. Ushers comprise an N-terminal periplasmic domain, a large transmembrane beta-barrel central domain, and a C-terminal periplasmic domain. Since structural data are available only for the N-terminal domain, we performed an in-depth bioinformatic analysis of bacterial ushers. Our analysis led us to the conclusion that the transmembrane beta-barrel region of ushers contains a so far unrecognized soluble domain, the "middle domain", which possesses a beta-sandwich fold. Two other bacterial beta-sandwich domains, the TT0351 protein from Thermus thermophilus and the carbohydrate binding module CBM36 from Paenibacillus polymyxa, are possible distant relatives of the usher "middle domain". Several mutations reported to abolish in vivo pilus formation cluster in this region, underlining its functional importance.  相似文献   

13.
Type IV pili are multifunctional filaments displayed on many bacterial pathogens. Members of the Type IVa pilus subclass are found on a diverse group of human pathogens, whereas Type IVb pili are found almost exclusively on enteric bacteria. The Type IVa and IVb subclasses are distinguished by differences in the pilin subunits, including the fold of the globular domain. To understand the implications of the distinct pilin folds, we compared the stabilities of pilin subunits and pilus filaments for the Type IVa GC pilus from Neisseria gonorrhoeae and the Type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae. We show that while recombinant TCP pilin is more stable than GC pilin, the GC pili are more resistant to proteolysis, heat and chemical denaturation than TCP, remaining intact in 8?M urea. To understand these differences, we determined the TCP structure by electron microscopy and three-dimensional image reconstruction. TCP have an architecture similar to that of GC pili, with subunits arranged in a right-handed 1-start helix and related by an 8.4-? axial rise and a 96.8° azimuthal rotation. However, the TCP subunits are not as tightly packed as GC pilins, and the distinct Type IVb pilin fold exposes a segment of the α-helical core of TCP. Hydrophobic interactions dominate for both pilus subtypes, but base stacking by aromatic residues conserved among the Type IVa pilins may contribute to GC pilus stability. The extraordinary stability of GC pili may represent an adaptation of the Type IVa pili to harsh environments and the need to retract against external forces.  相似文献   

14.
Vibrio cholerae relies on two main virulence factors—toxin-coregulated pilus (TCP) and cholera toxin—to cause the gastrointestinal disease cholera. TCP is a type IV pilus that mediates bacterial autoagglutination and colonization of the intestine. TCP is encoded by the tcp operon, which also encodes TcpF, a protein of unknown function that is secreted by V. cholerae in a TCP-dependent manner. Although TcpF is not required for TCP biogenesis, a tcpF mutant has a colonization defect in the infant mouse cholera model that is as severe as a pilus mutant. Furthermore, TcpF antisera protect against V. cholerae infection. TcpF has no apparent sequence homology to any known protein. Here, we report the de novo X-ray crystal structure of TcpF and the identification of an epitope that is critical for its function as a colonization factor. A monoclonal antibody recognizing this epitope is protective against V. cholerae challenge and adds to the protection provided by an anti-TcpA antibody. These data suggest that TcpF has a novel function in V. cholerae colonization and define a region crucial for this function.  相似文献   

15.
The toxin-coregulated pilus (TCP) of Vibrio cholerae is required for intestinal colonization and cholera toxin acquisition. Here we report that TCP mediates bacterial interactions required for biofilm differentiation on chitinaceous surfaces. We also show that undifferentiated TCP- biofilms have reduced ecological fitness and, thus, that chitin colonization may represent an ecological setting outside the host in which selection for a host colonization factor may take place.  相似文献   

16.
SetB was identified as a high-copy suppressor of the partition defect of a mutation in parC, encoding one of the subunits of topoisomerase IV. Deletion of this integral inner membrane protein causes a delay in chromosome segregation, whereas its overproduction causes nucleoid disintegration and stretching, leading to a cell division defect. setB deletion mutants also exhibit a synthetic phenotype when combined with mutations that delete the C-terminal motor domain of the septal ring protein FtsK. SetB localizes in the cell as a helix and interacts with MreB, the bacterial actin homologue, which also forms a helix. These observations suggest that there may be a link between chromosome segregation and cellular infrastructure.  相似文献   

17.
The chaperone/usher system is one of the best characterized pathways for protein secretion and assembly of cell surface appendages in Gram-negative bacteria. In particular, this pathway is used for biogenesis of the P pilus, a key virulence factor used by uropathogenic Escherichia coli to adhere to the host urinary tract. The P pilus individual subunits bound to the periplasmic chaperone PapD are delivered to the outer membrane PapC usher, which serves as an assembly platform for subunit incorporation into the pilus and secretion of the pilus fiber to the cell surface. PapC forms a dimeric, twin pore complex, with each monomer composed of a 24-stranded transmembrane β-barrel channel, an internal plug domain that occludes the channel, and globular N- and C-terminal domains that are located in the periplasm. Here we have used planar lipid bilayer electrophysiology to characterize the pore properties of wild type PapC and domain deletion mutants for the first time. The wild type pore is closed most of the time but displays frequent short-lived transitions to various open states. In comparison, PapC mutants containing deletions of the plug domain, an α-helix that caps the plug domain, or the N- and C-terminal domains form channels with higher open probability but still exhibiting dynamic behavior. Removal of the plug domain results in a channel with extremely large conductance. These observations suggest that the plug gates the usher channel closed and that the periplasmic domains and α-helix function to modulate the gating activity of the PapC twin pore.  相似文献   

18.
Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT) and the toxin-coregulated pilus (TCP). CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA) is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB) to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an effective multivalent subunit vaccine against V. cholerae.  相似文献   

19.
PilT is a hexameric ATPase required for bacterial type IV pilus retraction and surface motility. Crystal structures of ADP- and ATP-bound Aquifex aeolicus PilT at 2.8 and 3.2 A resolution show N-terminal PAS-like and C-terminal RecA-like ATPase domains followed by a set of short C-terminal helices. The hexamer is formed by extensive polar subunit interactions between the ATPase core of one monomer and the N-terminal domain of the next. An additional structure captures a nonsymmetric PilT hexamer in which approach of invariant arginines from two subunits to the bound nucleotide forms an enzymatically competent active site. A panel of pilT mutations highlights the importance of the arginines, the PAS-like domain, the polar subunit interface, and the C-terminal helices for retraction. We present a model for ATP binding leading to dramatic PilT domain motions, engagement of the arginine wire, and subunit communication in this hexameric motor. Our conclusions apply to the entire type II/IV secretion ATPase family.  相似文献   

20.
Understanding the structural biology of type IV pili, fibres responsible for the virulent attachment and motility of numerous bacterial pathogens, requires a detailed understanding of the three-dimensional structure and chemistry of the constituent pilin subunit. X-ray crystallographic refinement of Neisseria gonorrhoeae pilin against diffraction data to 2.6 A resolution, coupled with mass spectrometry of peptide fragments, reveals phosphoserine at residue 68. Phosphoserine is exposed on the surface of the modelled type IV pilus at the interface of neighbouring pilin molecules. The site-specific mutation of serine 68 to alanine showed that the loss of the phosphorylation alters the morphology of fibres examined by electron microscopy without a notable effect on adhesion, transformation, piliation or twitching motility. The structural and chemical characterization of protein phosphoserine in type IV pilin subunits is an important indication that this modification, key to numerous regulatory aspects of eukaryotic cell biology, exists in the virulence factor proteins of bacterial pathogens. These O-linked phosphate modifications, unusual in prokaryotes, thus merit study for possible roles in pilus biogenesis and modulation of pilin chemistry for optimal in vivo function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号