共查询到20条相似文献,搜索用时 15 毫秒
1.
Eva M. Kubicek-Pranz Martin Steiner Christian P. Kubicek 《FEMS microbiology letters》1990,68(3):273-278
Crystalline cellulase has been electrochemically oxidized to yield preparations containing various different percentages of oxidized end-groups. These celluloses have been used as carbon sources for growth and cellulase production by Trichoderma reesei . A low content of oxidized end groups in the celluloses (0.1–0.65%) stimulated cellulase production but not growth, whereas higher contents (> 1%) where inhibitory to both. The cellulolytic enzyme system secreted under stimulated conditions contained the same proportion of individual cellulase enzymes (cellobiohydrolase I and II, endoglucanase I) as the control, indicating a general stimulatory effect of oxidized cellulose. Activity of cellulases against oxidized celluloses in vitro was not stimulated, and only slightly inhibitory at high degrees of oxidation. The data support a potential role of cellulose oxidation in regulating cellulase formation by T. reesei . 相似文献
2.
The reaction of cellulose with a mixture of HNO3/H3PO4–NaNO2 (2:1:1.4, v/v/%w) at room temperature for different time intervals has been investigated to produce oxidized cellulose (OC), a biocompatible and bioresorbable polymer. The results revealed an increase in carboxyl content of OC with increasing reaction time, corresponding to about 8.0, 13.4, 17.4 and 18.4% carboxyl content after 12, 24, 36, and 48 h, respectively. The yield of OC ranged between 75 and 81%. The use of different ratios of HNO3 and H3PO4, (11:1, 4:1, 2:1, 1:1, 1:2, and 1:4; v/v), in the reaction had no significant effect on the carboxyl content and yield of the OC products. All products, as produced, were low crystallinity (27–35%) fibrous materials. The length of fibers decreased with increasing reaction time. After ball milling for 24 h, the length of fibers further decreased and products converted into a fine powder consisting of small fibers and aggregated non-fibrous particles. The degrees of polymerization (DP) of the OC products produced after 12, 24, and 48 h of reaction duration were 81, 63, and 53, respectively. After ball milling for 24 h, the corresponding values changed to 57, 51 and 46. However, no significant change in the crystallinity of the products was noted after ball milling. The TGA results showed the OC products to be less thermally stable than cellulose. The degradation temperature appears to decrease with increasing carboxyl content. In conclusion, the results show that the low crystallinity OC products can be successfully prepared in high yields and with different levels of carboxyl content from cellulose by treatment with a mixture of HNO3/H3PO4–NaNO2. 相似文献
3.
Margarita Burguera-Pascu Alberto Rodríguez-Archilla Pilar Baca 《Journal of trace elements in medicine and biology》2007,21(2):92-101
The antimicrobial efficacy of zinc (Zn) salts (sulfate and acetate) against Streptococcus mutans (S. mutans) present in the oral cavity was tested in this study. The substantivity of Zn salts was assessed by determining the concentration of Zn in whole, unstimulated saliva and by measuring the magnitude of suppression of salivary S. mutans, 2h after rinsing. The concentration of Zn was measured by atomic absorption spectrometry (AAS) with electrothermal atomization (ET AAS) in saliva sampled before (basal) and 24h after mouth rinsing with different concentrations of Zn (0.1%, 0.5% and 1%) administrated as sulfate and acetate. The estimation of Zn levels in samples collected 30, 60, 90 and 120 min after rinsing was carried out by AAS with flame atomization (FAAS). Immediately after rinsing, the concentration of Zn in saliva sharply increased with respect to the baseline values (0.055+/-0.017 mg/L), followed by a sustained decrease, probably due to clearance of salivary flow or swallowing during sampling. A significant reduction (>87%) in the total mean S. mutans counts was found 2h after rinsing either with sulfate or acetate solutions, as evidence of the high substantivity and effectiveness of the Zn salts tested. A statistically significant inverse relationship (p<0.001 and the Pearson correlation coefficients between -34% and -50%) was found between Zn levels and the respective pH values measured in the samples collected 60 and 120 min after rinsing, sustaining the theory of bacterial glycolysis inhibition. 相似文献
4.
目的 体外评价甘草提取物对牙龈卟啉单胞菌、中间普氏菌、具核梭杆菌和伴放线放线杆菌四种牙周常见致病菌的抑制效果。方法 以牙龈卟啉单胞菌、中间普氏菌、具核梭杆菌和伴放线放线杆菌四种牙周常见致病菌作为供试菌,采用液体稀释法,考察甘草提取物对这四种细菌的最小抑菌浓度(MIC)和最小杀菌浓度(MBC);并采用不同浓度的甘草提取物溶液,绘制甘草提取物对四种牙周致病菌的时间‒杀菌曲线。结果 甘草提取物对牙龈卟啉单胞菌、中间普氏菌、具核梭杆菌和伴放线放线杆菌的MIC值分别为1.50、1.50、0.75和1.50 mg/mL,MBC值分别为6、3、3和3 mg/mL。当甘草提取物达到对四种细菌的MBC值时,对于牙龈卟啉单胞菌、中间普氏菌、伴放线放线杆菌可在2 h后可达到杀菌效果,对于具核梭杆菌可在4 h后达到杀菌效果。结论 甘草提取物对以上四种牙周常见致病菌具有良好的抑菌及杀菌作用。 相似文献
5.
Bülent Çetin Hakan Özer Ahmet Çakir Ebru Mete Murat Tosun Erdoğan Öztürk Taşkın Polat Ali Kandemir 《化学与生物多样性》2009,6(12):2302-2310
The oil obtained by hydrodistillation from the aerial parts of Artemisia incana (L.) Druce from Turkey was analyzed by GC and GC/MS. Sixty‐three compounds were characterized, representing 97.2% of the total components detected, and camphor (19.0%), borneol (18.9%), 1,8‐cineole (14.5%), bornyl acetate (7.8%), camphene (4.9%), and α‐thujone (4.8%) were identified as predominant components. The essential oil was also tested for its antimicrobial activity against 44 different foodborne microorganisms, including 26 bacteria, 15 fungi, and 3 yeast species. The essential oil of A. incana exhibited considerable inhibitory effects against all bacteria, fungi, and yeast species tested. However, the oil showed lower inhibitory activity against the tested bacteria than the reference antibiotics. 相似文献
6.
Surgical sutures play important role during the wound healing of the surgical sites which are known to be sensitive to microbial infections. Silver nanoparticles (AgNPs) have been recently used as promising agents against multiple-drug resistant microorganisms. This study was designed to coat the sutures with silver nanoparticles obtained via a green synthesis approach. Microbial-mediated biological synthesis of AgNPs were carried out ecofriendly using Streptomyces sp. AU2 cell-free extract and deposited on silk sutures through an in situ process. Sutures coated with biosyntehsized AgNP (bio-AgNP coated sutures) were characterized using Scanning Electron Microscopy (SEM) and elemantal analysis were carried out using Energy Dispersive X-ray Spectroscopy (EDS). The silver amount released by the bio-AgNP coated sutures was calculated by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) throughout a degradation process. Antimicrobial potential of the bio-AgNP coated sutures was determined against common pathogenic microorganisms Candida albicans, Escherichia coli and Staphylococcus aureus. To determine the biocompatibility/cytotoxicty of the bio-AgNP coated sutures, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay was used through an indirect test method; that the elutions obtained by the extraction of the sutures at 1, 4, 8 and 10. days and were placed in contact with 3T3 fibroblast cell culture. To best of our knowledge, this is the first report about coating of the nonabsorbable silk sutures with silver nanoparticles biosynthesized using a microbial extract. 相似文献
7.
《Bioorganic & medicinal chemistry letters》2020,30(13):127234
Here we report the synthesis and biological evaluation of a series of new 2-hydroxybenzylphosphonium salts (QPS) with antimicrobial and antitumor dual action. The most active compounds exhibit antimicrobial activity at a micromolar level against Gram-positive bacteria Sa (ATCC 209p and clinical isolates), Bc (1–2 μM) and fungi Tm and Ca, and induced no notable hemolysis at MIC. The change in nature of substituents of the same length led to a drastic change of biological activity. Self-assembly behavior of the octadecyl and oleyl derivatives was studied. QPS demonstrated self-assembly within the micromolar range with the formation of nanosized aggregates capable of the solubilizing hydrophobic probe. The synthesized phosphonium salts were tested for cytotoxicity. The most potent salt was active against on M−Hela cell line with IC50 on the level of doxorubicin and good selectivity. According to the cytofluorimetry analysis, the salts induced mitochondria-dependent apoptosis. 相似文献
8.
R. S. Shetty R. S. Singhal P. R. Kulkarni 《World journal of microbiology & biotechnology》1994,10(2):232-233
Fungal (Aspergillus and Penicillium spp.) and yeast (Saccharomyces and Candida spp.) cultures were more sensitive to cumin volatile oil and cuminaldehyde than bacteria. Among Gram-negative bacteria, Escherichia coli was the most sensitive to the volatile oil while Pseudomonas aeruginosa was the most resistant. Staphylococcus aureus had an MIC almost double that of all other Gram-positive species tested, while the fungi had MIC values 10 to 20 times lower than those of the bacteria.The authors are with the Food & Fermentation Technology Division, University Department of Chemical Technology, Matunga, Bombay-400019, India 相似文献
9.
van Waasbergen LG Fajdetic I Fianchini M Rasika Dias HV 《Journal of inorganic biochemistry》2007,101(8):1180-1183
Highly fluorinated tris(pyrazolyl)borates were tested for their antimicrobial activity against various bacterial species. Both the silver(I) tris(pyrazolyl)borate [HB(3,5-(CF(3))(2)Pz)(3)]Ag(THF) (THF=tetrahydrofuran) and the sodium analog [HB(3,5-(CF(3))(2)Pz)(3)]Na(THF) appeared highly effective at inhibiting the growth of two different species of Gram-positive bacteria (i.e. being 12 and 21 fold more effective, respectively, (on a molar basis, based on the minimum inhibitory concentrations) against Staphylococcus aureus than silver sulfadiazine, a currently used silver antimicrobial). This suggests that the ligand portion of these molecules is responsible for the observed high effectiveness against the Gram-positive species. Furthermore, it appeared that the fluorinated substituents on the tris(pyrazolyl)borate were important for this high level of growth inhibition. Against two species of Gram-negative bacteria, including Pseudomonas aeruginosa, the fluorinated silver(I) tris(pyrazolyl)borate exhibited a moderate level of growth inhibition (similar to that of silver sulfadiazine), while the sodium analog showed very little ability to inhibit growth, indicating that for the Gram-negative species, the apparent responsible antimicrobial portion is the silver ion. 相似文献
10.
Partially neutralized aqueous dispersions of oxidized cellulose (OC) (COOH content 24.2%; degree of neutralization [DN] 0.22-0.44; solid content 14.4% wt/wt), a biocompatible biodegradable polymer, were prepared and their use to entrap an amine drug was demonstrated. Phenylpropanolamine hydrochloride (PPA.HCl) was used as a model drug. OCA-PPA complexes were prepared by adding the drug solution to the OC dispersion. Light microscopy, powder x-ray diffractometry (PXRD), and Fourier-transform infrared (FT-IR) spectroscopy were used to characterize hydrated and dried OC and the OC-PPA complexes. Drug loading and drug-loading efficiency were calculated from high-performance liquid chromatography. Light microscopy revealed the partially neutralized OC to exist as swollen fibers in the dispersion. The degree of swelling increased with increasing DN of the OC. All dispersions, irrespective of DN, showed a pseudo-plastic flow. The drug loading (12.6%-26.7%) and drug-loading efficiency (30%-48%) increased linearly with increasing DN and drug concentration. The PXRD of the OC-PPA complexes showed no diffraction peaks due to PPA, suggesting that the drug exists in the amorphous state. The FT-IR spectra of the complexes revealed the presence of an ionic linkage between OC and PPA. In conclusion, the results show that the aqueous OC dispersions can be used to molecularly entrap amine drugs to produce an OC-drug complex linked via an ionic linkage. 相似文献
11.
Summary Some new hydrazinium salts of 2-pyrazinecarboxylate, 2,3-pyrazinedicarboxylate, 3,5-pyrazoledicarboxylate and 4,5-imidazoledicarboxylate have been prepared. The in vitro antibacterial screening of the free acids and their hydrazinium salts has been carried out against Escherichia coli, Salmonella typhiiand Vibrio cholerae. The antibacterial activities of the prepared hydrazinium salts show more promising activity than the corresponding free acids and the standard positive control antibiotic, Co-trimoxazole. 相似文献
12.
为探讨磷脂酰丝氨酸(phosphatidylserine,PS)外翻和磷脂氧化在凋亡细胞被吞噬细胞清除中的作用,用脂质体整合的方法将不同的磷脂整合到红细胞上或用N-乙酰马来酰胺(N-ethylmaleimide,NEM)预处理红细胞然后整合磷脂,制备含不同凋亡信号的红细胞模型,测定巨噬细胞对整合不同磷脂信号红细胞的结合率和吞噬率。结果表明,单独整合PS或用NEM处理造成PS外翻,可显著性提高巨噬细胞对红细胞的结合率,但对吞噬率没有影响;同时整合PS和氧化磷脂(氧化PS或氧化磷脂酰胆碱(phosphatidylcholine,PC)),或用NEM处理造成PS外翻后再整合氧化PS或氧化PC,不仅可显著提高巨噬细胞对红细胞的结合率,而且可显著性提高吞噬率。这些结果提示PS外翻可能参与了巨噬细胞对凋亡细胞的结合,而磷脂氧化可能启动了巨噬细胞对凋亡细胞的吞噬,二者协作才可能完成巨噬细胞对凋亡细胞的清除。 相似文献
13.
《Microbiological research》2014,169(4):287-293
Quinoxaline is a chemical compound that presents a structure that is similar to quinolone antibiotics. The present work reports the study of the antimicrobial activity of quinoxaline N,N-dioxide and some derivatives against bacterial and yeast strains. The compounds studied were quinoxaline-1,4-dioxide (QNX), 2-methylquinoxaline-1,4-dioxide (2MQNX), 2-methyl-3-benzoylquinoxaline-1,4-dioxide (2M3BenzoylQNX), 2-methyl-3-benzylquinoxaline-1,4-dioxide (2M3BQNX), 2-amino-3-cyanoquinoxaline-1,4-dioxide (2A3CQNX), 3-methyl-2-quinoxalinecarboxamide-1,4-dioxide (3M2QNXC), 2-hydroxyphenazine-N,N-dioxide (2HF) and 3-methyl-N-(2-methylphenyl)quinoxalinecarboxamide-1,4-dioxide (3MN(2MF)QNXC). The prokaryotic strains used were Staphylococcus aureus ATCC 6538, S. aureus ATCC 6538P, S. aureus ATCC 29213, Escherichia coli ATCC 25922, E. coli S3R9, E. coli S3R22, E. coli TEM-1 CTX-M9, E. coli TEM-1, E. coli AmpC Mox-2, E. coli CTX-M2 e E. coli CTX-M9. The Candida albicans ATCC 10231 and Saccharomyces cerevisiae PYCC 4072 were used as eukaryotic strains. For the compounds that presented activity using the disk diffusion method, the minimum inhibitory concentration (MIC) was determined. The alterations of cellular viability were evaluated in a time-course assay. Death curves for bacteria and growth curves for S. cerevisiae PYCC 4072 were also accessed. The results obtained suggest potential new drugs for antimicrobial activity chemotherapy since the MIC's determined present low values and cellular viability tests show the complete elimination of the bacterial strain. Also, the cellular viability tests for the eukaryotic model, S. cerevisiae, indicate low toxicity for the compounds tested. 相似文献
14.
Hanan A. Ghetas Nashwa Abdel-Razek Medhat S. Shakweer Mahmoud M. Abotaleb Bilal Ahamad Paray Sajad Ali Elsayed A. Eldessouki Mahmoud A.O. Dawood Riad H. Khalil 《Saudi Journal of Biological Sciences》2022,29(3):1298-1305
Pathogens isolated from fish appear to possess considerable antimicrobial resistance and represent a problem for the economy and public health. Natural antimicrobial substitutes to traditional antibiotics represent an essential tool in the fight against antibiotic resistance. Nanotechnology has shown considerable potential in different research fields, and the antimicrobial properties of silver nanoparticles are known. Silver has been used for medical purposes since ancient times because of its bactericidal properties, and the highly reactive surfaces of silver nanoparticles (AgNPs) indicate that they might have a function in antimicrobial applications. This work aimed to study the antimicrobial properties of biologically produced AgNPs from Origanum vulgare leaves compared to chemically produced AgNPs. Both types were characterized by UV–vis spectrophotometry, TEM, and dynamic light scattering and tested against three bacterial strains (Streptococcus agalactiae, and Aeromonas hydrophila, both isolated from Nile tilapia and Vibrio alginolyticus, isolated from sea bass) and three fungal strains (Aspergillus flavus, Fusarium moniliforme, and Candida albicans, all isolated from Nile tilapia). Disk diffusion test and evaluation of ultrastructure changes of tested microorganisms treated with AgNPs by transmission electron microscopy were performed. Moreover, the hemolytic properties of AgNPs were studied on chicken and goat red blood cells. The results obtained declare that the green biological production of silver nanoparticles is safer and more effective than the chemical one; moreover, AgNPs have interesting dose-dependent antimicrobial properties, with better results for biologically produced ones; their effectiveness against tested bacterial and fungal strains opens the way to their use to limit fish diseases, increase economy and improve human health. 相似文献
15.
《Bioorganic & medicinal chemistry letters》2014,24(22):5238-5241
Quaternary ammonium salts substituted with a long alkyl chain exemplify a trustworthy group of medicinal compounds frequently employed as antifungal and antibacterial agents. A great asset of these surfactants underlying their widespread use is low local and system toxicity in humans. In this Letter, a series of novel quaternary 6-hydroxyquinolinium salts with varying length of N-alkyl chain (from C10 to C18) was synthesized and tested for in vitro activity against pathogenic bacterial and fungal strains. 6-Hydroxyquinolinium salt with C12 alkyl chain seems to be very interesting candidate due to a high antimicrobial efficacy and cytotoxic safety. 相似文献
16.
A.V. Gusakov A.P. Sinitsyn V.B. Gerasimas R.Yu. Savitskene Yu.Yu. Steponavichus 《Journal of biotechnology》1985,3(3):167-174
Amorphous acid-swollen cellulose dyed with Reactive Orange was used to determine the relevant inhibition constants of cellulases from Trichoderma longibrachiatum by cellulose hydrolysis products (glucose and cellobiose). The method is based on the initial rate of increasing the hydrolysate absorbance (A490mn) in the presence of added product. On adding glucose, the initial rate of glucose formation from cellulose and the rate of dye release were lower than the relevant rates in the absence of added product; however, the rate of cellobiose formation did not change. On the other hand, added cellobiose inhibited the rate of cellobiose formation from dyed cellulose and the rate of increase of the hydrolysate absorbance but did not affect the glucose formation. The constants of competitive inhibition of cellulases by glucose and cellobiose were 0.072 and 0.012 M, respectively. These inhibition parameters differed from those obtained from the analysis of the progress kinetics for extended reaction times. 相似文献
17.
《Bioorganic & medicinal chemistry》2016,24(4):841-848
In the present paper, we describe the synthesis of a new group of 5-hydroxyisoquinolinium salts with different lengths of alkyl side-chain (C10–C18), and their chromatographic analysis and biological assay for in vitro activity against bacterial and fungal strains. We compare the lipophilicity and efficacy of hydroxylated isoquinolinium salts with the previously published (non-hydroxylated) isoquinolinium salts from the point of view of antibacterial and antifungal versatility and cytotoxic safety. Compound 11 (C18) had to be excluded from the testing due to its low solubility. Compounds 9 and 10 (C14, C16) showed only moderate efficacy against G+ bacteria, notably with excellent potency against Staphyloccocus aureus, but no effect against G− bacteria. In contrast, non-hydroxylated isoquinolinium salts showed excellent antimicrobial efficacy within the whole series, particularly 14 (C14) against G+ strains and 15 (C16) against fungi. The electronic properties and desolvation energies of 5-hydroxyisoquinolinium and isoquinolinium salts were studied by quantum-chemistry calculations employing B3LYP/6-311++G(d,p) method and an implicit water-solvent simulation model (SCRF). Despite the positive mesomeric effect of the hydroxyl moiety reducing the electron density of the quaternary nitrogen, it is probably the higher lipophilicity and lower desolvation energy of isoquinolinium salts, which is responsible for enhanced antimicrobial versatility and efficacy. 相似文献
18.
A fractal-like kinetics model was used to describe the synergistic hydrolysis of bacterial cellulose by Trichoderma reesei cellulases. The synergistic action of intact cellobiohydrolase Cel7A and endoglucanase Cel5A at low enzyme-to-substrate ratios showed an apparent substrate inhibition consistent with a case where two-dimensional (2-D) surface diffusion of the cellobiohydrolase is rate-limiting. The action of Cel7A core and Cel5A was instead consistent with a three-dimensional (3-D) diffusion-based mode of action. The synergistic action of intact Cel7A was far superior to that of the core at a high enzyme-to-substrate ratio, but this effect was gradually reduced at lower enzyme-to-substrate ratios. The apparent fractal kinetics exponent h obtained by nonlinear fit of hydrolysis data to the fractal-like kinetics analogue of a first-order reaction was a useful empirical parameter for assessing the rate retardation and its dependence on the reaction conditions. 相似文献
19.
Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film 总被引:1,自引:0,他引:1
Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coli > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coli and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 μg/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 μg/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. 相似文献
20.
Jérémie Leclerc Thierry Lefèvre Martin Gauthier Stéphane M. Gagné Michèle Auger 《Biopolymers》2013,99(9):582-593
We have investigated the effect of pH, salts and shear on the hydrodynamical diameter of recombinant major ampullate (MA) rMaSpI silk proteins in solution as a function of time using 1H solution NMR spectroscopy. The results indicate that the silk proteins in solution are composed of two diffusing populations, a high proportion of “native” solubilized proteins and a small amount of high molecular weight oligomers. Similar results are observed with the MA gland content. Salts help maintaining the proteins in a compact form in solution over time and inhibit aggregation, the absence of salts triggering protein assembly leading to a gel state. Moreover, the aggregation kinetics of rMaSpI at low salt concentration accelerates as the pH is close to the isoelectric point of the proteins, suggesting that the pH decrease tends to slow down aggregation. The data also support the strong impact of shear on the spinning process and suggest that the assembly is driven by a nucleation conformational conversion mechanism. Thus, the adjustment of the physicochemical conditions in the ampulla seems to promote a stable, long term storage. In addition, the optimization of protein conformation as well as their unfolding and aggregation propensity in the duct leads to a specifically organized structure. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 582–593, 2013. 相似文献