首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The circulating immune complexes have been detected in the sera of albino rats infected withPlasmodium berghei and rhesus monkeys infected with P.knowlesi by (i) quantitative cryoprecipitation assay and (ii) polyethylene glycol assay. In the rodent model, the levels of circulating immune complexes increased during infection and decreased considerably in the post-infection period. In the simian system, high levels were detected during peak parasitaemia. Polyethylene glycol precipitate obtained from the sera during acuteP. knowlesi infection when analysed by Immunoelectrophoresis was found to contain (i) monkey IgG, (ii) four other components of monkey plasma, (iii) two components of normal monkey erythrocytes and (iv) antigen(s) ofP. knowlesi.  相似文献   

2.
Sporozoites of Plasmodium cynomolgi, Plasmodium knowlesi, and Plasmodium coatneyi were deposited onto monolayers of hepatocytes from rhesus monkeys (Macaca mulatta). When sporozoites were centrifuged (1,600 g for 5 min), 4-13-fold more schizonts were observed than were found in noncentrifuged control cultures. Centrifugation of hepatocyte monolayers before adding sporozoites did not modify the number of parasites.  相似文献   

3.
Sporozoites of Plasmodium berghei and Plasmodium knowlesi, incubated in normal serum readily interact with peritoneal macrophages of mice or rhesus monkeys, respectively. Interiorization of the sporozoite requires that both serum and macrophages be obtained from an animal susceptible to infection by the malaria parasite. Serum requirements for sporozoite attachment to the macrophage are less specific. Phagocytosis is not essential for the parasites to become intracellular. Our findings indicate that active penetration of the sporozites into the macrohages does occur. Antibodies present in the serum of sporozoite-immunized mice are important in determining the fate of both the intracellular sporozoites and the macrophages containing the parasite. Sporozoites coated with antibodies degenerate within vacuoles of the macrophages, which have no morphologic alteration. Sporozoites incubated in normal serum do not degenerate within macrophages, but the parasitized macrophages become morphologically altered and are destroyed. Preliminary experiments indicate that sporozoites appear to interact with rat Kupffer cells in the same way as with the peritoneal mouse macrophages. It is postulated that Kupffer cells play a dual role in sporozoite-host cell interaction. In normal animals these cells might serve to localize the sporozoites in the immediate vicinity of the hepatocytes. In the immunized animals, macrophages would remove and destroy the antibody-coated parasites, thus contributing to sporozoite-induced resistance.  相似文献   

4.
We have partially purified replicating simian virus 40 (SV40) chromosomes in a form which allows continued DNA synthesis in vitro. We first prepare a soluble DNA-synthesizing system from SV40-infected monkey cells and then sediment the components through a neutral sucrose gradient of extremely low ionic strength. Replicating SV40 chromosomes isolated from such gradients are capable of continuing DNA synthesis in vitro in the same manner as two crude subnuclear systems we have previously described (4). This indicates that the enzymes and other proteins required for in vitro DNA synthesis are bound to the replicating chromosomes.  相似文献   

5.
6.
Plasmodium falciparum malaria protein peptides were synthesised in the search for more effective routes for inducing a protective immune response against this deadly parasite and this information has been associated with such molecules' three-dimensional structure. These peptides had high red blood cell binding activity and their carboxy- and amino-terminal extremes were elongated for determining their immunogenic and protection-inducing activity against this disease in the Aotus monkey experimental model. 1H-NMR was used for analysing their three-dimensional structure; FAST ELISA, immunofluorescence antibody test, and Western blot were used for identifying their antibody inducing capacity and these previously immunised Aotus were inoculated with a highly infective P. falciparum strain to determine whether these elongated peptides were able to induce protection. This was aimed at establishing an association or correlation between long peptides' three-dimensional structure and their immunogenic and protection-inducing response in these monkeys. Peptides 20026 (25 residue), 20028 (30 residue), and 20030 (35 residues) were synthesised based on elongating the amino-terminal region of the 10022 highly immunogenic and protection-inducing modified peptide. 1H-NMR studies revealed that the first three had Classical type III beta-turn structures, different from the 20-amino acid long modified peptide 10022 which had a distorted type III beta-turn. Humoral immune response analysis showed that even when some antibodies could be generated against the parasite, none of the immunised Aotus could be protected with elongated peptides suggesting that elongating them eliminated modified peptide 10022 immunogenic and protection-inducing capacity.  相似文献   

7.
A truncating E767stop mutation was introduced into the envelope glycoprotein of simian immunodeficiency virus (SIV) strain SIV239-M5 (moderately sensitive to antibody-mediated neutralization and lacking five sites for N-linked carbohydrate attachment) and strain SIV316 (very sensitive to neutralization, with eight amino acid changes from the neutralization-resistant parental molecular clone, SIV239). The truncating mutation increased Env content in virions, increased infectivity, and decreased sensitivity to antibody-mediated neutralization in both strains. However, the magnitude of the effect on infectivity and neutralization sensitivity differed considerably between the two strains. In the context of strain SIV239-M5, truncation increased Env content in virions approximately 10-fold and infectivity in a reporter cell assay 24-fold. The truncated SIV239-M5 was only slightly more resistant to neutralization by polyclonal monkey sera and by monoclonal antibodies than SIV239-M5 with a full-length envelope glycoprotein. In the context of strain SIV316, truncation increased infectivity a dramatic 480-fold, while envelope content in virions was increased only about 14-fold. This dramatic increase in infectivity cannot be simply explained by the increase in envelope content and is likely due to an increase in inherent infectivity, i.e., infectivity per spike, that results from truncation. The truncated SIV316 was extremely resistant to antibody-mediated neutralization. In fact, it was not neutralized by any of the antibodies tested. When increasing amounts of SIV316 envelope glycoprotein (full length) were provided in trans to SIV316, infectivity was increased and sensitivity to neutralization was decreased, but to nowhere near the degree that was obtained when truncated SIV316 envelope glycoprotein was used. Truncated forms of SIV239 and SIV239-M5 required higher levels of soluble CD4 for inhibition of infection than their nontruncated forms; truncated SIV316 did not. Our results suggest that envelope content in SIV virions, infectivity, and resistance to antibody-mediated neutralization can be increased not only by truncation of the cytoplasmic domain but also by provision of excess envelope in trans. The striking increase in infectivity that results from truncation in the context of SIV316 appears to be due principally to an increase in inherent infectivity per spike.  相似文献   

8.
The effect of mouse anti-mosquito antibodies, present in the bloodmeal, on the infectivity of Plasmodium berghei Vincke to Anopheles farauti Laveran was investigated. Significantly fewer oocysts developed in mosquitoes feeding on mice immunized with sugar-fed mosquito midgut antigens than in mosquitoes feeding on control mice. Mosquitoes feeding on mice immunized with the midgut antigens derived from sugar-fed mosquitoes also showed reduced mortality and had lower infection rates than those fed on unimmunized mice. Blood-fed midgut antigen was less effective in producing these effects than sugar-fed midgut antigen.  相似文献   

9.
Mixtures of phenols and cinnamic acid derived plant polyphenols are separated on several WAX cellulose materials and on DEAE Sephadex. Reference mixtures are also split up into the following distinct groups: phenolic carboxylic acids--neutral o-dihydroxy phenolics--neutral non o-dihydroxy phenolics. Quantitative recoveries are obtained, while no isomerizations occur with the pH labile plant phenolics. It is suggested that these materials can be used for preparative scale purification of plant phenolics, or for cleaning up plant extracts prior to HPLC examination.  相似文献   

10.
SYNOPSIS. Sporozoites of rodent malaria, Plasmodium berghei , and simian malaria, Plasmodium knowlesi and Plasmodium cynomolgi , were partially separated from mosquito debris and microbial contaminants by passage of Anopheles material through a DEAE-cellulcse column. In addition to eliminating most of the contaminants (80–90%), this simple technic has made it possible to recover rapidly large numbers of viable sporozoites (55–75% yield), which have retained their infectivity, immunogenicity, and capacity to react with known antisera. Mice injected with varying doses of column-purified sporozoites (CS) of P. berghei produced infections which paralleled those seen in the controls. Total protection against challenge with a potentially lethal dose of viable sporozoites was acquired by mice inoculated twice with irradiated CS of P. berghei. CS of P. berghei and P. cynomolgi gave positive circumsporozoite precipitation (CSP) reactions, upon inoculation with the respective immune sera. The preservation of the surface antigens of CS was documented by immunofluorescence.
It was shown that differences in elution behavior exist among sporozoites of certain species of Plasmodium as well as among sporozoites of the same species derived from different organs of the mosquito. These results may be attributed to differences in the surface charge of the sporozoites or conditions in sample media.
Purified sporozoites obtained by the method described in this report provide an adequate source of parasites for a variety of in vitro studies.  相似文献   

11.
12.
13.
A C Chou  C D Fitch 《Life sciences》1992,51(26):2073-2078
The biosynthesis of the beta-hematin of malarial pigment (hemozoin) is catalyzed by a newly discovered enzyme, heme polymerase, which is described for Plasmodium berghei in this report. This novel enzyme is present in the insoluble fraction of hemolysates of infected erythrocytes but is not present in normal erythrocytes. The substrate is ferriprotoporphyrin IX (FP) released from hemoglobin. At pH 5 and 37 degrees C the enzyme is saturated by 100 microM FP. The pH optimum is between 5 and 6 and the reaction is linear for 6 hours. All heme polymerase activity is destroyed by heating at 100 degrees C for 3 minutes. Chloroquine treatment of malarious mice reduces by 80 percent the activity of this enzyme, without inhibiting release of FP from hemoglobin, and thereby causes excess nonpolymerized, nonhemozoin FP to accumulate. Since the accumulated FP is accessible to bind chloroquine, we propose that it is the mediator of the antimalarial activity of chloroquine.  相似文献   

14.
Trypanosoma brucei brucei, derived from the salivary glands of infected tsetse flies (Glossina morsitans morsitans) and maintained in culture for over 4 years, were infective to both albino rats and tsetse flies. Virulence was markedly enhanced during the first passage in albino rats or tsetse flies. Irradiated cultured trypanosomes induced immunity to homologous challenge but not to tsetse fly or blood-induced challenge with the same stock.  相似文献   

15.
A striking characteristic of the simian immunodeficiency virus (SIV) and of the human immunodeficiency virus type 2 (HIV-2) is the presence of a nonsense mutation in the env gene resulting in the synthesis of a truncated transmembrane protein lacking the cytoplasmic domain. By mutagenesis of an infectious molecular clone of SIVmac142, we investigated the function of the cytoplasmic domain and the significance of the env nonsense mutation. When the nonsense codon (TAG) was replaced by a glutamine codon (CAG), the virus infected HUT78 cells with markedly delayed kinetics. This negative effect was counterselected in vitro as reversion of the slow phenotype frequently occurred. The sequencing of one revertant revealed the presence of a new stop codon three nucleotides 5' to the original mutation. Deletions or an additional nonsense mutation introduced 3' to the original stop codon did not modify SIV infectivity. In contrast, the same deletions or nonsense mutation introduced in the clone in which the stop codon was replaced by CAG abolished infectivity. These results indicated that the envelope domain located 3' to the stop codon is not necessary for in vitro replication. However, the presence of this domain in SIV transmembrane protein leads to a reduced infectivity. This negative effect might correspond to a function controlling the rate of spread of the virus during in vivo infection.  相似文献   

16.
17.
18.
A new variant of simian virus 40 (EL SV40), containing the complete viral DNA separated into two molecules, was isolated. One DNA species contains nearly all of the early (E) SV40 sequences, and the other DNA contains nearly all of the late (L) viral sequences. Each genome was encircled by reiterated viral origins and termini and migrated in agarose gels as covalently closed supercoiled circles. EL SV40 or its progenitor appears to have been generated in human A172 glioblastoma cells, as defective interfering genomes during acute lytic infections, but was selected during the establishment of persistently infected (PI) green monkey cells (TC-7). PI TC-7/SV40 cells contained EL SV40 as the predominant SV40 species. EL SV40 propagated efficiently and rapidly in BSC-1, another line of green monkey cells, where it also formed plaques. EL SV40 stocks generated in BSC-1 cells were shown to be free of wild-type SV40 by a number of criteria. E and L SV40 genomes were also cloned in the bacterial plasmid pBR322. When transfected into BSC-1 cell monolayers, only the combination of E and L genomes produced a lytic infection, followed by the synthesis of EL SV40. However, transfection with E SV40 DNA alone did produce T-antigen, although at reduced frequency.  相似文献   

19.
SV40 chromosomes prepared from infected CV-1 cells were replicated with the purified proteins of SV40 T antigen, HeLa DNA polymerase alpha-primase complex, single-stranded DNA-binding protein, and topoisomerases I and II, all of which have been shown to be essential for SV40 DNA replication in vitro. Replication started near the origin and proceeded bidirectionally. The maximum speed of replication fork movement was 200-300 nucleotides/min, which was similar to the rate of SV40 DNA replication with the same set of proteins. When replication products were digested with micrococcal nuclease, DNA fragments of 160-180 base pairs, which is the typical size of mononucleosomal DNA, were protected. This result indicates that replicated DNA was reconstructed into the nucleosome structure, complexed with parental histones.  相似文献   

20.
Rodent malaria parasites have been widely used in all aspects of malaria research to study parasite development within rodent and insect hosts, drug resistance, disease pathogenesis, host immune response, and vaccine efficacy. Rodent malaria parasites were isolated from African thicket rats and initially characterized by scientists at the University of Edinburgh, UK, particularly by Drs. Richard Carter, David Walliker, and colleagues. Through their efforts and elegant work, many rodent malaria parasite species, subspecies, and strains are now available. Because of the ease of maintaining these parasites in laboratory mice, genetic crosses can be performed to map the parasite and host genes contributing to parasite growth and disease severity. Recombinant DNA technologies are now available to manipulate the parasite genomes and to study gene functions efficiently. In this chapter, we provide a brief history of the isolation and species identification of rodent malaria parasites. We also discuss some recent studies to further characterize the different developing stages of the parasites including parasite genomes and chromosomes. Although there are differences between rodent and human malaria parasite infections, the knowledge gained from studies of rodent malaria parasites has contributed greatly to our understanding of and the fight against human malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号