首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Thermus thermophilus HB8 mdh and ldh genes and the T. aquaticus EP00276 nox and mdh genes encoding the biotechnologically important enzymes NADH oxidase (EC 1.6.99.3), malate dehydrogenase (EC 1.1.1.37) and lactate dehydrogenase (EC 1.1.1.27) were cloned on the basis of known sequences from related species using the polymerase chain reaction. The nox and mdh genes were directly placed under the control of regulatory expression elements from Escherichia coli. When the 5'-portions of the re-cloned nox gene and the mdh gene of T. thermophilus HB8 were simultaneously altered, enzyme yields of 18–42% of the total soluble cellular protein were obtained as compared to 2–6% obtained from the unchanged genes. The high overproduction level upon the alterations can be explained by the occurrece of additional potential base pairs between nucleotides in the mRNA downstream of the start codon (downstream box) and the 16S rRNA. An universal translation initiation sequence providing such strong interactions may be of general use for high overproduction levels. Correspondence to: R. Kreutzer  相似文献   

2.
《Anaerobe》1999,5(5):539-546
Brachyspira (Serpulina) hyodysenteriae cells consume oxygen during growth under a 1%O2:99%N2atmosphere. A major mechanism of O2metabolism by this anaerobic spirochete is the enzyme NADH oxidase (EC 1.6.99.3). In these investigations, the NADH oxidase gene (nox) of B. hyodysenteriae strain B204 was cloned, expressed in Escherichia coli, and sequenced. By direct cloning of aHind III-digested DNA fragment which hybridized with a nox DNA probe and by amplification of B204 DNA through the use of inverse PCR techniques, overlapping portions of the nox gene were identified and sequenced. The nox gene and flanking chromosome regions (1.7 kb total) were then amplified and cloned into plasmid pCRII. Lysates of E. coli cells transformed with this recombinant plasmid expressed NADH oxidase activity (1.1 μmol NADH oxidized/min/mg protein) and contained a protein reacting with swine antiserum raised against purified B. hyodysenteriae NADH oxidase. The nox ORF (1.3 kb) encodes a protein with a predicted molecular mass of 50 158 kDa. The B. hyodysenteriae NADH oxidase shares significant (46%) amino acid sequence identity and common functional domains with the NADH oxidases of Enterococcus faecalis and Streptococcus mutans, suggesting a common evolutionary origin for these proteins. Cloning of the B. hyodysenteriae nox gene is an important step towards the goal of generating B. hyodysenteriae mutant strains lacking NADH oxidase and for investigating the significance of NADH oxidase in the physiology and pathogenesis of this anaerobic spirochete.  相似文献   

3.
The sequence of the 32 N-terminal amino acids of the NADH oxidase from the extreme thermophile, Thermus thermophilus HB8, was used to synthesize oligonucleotides to probe for the respective gene in a genomic library of T. thermophilus HB8. The gene encoding the NADH oxidase, designated nox, was cloned, its nucleotide sequence was determined and found to be colinear with the N-terminal sequence of the enzyme. The molecular mass of 26835 Da, as deduced from the nox gene, agrees with that of the purified NADH oxidase from T. thermophilus HB8 (25,000 Da), as estimated by polyacrylamide gel electrophoresis under denaturing conditions. The nox gene was overexpressed in Escherichia coli and a protocol for the rapid purification of the enzyme was developed. The E. coli-borne T. thermophilus HB8 NADH oxidase has properties identical to those of the authentic T. thermophilus HB8 enzyme and possesses a high thermal stability.  相似文献   

4.
The biological function of thermostable P450 monooxygenase CYP175A1 from Thermus thermophilus HB27 was studied by functional complementation in Escherichia coli. The gene product of CYP175A1 added hydroxyl groups to both rings of -carotene to form zeaxanthin (,-carotene-3,3-diol) in E. coli, which produces -carotene due to the Erwinia uredovora carotenoid biosynthesis genes. In addition, spectroscopic methods revealed that E. coli carrying CYP175A1 and the cDNA of the Haematococcus pluvialis carotene ketolase was able to synthesise hydroxyechinenone. The predicted amino acid sequence of the enzyme from T. thermophilus does not show substantial similarity with other known -carotene hydroxylases, but 41% with the cytochrome P450 monooxygenase from Bacillus megaterium (CYP102A1, P450 BM3). It is concluded that CYP175 A1 represents a new type of -carotene hydroxylase of the P450 superfamily.  相似文献   

5.
The trpE gene of Thermus thermophilus HB8 was cloned by complementation of an Escherichia coli tryptophan auxotroph. The E. coli harboring the cloned gene produced the anthranilate synthase I, which was heat-stable and enzymatically active at higher temperature. The nucleotide sequence of the trpE gene and its flanking regions was determined. The trpE gene was preceded by an attenuator-like structure and followed by the trpG gene, with a short gap between them. No other gene essential for tryptophan biosynthesis was observed after the trpG gene. The amino-acid sequences of the T. themophilus anthranilate synthase I and II deduced from the nucleotide sequence were compared with those of other organisms.  相似文献   

6.
细菌nox基因编码合成一种含核黄素的NADH氧化酶,NADH氧化酶可催化双原子氧还原为H2O2或H2O,同时将NADH氧化为NAD+。该反应发生在多种代谢途径中,从而对细菌的氧化应激、菌膜形成、毒力调控及代谢产物生成等生理生化过程产生一系列影响。目前对高等动植物体中的nox基因及其编码的NADH氧化酶已有较深入的研究,但近年来一些研究表明,细菌nox基因的功能及作用通路与动植物体存在较大差异,因此,有必要详细了解细菌中nox基因和NADH氧化酶的具体作用机制及其对细胞产生的影响。综合分析近年来细菌nox基因及NADH氧化酶的研究成果,结合我们的研究,对目前存在的问题和未来的发展进行综述。  相似文献   

7.
The thermophilic bacterium Thermus thermophilus HB8 has been characterized as a polyhydroxybutyrate (PHB)-degrading microorganism since it grows efficiently and forms clear zones on agar plates containing PHB as sole carbon source. T. thermophilus extracellular PHB depolymerase was purified to homogeneity using an affinity chromatography protocol. The purified enzyme was estimated to have an apparent molecular mass of 42 kDa. The extracellular PHB depolymerase gene was identified as the TTHA0199 gene product of T. thermophilus HB8. The amino acid sequence of the TTHA0199 gene product shared significant homologies to other carboxylesterases. A catalytic triad was identified consisting of S183, E310, and H405. A pentapeptide sequence (GX1SX2G) exists within the molecule, characteristic for PHB depolymerases (lipase box) and for other serine hydrolases. Purified extracellular PHB depolymerase was stable at high temperatures with an optimum activity at pH 8.0. The apparent Km value of the purified enzyme for PHB was 53 μg/ml. As the main product of the enzymic hydrolysis of PHB, the monomer 3-hydroxybutyrate was identified, suggesting that the enzyme acts principally as an exo-type hydrolase.  相似文献   

8.
Methylmalonyl-CoA epimerase (MCE) from the hyperthermophilic archaeon, Pyrococcus horikoshii, was expressed at high levels in Escherichia coli, purified, and partially characterized. The P. horikoshii MCE enzyme was a homodimer with an apparent molecular mass of 31,700 Da. The K m of the enzyme for methylmalonyl-CoA was 79 M and the k cat was 240 s–1. The P. horikoshii enzyme was extremely heat-stable and withstood boiling for 60 min without detectable loss in activity.  相似文献   

9.
The gene encoding l-lactate dehydrogenase (LDH) was cloned from an industrial dairy strain of Streptococcus thermophilus M-192 using a synthetic oligonucleotide probe based on the N-terminal amino acid sequence of the purified enzyme, and its nucleotide sequence was determined. The enzyme was deduced to have 328 amino acid residues with a molecular weight of 35,428 and found to have high sequence similarity to LDHs from other lactic acid bacteria (89.0% to Streptococcus mutans, 76.3% to Lactococcus lactis subsp. lactis, 67% to Lactobacillus casei, and 60% to Lactobacillus plantarum). The gene contained a promoter-like sequence similar to the Escherichia coli promoter consensus, and expression of the S. thermophilus LDH gene was observed in E. coli cells.  相似文献   

10.
Orotidine-5-monophosphate decarboxylase (OMPdecase) catalyzes the final step in pyrimidine biosynthesis, the conversion of orotidine-5-monophosphate (OMP) to uridine-5-monophosphate. ThepyrF gene, encoding OMPdecase, was isolated from a chromosomal library ofPseudomonas aeruginosa PAO1 by screening for complementation of anEscherichia coli and aP. aeruginosa pyrF mutant. The nucleotide sequence of a 2510-bp chromosomal DNA fragment, complementing both strains, was determined (EMBL accession number X65613). On this a 696-bp open reading frame capable of encoding the 24 kDa OMPdecase was identified. Despite a generally good correspondence to other OMPdecase sequences, theP. aeruginosa gene was unique in that it did not constitute part of an operon. ThepyrF gene was amplified by polymerase chain reaction, overexpressed in the pT7-7/E. coli BL21(DE3) system and purified to near electrophoretic homogeneity by anion exchange chromatography. Characterization of the purified enzyme revealed the following data, aK m value for OMP of 9.91 M and an isoelectric point of 6.65. No major decrease in enzyme activity was observed in a pH range between 7.8 and 10.2. Gel electrophoresis under nondenaturing conditions suggested that the native form of OMPdecase is the dimer.  相似文献   

11.
The cloning vector pMK18 was developed through the fusion of the minimal replicative region from an indigenous plasmid of Thermus sp. ATCC27737, a gene cassette encoding a thermostable resistance to kanamycin, and the replicative origin and multiple cloning site of pUC18. Plasmid pMK18 showed transformation efficiencies from 108 to 109 per microgram of plasmid in Thermus thermophilus HB8 and HB27, both by natural competence and by electroporation. We also show that T. thermophilus HB27 can take pMK18 modified by the Escherichia coli methylation system with the same efficiency as its own DNA. To demonstrate its usefulness as a cloning vector, a gene encoding the β-subunit of a thermostable nitrate reductase was directly cloned in T. thermophilus HB27 from a gene library. Its further transfer to E. coli also proved its utility as a shuttle vector.  相似文献   

12.
A DNA sequence encodingN-acylamino acid racemase (AAR) was inserted downstream from the T7 promoter in pET3c. The recombinant plasmid was introduced intoEscherichia coli MM194 lysogenized with a bacteriophage having a T7 RNA polymerase gene. The amount of AAR produced by theE. coli transformant was 1100-fold more than that produced byAmycolatopsis sp. TS-1-60, the DNA donor strain. The AAR was purified to homogeneity from the crude extract of theE. coli transformant by two steps: heat treatment and Butyl-Toyopearl column chromatography. Bioreactors for the production of optically active amino acids were constructed with DEAE-Toyopearl-immobilized AAR andd- orl-aminoacylase.d- orl-methionine was continuously produced with a high yield fromN-acetyl-dc-methionine by the bioreactor.  相似文献   

13.
The pmm gene from Vibrio furnissii, which encodes phosphomannomutase (PMM), was cloned and sequenced. The open reading frame consisted of 1,434 bp, encoding a polypeptide of 477 amino acids with a molecular mass of 53,325 Da. The predicted amino acid sequence of V. furnissii PMM showed high similarity with PMMs from other enteric bacteria, such as V. cholerae, Salmonella sp. and Escherichia coli. The PMM protein was overexpressed in E. coli as a His6-tagged recombinant protein. The estimated apparent Km and kcat values of the purified recombinant protein for mannose 1-phosphate were about 60 M and 800 min–1, respectively. To investigate the biochemical functions and the role of pmm in the virulence of V. furnissii, a pmm knock-out mutant was constructed by homologous recombination mutation. Under the various physical conditions, cell numbers of the wild-type and the mutant did not differ. Oral introduction of bacterial suspensions to a mouse model showed that the pmm-deficient mutant decreased in viability at the intestine. Microscopy of the isolated intestines from mice revealed significant damage after 3 days in intestinal mucosa infected with the wild-type as compared with the mutant. The pmm-deficient mutant caused a reduction of virulence in mice and the loss of O-antigen polysaccharide, and showed low resistance relative to the wild-type when incubated with normal human serum.  相似文献   

14.
TherglB gene ofEscherichia coli codes for a restriction activity that cleaves the hydroxymethylated DNA of T2 and T4 phages. Earlier mapping data placed the gene at 98.39 min counterclockwise to thehsd operon. Genetic analysis of the in vivo gene fusions with fusion-transducing phages established the location of therglB gene next to thehsdS gene of thehsdRMS cluster. The methodology used in this study could be extended to similar in vivo physical mapping of closely linked genes.  相似文献   

15.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 mol NADH oxidized min–1 mg–1 protein. Apparent Km values for NADH and O2 were determined to be 7.5 M and 85 M, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85°C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.  相似文献   

16.
A novel sulfite oxidase has been identified from Thermus thermophilus AT62. Despite this enzyme showing significant amino-acid sequence homology to several bacterial and eukaryal putative and identified sulfite oxidases, the kinetic analysis, performed following the oxidation of sulfite and with ferricyanide as the electron acceptor, already pointed out major differences from representatives of bacterial and eukaryal sources. Sulfite oxidase from T. thermophilus, purified to homogeneity, is a monomeric enzyme with an apparent molecular mass of 39.1 kDa and is almost exclusively located in the periplasm fraction. The enzyme showed sulfite oxidase activity only when ferricyanide was used as electron acceptor, which is different from most of sulfite-oxidizing enzymes from several sources that use cytochrome c as co-substrate. Spectroscopic studies demonstrated that the purified sulfite oxidase has no cytochrome like domain, normally present in homologous enzymes from eukaryotic and prokaryotic sources, and for this particular feature it is similar to homologous enzyme from Arabidopsis thaliana. The identified gene was PCR amplified on T. thermophilus AT62 genome, expressed in Escherichia coli and the recombinant protein identified and characterized.  相似文献   

17.
18.
Summary A compilation of nucleic acid sequences fromE.coli and its phages has been analysed for the frequency of occurrence of nearest neighbour base doublets and codons. Several statistically significant deviations from random are found in both doublet and codon frequencies. The deviations inE.coli also appear to occur in and in the coat protein gene of MS2, whereas T4 and other parts of the MS2 genome show different sequence properties. These and other findings are discussed in relation to the hypothesis that rapidity of translation of mRNAs in theE. coli system is dependent on doublet frequency and codon usage patterns.  相似文献   

19.
The nucleotide sequence of a 1.46 kb cDNA, selected from a human liver library by the expression of fumarase antigenic determinants, was determined using the dideoxy chain termination method. The cDNA contained an open reading frame extending from the extreme 5-base and coding for a protein with 468 amino acids. This protein, with the exception of an N-terminal methionine, was identified as mitochondrial fumarase. The protein showed a high degree of identity of structure with the fumarase fromBacillus subtilis (56.6 %) and a fumarase fromEscherichia coli (product of thefumC gene, 59.3 %), and a lower degree of identity with the aspartase ofE. coli (37.2 %).  相似文献   

20.
AvaI andBsoBI restriction endonucleases are isoschizomers which recognize the symmetric sequence 5CYCGRG3 and cleave between the first C and second Y to generate a four-base 5 extension. TheAvaI restriction endonuclease gene (avaIR) and methylase gene (avaIM) were cloned intoEscherichia coli by the methylase selection method. TheBsoBI restriction endonuclease gene (bsoBIR) and part of theBsoBI methylase gene (bsoBIM) were cloned by the endo-blue method (SOS induction assay), and the remainder ofbsoBIM was cloned by inverse PCR. The nucleotide sequences of the two restriction-modification (RM) systems were determined. Comparisons of the predicted amino acid sequences indicated thatAvaI andBsoBI endonucleases share 55% identity, whereas the two methylases share 41% identity. Although the two systems show similarity in protein sequence, their gene organization differs. TheavaIM gene precedesavaIR in theAvaI RM system, while thebsoBIR gene is located upstream ofbsoBIM in theBsoBI RM system. BothAvaI andBsoBI methylases contain motifs conserved among the N4 cytosine methylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号