共查询到20条相似文献,搜索用时 0 毫秒
1.
John G Semmler Kylie J Tucker Trevor J Allen Uwe Proske 《Journal of applied physiology》2007,103(3):979-989
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise. 相似文献
2.
Sandra K Hunter Romuald Lepers Carol J MacGillis Roger M Enoka 《Journal of applied physiology》2003,94(6):2439-2447
Twenty-four men (n = 11) and women (n = 13) supported an inertial load equivalent to 20% of the maximum voluntary contraction force with the elbow flexor muscles for as long as possible while maintaining a constant elbow angle at 90 degrees. Endurance time did not differ on the three occasions that the task was performed (320 +/- 149 s; P > 0.05), and there was no difference between women (360 +/- 168 s) and men (273 +/- 108 s; P = 0.11). The rate of increase in average electromyogram (EMG) for the elbow flexor muscles was similar across sessions (P > 0.05). However, average EMG during the fatiguing task increased for the long head of biceps brachii, brachioradialis, and brachialis (P < 0.05) but not for the short head of biceps brachii. Furthermore, the average EMG for the brachialis was greater at the start and end of the contraction compared with the other elbow flexor muscles. The rate of bursts in EMG activity increased during the fatiguing contraction and was greater in brachialis (1.0 +/- 0.2 bursts/min) compared with the other elbow flexor muscles (0.5 +/- 0.1 bursts/min). The changes in the standard deviation of acceleration, mean arterial pressure, and heart rate during the fatiguing contractions were similar across sessions. These findings indicate that the EMG activity, which reflects the net excitatory and inhibitory input received by the motoneurons in the spinal cord, was not adaptable over repeat sessions for the maintain-position task. Furthermore, these results contrast those from a previous study (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003) when the goal of the isometric contraction was to maintain a constant force. These results, from a series of studies on the elbow flexor muscles, indicate that the type of load supported during the fatiguing contraction influences the extent to which endurance time can change with repeat performances of the task. 相似文献
3.
The maximum contractile moments developed by the elbow flexors of eleven normal subjects at different elbow angles were measured, both isometrically and at various shortening velocities. The results were used to predict the damping coefficient of the viscous element of the elbow flexor muscles and soft tissue under maximum contraction condition for various angles and shortening velocities. 相似文献
4.
Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles. 总被引:2,自引:0,他引:2
Janette L Smith Peter G Martin Simon C Gandevia Janet L Taylor 《Journal of applied physiology》2007,103(2):560-568
During sustained maximal voluntary contractions (MVCs), most fatigue occurs within the muscle, but some occurs because voluntary activation of the muscle declines (central fatigue), and some of this reflects suboptimal output from the motor cortex (supraspinal fatigue). This study examines whether supraspinal fatigue occurs during a sustained submaximal contraction of 5% MVC. Eight subjects sustained an isometric elbow flexion of 5% MVC for 70 min. Brief MVCs were performed every 3 min, with stimulation of the motor point, motor cortex, and brachial plexus. Perceived effort and pain, elbow flexion torque, and surface EMGs from biceps and brachioradialis were recorded. During the sustained 5% contraction, perceived effort increased from 0.5 to 3.9 (out of 10), and elbow flexor EMG increased steadily by approximately 60-80%. Torque during brief MVCs fell to 72% of control values, while both the resting twitch and EMG declined progressively. Thus the sustained weak contraction caused fatigue, some of which was due to peripheral mechanisms. Voluntary activation measured by motor point and motor cortex stimulation methods fell to 90% and 80%, respectively. Thus some of the fatigue was central. Calculations based on the fall in voluntary activation measured with cortical stimulation indicate that about two-thirds of the fatigue was due to supraspinal mechanisms. Therefore, sustained performance of a very low-force contraction produces a progressive inability to drive the motor cortex optimally during brief MVCs. The effect of central fatigue on performance of the weak contraction is less clear, but it may contribute to the increase in perceived effort. 相似文献
5.
Morgan Lévénez Christos Kotzamanidis Alain Carpentier Jacques Duchateau 《Journal of applied physiology》2005,99(3):1182-1188
This study examined the involvement of spinal mechanisms in the control of coactivation during a sustained contraction of the ankle dorsiflexors at 50% of maximal voluntary contraction. Changes in the surface electromyogram (EMG) of the tibialis anterior and of two antagonist muscles, the soleus and lateral gastrocnemius, were investigated during and after the fatigue task. Concurrently, the compound action potential (M-wave) and the Hoffmann reflex of the soleus and lateral gastrocnemius were recorded. The results showed that the torque of the ankle dorsiflexors and the average EMG of the tibialis anterior during maximal voluntary contraction declined by 40.9 +/- 17.7% (mean +/- SD; P < 0.01) and 37.0 +/- 19.9% (P < 0.01), respectively, at task failure. During the submaximal fatiguing contraction, the average EMG of both the agonist and antagonist muscles increased, leading to a nearly constant ratio at the end of the contraction when normalized to postfatigue values. In contrast to the monotonic increase in average EMG of the antagonist muscles, the excitability of their spinal reflex pathways exhibited a biphasic modulation. The amplitude of the Hoffman reflexes in the soleus and lateral gastrocnemius increased to 147.5 +/- 52.9% (P < 0.05) and 166.7 +/- 74.9% (P < 0.01), respectively, during the first 20% of the contraction and then subsequently declined to 66.3 +/- 44.8 and 74.4 +/- 44.2% of their initial values. In conclusion, the results show that antagonist coactivation did not contribute to task failure. The different changes in voluntary EMG activity and spinal reflex excitability in the antagonist muscles during the fatiguing contraction support the concept that the level of coactivation is controlled by supraspinal rather than spinal mechanisms. The findings indicate, however, that antagonist coactivation cannot simply be mediated by a central descending "common drive" to the motor neuron pools of the agonist-antagonist muscle pairs. Rather, they suggest a more subtle regulation of the drive, possibly through presynaptic mechanisms, to the motoneurons that innervate the antagonist muscles. 相似文献
6.
Infant facial features are thought to be powerful elicitors of caregiving behaviour. It has been widely assumed that men and women respond in different ways to those features, such as a large forehead and eyes and round protruding cheeks, colloquially described as 'cute'. We investigated experimentally potential differences using measures of both conscious appraisal ('liking') and behavioural responsivity ('wanting') to real world infant and adult faces in 71 non-parents. Overall, women gave significantly higher 'liking' ratings for infant faces (but not adult faces) compared to men. However, this difference was not seen in the 'wanting' task, where we measured the willingness of men and women to key-press to increase or decrease viewing duration of an infant face. Further analysis of sensitivity to cuteness, categorising infants by degree of infantile features, revealed that both men and women showed a graded significant increase in both positive attractiveness ratings and viewing times to the 'cutest' infants. We suggest that infant faces may have similar motivational salience to men and women, despite gender idiosyncrasies in their conscious appraisal. 相似文献
7.
Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 +/- 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 +/- 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 +/- 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 +/- 5.3%), but it ended at a similar value (45.4 +/- 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003). 相似文献
8.
9.
10.
A M Carcassi M Decandia M Onnis M B Piras L Tocco 《Bollettino della Società italiana di biologia sperimentale》1979,55(23):2483-2487
An increase in the instantaneous pulmonary flow and a decrease in the respiratory frequency has been found in man as a consequence of isometric contraction of either flexor or extensor muscles of the elbow. The delay of 200 to 900msec between the onset of the muscle contraction and the beginning of the flow increment suggests that the respiratory system increases its activity due to the proprioreceptor activation. As there is no significant difference in the results obtained during flexor or extensor contraction, the contribution of the two different receptor groups appears to be the same. 相似文献
11.
Caroline A M Doorenbosch Annemiek Joosten Jaap Harlaar 《Journal of electromyography and kinesiology》2005,15(4):429-435
PURPOSE: In this study, the influence of using submaximal isokinetic contractions about the knee compared to maximal voluntary contractions as input to obtain the calibration of an EMG-force model for knee muscles is investigated. METHODS: Isokinetic knee flexion and extension contractions were performed by healthy subjects at five different velocities and at three contraction levels (100%, 75% and 50% of MVC). Joint angle, angular velocity, joint moment and surface EMG of five knee muscles were recorded. Individual calibration values were calculated according to [C.A.M. Doorenbosch, J. Harlaar, A clinically applicable EMG-force model to quantify active stabilization of the knee after a lesion of the anterior cruciate ligament, Clinical Biomechanics 18 (2003) 142-149] for each contraction level. RESULTS: First, the output of the model, calibrated with the 100% MVC was compared to the actually exerted net knee moment at the dynamometer. Normalized root mean square errors were calculated [A.L. Hof, C.A.N. Pronk, J.A. van Best, Comparison between EMG to force processing and kinetic analysis for the calf muscle moment in walking and stepping, Journal of Biomechanics 20 (1987) 167-187] to compare the estimated moments with the actually exerted moments. Mean RMSD errors ranged from 0.06 to 0.21 for extension and from 0.12 to 0.29 for flexion at the 100% trials. Subsequently, the calibration results of the 50% and 75% MVC calibration procedures were used. A standard signal, representing a random EMG level was used as input in the EMG force model, to compare the three models. Paired samples t-tests between the 100% MVC and the 75% MVC and 50% MVC, respectively, showed no significant differences (p>0.05). CONCLUSION: The application of submaximal contractions of larger than 50% MVC is suitable to calibrate a simple EMG to force model for knee extension and flexion. This means that in clinical practice, the EMG to force model can be applied by patients who cannot exert maximal force. 相似文献
12.
K N Bitar M S Kaminski N Hailat K B Cease J R Strahler 《Biochemical and biophysical research communications》1991,181(3):1192-1200
We have identified the low MW 27 kD heat shock protein as a major phosphoprotein constituent of smooth muscle and have investigated its potential role in agonist induced smooth muscle contraction. The neuropeptides bombesin and substance P, which are present in neurons of the anorectal region, induce contraction of isolated smooth muscle cells from this region by activating different intracellular pathways. Substance P-induced contraction is 1,4,5-inositol trisphosphate (IP3)/calmodulin dependent, while contraction induced by bombesin is mediated by a protein kinase C (PKC)-dependent pathway. The sustained contraction induced by bombesin or exogenous PKC was blocked by preincubation of cells with monoclonal antibodies to hsp27, while the transient contraction induced by substance P or IP3 was unaffected by the antibodies. Preincubation with isotype matched control antibodies had no inhibitory effect on contraction induced in response to the agents used. These data support a novel role for hsp27 in the non calmodulin mediated sustained contraction induced by bombesin or PKC. 相似文献
13.
Kimitaka Nakazawa Hideo Yano Hiroyuki Satoh Iwao Fujisaki 《European journal of applied physiology and occupational physiology》1998,77(5):395-400
Stretch reflexes were evoked in elbow flexor muscles undergoing three different muscle contractions, i.e. isotonic shortening
(SHO) and lengthening (LEN), and isometric (ISO) contractions. The intermuscle relationships for the magnitude of the stretch
reflex component in the eletromyographic (EMG) activities of two main elbow flexor muscles, i.e. the biceps brachii (BB) and
the brachioradialis (BRD), were compared among the three types of contractions. The subjects were requested to move their
forearms sinusoidally (0.1 Hz) against a constant pre-load between elbow joint angles of 10° (0° = full extension) and 80°
during SHO and LEN, and to keep an angle of 45° during the ISO. The perturbations were applied at the elbow angle of 45° in
pseudo-random order. The EMG signals were rectified and averaged over a period of 100 ms before and 400 ms after the onset
of the perturbation 40–50 times. From the ensemble averaged EMG waveform, the background activity (BGA), short (20–50 ms)
and long latency (M2, 50–80, M3, 80–100 ms) reflex and voluntary activity (100–150 ms) components were measured. The results
showed that both BGA and reflex EMG activity of the two elbow flexor muscles were markedly decreased during the lengthening
contraction compared to the SHO and ISO contractions. Furthermore, the changes of reflex EMG components in the BRD muscle
were more pronounced than those in the BB muscle, i.e. the ratios of M2 and M3 magnitudes between BRD and BB (BRD:BB) were
significantly reduced during the LEN contractions. These results would suggest that the gain of long latency stretch reflex
EMG activities in synergistic muscles might be modulated independently according to the model of muscle contraction.
Accepted: 1 September 1997 相似文献
14.
D R Seals B F Hurley J Schultz J M Hagberg 《Journal of applied physiology (Bethesda, Md. : 1985)》1984,57(4):1030-1033
Seven men and four women (age 63 +/- 2 yr, mean +/- SD, range 61-67 yr) participated in a 12-mo endurance training program to determine the effects of low-intensity (LI) and high-intensity (HI) training on the blood lactate response to submaximal exercise in older individuals. Maximal oxygen uptake (VO2max), blood lactate, O2 uptake (VO2), heart rate (HR), ventilation (VE), and respiratory exchange ratio (R) during three submaximal exercise bouts (65-90% VO2max) were determined before training, after 6 mo of LI training, and after an additional 6 mo of HI training. VO2max (ml X kg-1 X min-1) was increased 12% after LI training (P less than 0.05), while HI training induced a further increase of 18% (P less than 0.01). Lactate, HR, VE, and R were significantly lower (P less than 0.05) at the same absolute work rates after LI training, while HI training induced further but smaller reductions in these parameters (P greater than 0.05). In general, at the same relative work rates (ie., % of VO2max) after training, lactate was lower or unchanged, HR and R were unchanged, and VO2 and VE were higher. These findings indicate that LI training in older individuals results in adaptations in the response to submaximal exercise that are similar to those observed in younger populations and that additional higher intensity training results in further but less-marked changes. 相似文献
15.
The twitch duration of mesothoracic wing muscles of the male katydid Neoconocephalus robustus (Insecta; Orthoptera; Tettigoniidae) decreases rapidly within the first 5 days of adulthood, to about half of its value in newly molted adults. To determine if this change is dependent upon neural input, male mesothoracic first tergocoxal muscles were unilaterally denervated on the second day of adulthood. The contraction kinetics of the denervated and contralateral innervated muscles were tested four days later. The development of rapid contraction kinetics was slowed or stopped in the denervated muscles, while the contralateral innervated muscles did become faster. Mesothoracic wing muscles of females do not develop faster contraction kinetics. When the female mesothoracic first tergocoxal muscle is denervated, there is no difference in twitch duration after 4 days between the innervated and contralateral denervated muscles. Therefore, denervation in newly molted adult male katydids interrupts a developmental program for the acquisition of adult contraction kinetics. 相似文献
16.
J. Celichowski K. Grottel E. Bichler 《European journal of applied physiology and occupational physiology》1998,78(4):283-288
In previous studies on mechanomyogram (MMG) signals no analysis of these signals accompanying force generation has been performed. Therefore, we have recorded MMG signals (previously referred to as muscle sound or acoustomyographic signals) during voluntary contractions of forefinger flexor muscles in 31 young subjects. These subjects made contractions to produce force records of triangular or trapeziform shape. The peak target force amounted to 10, 20 or 40 N which represented less than 40% of maximal voluntary contraction. The MMG signals during the transient phases of force generation at three different rates were analysed. The MMG intensity level calculated for MMG records and the peak-to-peak amplitude of MMG signals correlated with both the velocity of force increase and the contraction force. The occurrence of the strongest MMG signals corresponded to changes in contractile force. Therefore, it is suggested that measurements of these parameters could be a useful tool in studies of changes in contractile force. Accepted: 11 March 1998 相似文献
17.
Plasma leptin in men and women with seasonal affective disorder and in healthy matched controls. 总被引:3,自引:0,他引:3
G Cizza P Romagni A Lotsikas G Lam N E Rosenthal G P Chrousos 《Hormones et métabolisme》2005,37(1):45-48
Seasonal affective disorder (SAD) is a specific clinical entity characterized by recurrent episodes of depression, which typically occur during the winter with periods of remission during the spring and summer. These depression episodes are accompanied by hyperphagia with cravings for carbohydrates and moderate weight gain, and usually respond to light therapy. We examined potential relationships between leptin, a hormone known to affect appetite and weight regulation, and seasonal changes in mood and appetite by measuring plasma leptin, clinical severity of depression, appetite scores, and body mass index (BMI) in 19 women and 8 men with SAD and matched controls (20 women and 8 men) in the summer and winter. Plasma leptin was positively correlated with BMI in patients and controls during both seasons. Women and men with SAD both experienced depression in the winter, which was associated with increased appetite, caloric intake, and carbohydrate craving. Increased body weight during the winter in subjects with SAD was paralleled by a lack of concomitant changes in plasma leptin, which suggests that leptin sensitivity to changes in body weight may be influenced by seasons in subjects with SAD, similar to seasonal mammals. 相似文献
18.
Izquierdo M Hakkinen K Ibanez J Anton A Garrues M Ruesta M Gorostiaga EM 《Journal of strength and conditioning research / National Strength & Conditioning Association》2003,17(1):129-139
Effects of a 16-week progressive strength-training program on blood lactate accumulation (LA), maximal workload (W(max)) attained during progressive cycling exercise, maximum half-squat (1RM(HS)), muscle cross-sectional area of the quadriceps femoris muscle group (CSA(QF)), and serum hormone concentrations were examined in 11 middle-aged (46 year old [M46]) and 11 older (64 year old [M64]) men. During the 16 weeks of training, significant increases were observed in 1RM(HS) in M46 and M64 (41-45%; p < 0.001). The muscle CSA(QF) increased (13-11%; p > 0.01) for both groups. The first 8 weeks of training led to significant increases in W(max) (6-11%; p < 0.001) and decreases in submaximal (LA) in both groups, but no further training-induced changes were observed during the subsequent 8 weeks of training. Statistically significant relationships were observed in M64 and in the combined group M46 + M64 between the training-induced changes observed in W(max) and serum testosterone-cortisol and free-testosterone-cortisol ratios, whereas in M46 the respective correlations values did not reach statistically significant levels. These data indicate that strength training results in a significant improvement in maximal and submaximal endurance during the first 8 weeks of strength training in both age groups, related in part to the intensity and the volume of resistance training used and to the training status of the subjects. The relationships found in this study between various indices of cycling testing and serum hormone concentrations after strength training suggest that maximal incremental cycling might be used as an additional test to detect anabolic-catabolic responses to prolonged strength training in middle-aged and older men. 相似文献
19.
Anna Maria Holmb?ck Michelle M Porter David Downham Jesper L Andersen Jan Lexell 《Journal of applied physiology》2003,95(6):2416-2424
The aim was to investigate determinants of ankle dorsiflexor muscle (DF) strength and size in moderately active young men and women (n = 30; age 20-31 yr). Concentric (Con) and eccentric (Ecc) strength were measured isokinetically. Magnetic resonance imaging was used to determine the muscle cross-sectional area (CSA). Multiple biopsies were obtained from the tibialis anterior muscle to determine total numbers, areas (Area I and II) and proportions (Prop I and II) of type I and II fibers, respectively, and relative contents of myosin heavy chain (MHC) isoforms MHC1, MHC2a, and MHC2x. Women had lower Con and Ecc strength (24 and 27%; P < 0.01), smaller CSA (19%; P < 0.001), lower Ecc DF specific strength (strength/CSA) (10%; P < 0.01), and smaller Area I and Area II (21 and 31%; P < 0.01) than men. Prop I, MHC1, estimated total number of fibers, and Con DF specific strength were similar for both sexes. Con DF strength was up to 72% determined by CSA and Prop I, and Ecc DF strength was up to 81% determined by CSA, Prop I, and sex; variables other than CSA explained at most 9%. Body weight and fiber areas explained >50% of the variation in CSA. In conclusion, CSA was the predominant determinant of DF strength, CSA was to a great extent determined by the body weight and the sizes of muscle fibers, and sex differences in Ecc specific strength require further study. 相似文献
20.
A Nicolas A Gauthier J Trouillet D Davenne 《Journal of electromyography and kinesiology》2008,18(2):284-290
The purpose of this study was to examine the time-of-day effects on muscle fatigue and recovery process following an isometric fatiguing contraction. Sixteen male subjects were tested at two times (06:00h and 18:00h) and were requested to perform a sustained submaximal contraction of the elbow flexors, consisting in maintaining 40% of their absolute strength as long as they could. Isometric maximal voluntary contractions (MVC) were performed before (Pre), immediately after (Post), and up to 10min after the endurance task. Endurance time, peak torque (PT) and electromyographic (EMG) activities of the biceps brachii and triceps brachii were recorded and analysed. Results showed that under Pre-test conditions, PT developed at 18:00h was higher than at 06:00h. No time-of-day effect appears for the endurance time and EMG activities during the test. No time-of-day effect was observed on either MVC or EMG recovery. From the results of this study, it seems that both muscle fatigue and recovery process are not time-of-day dependent. We conclude that circadian rhythm of the force do not influence the evaluation of muscle capacities during a submaximal exercise corresponding at 40% of MVC. 相似文献