首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined, by using a specific PGE receptor subtype EP4 agonist and antagonist, the involvement of EP4 receptors in duodenal HCO(3)(-) secretion induced by PGE(2) and mucosal acidification in rats. Mucosal acidification was achieved by exposing a duodenal loop to 10 mM HCl for 10 min, and various EP agonists were given intravenously 10 min before the acidification. Secretion of HCO(3)(-) was dose-dependently stimulated by AE1-329 (EP4 agonist), the maximal response being equivalent to that induced by sulprostone (EP1/EP3 agonist) or PGE(2). The stimulatory action of AE1-329 and PGE(2) but not sulprostone was attenuated by AE3-208, a specific EP4 antagonist. This antagonist also significantly mitigated the acid-induced HCO(3)(-) secretion. Coadministration of sulprostone and AE1-329 caused a greater secretory response than either agent alone. IBMX potentiated the stimulatory action of both sulprostone and AE1-329, whereas verapamil mitigated the effect of sulprostone but not AE1-329. Chemical ablation of capsaicin-sensitive afferent neurons did not affect the response to any of the EP agonists used. We conclude that EP4 receptors are involved in the duodenal HCO(3)(-) response induced by PGE(2) or acidification in addition to EP3 receptors. The process by which HCO(3)(-) is secreted through these receptors differs regarding second-messenger coupling. Stimulation through EP4 receptors is mediated by cAMP, whereas that through EP3 receptors is regulated by both cAMP and Ca(2+); yet there is cooperation between the actions mediated by these two receptors. The neuronal reflex pathway is not involved in stimulatory actions of these prostanoids.  相似文献   

2.
Prostaglandins (PGs) have been shown to play various roles in adipogenesis. In this study, we investigated on which PGE receptor subtypes are involved in the inhibition of 3T3-L1 preadipocyte differentiation. The triglyceride content of cells, used as an index of differentiation, was decreased when PGE(2), the FP-agonist fluprostenol or dibutyryl cAMP, was exogenously added to differentiation cocktails. 3T3-L1 preadipocyte cells express mRNAs for the prostanoid EP4, FP, and IP receptors. PGE(2) and the EP4 agonist AE1-329 increased cAMP levels in preadipocytes in a dose-dependent manner. AE1-329 suppressed the expression induction of differentiation marker genes such as resistin and peroxisome proliferator-activated receptor-gamma. The inhibitory effect of PGE(2) but not that of fluprostenol was reversed by the addition of the EP4 antagonist AE3-208. AE3-208 mimicked the differentiation-promoting effects of indomethacin. These results suggest that the EP4 receptor mediates the suppressive action of PGE(2) in 3T3-L1 adipocyte differentiation.  相似文献   

3.
We examined the role of prostaglandin E (EP) receptor subtypes in the regulation of gastric acid secretion in the rat. Under urethane anesthesia, the stomach was superfused with saline, and the acid secretion was determined at pH 7.0 by adding 50 mM NaOH. The acid secretion was stimulated by intravenous infusion of histamine or pentagastrin. Various EP agonists were administered intravenously, whereas EP antagonists were given subcutaneously 30 min or intravenously 10 min before EP agonists. PGE(2) suppressed the acid secretion stimulated by either histamine or pentagastrin in a dose-dependent manner. The acid inhibitory effect of PGE(2) was mimicked by sulprostone (EP(1)/EP(3) agonist) but not butaprost (EP(2) agonist) or AE1-329 (EP(4) agonist). The inhibitory effect of sulprostone, which was not affected by ONO-8711 (EP(1) antagonist), was more potent against pentagastrin- (50% inhibition dose: 3.6 mug/kg) than histamine-stimulated acid secretion (50% inhibition dose: 18.0 mug/kg). Pentagastrin increased the luminal release of histamine, and this response was also inhibited by sulprostone. On the other hand, AE1-329 (EP(4) agonist) stimulated the acid secretion in vagotomized animals with a significant increase in luminal histamine. This effect of AE1-329 was totally abolished by cimetidine as well as AE3-208 (EP(4) antagonist). These results suggest that PGE(2) has a dual effect on acid secretion: inhibition mediated by EP(3) receptors and stimulation through EP(4) receptors. The former effect may be brought about by suppression at both parietal and enterochromaffin-like cells, whereas the latter effect may be mediated by histamine released from enterochromaffin-like cells.  相似文献   

4.
Maintenance of a patent ductus arteriosus by means of prostaglandins enables the surgical correction of a congenital heart defect in infants to be postponed until a phase of development when the operation hazards are smaller. We investigated the pathophysiological consequences of this therapeutic measure in an experimental model in which E2 prostaglandin was administered to newborn laboratory rats. It was found that, physiologically, the ductus arteriosus (DA) closed progressively within 180 min after birth. The repeated administration of PGE2 (subcutaneously, 15 micrograms.kg-1 every 30 min from the 5th min after birth) blocked closure of the DA, which was still fully patent 300 min after birth. Histological tests showed no significant differences in the structure of the tunica media of the physiologically patent and the PGE2-treated DA. The results show that PGE2 also inhibit physiological closure of the DA in newborn rats. Long-term study of this pathophysiological process is at present impeded by the need for the continuous administration of prostaglandins.  相似文献   

5.
Prostaglandin E(2) (PGE(2)) has been shown to negatively regulate adipogenesis. To explore to what extent PGE(2) inhibits the differentiation of cells to adipocytes and to examine whether its effect could be due to EP4 receptor signaling, we used microarrays to analyze the gene expression profiles of 3T3-L1 cells exposed to a differentiation cocktail supplemented with PGE(2), AE1-329 (an EP4 agonist), or vehicle. The differentiation-associated responses in genes such as adipocytokines and enzymes related to lipid metabolism were largely weakened upon PGE(2) treatment. In particular, the expression of peroxisome proliferator activated receptor-gamma and CCAAT/enhancer binding protein-alpha, genes playing a central role in adipogenesis, was greatly suppressed. PGE(2) appears to be ineffective to a subclass of insulin target genes such as hexokinase 2 and phosphofructokinase. Similar responses were produced in the differentiation-associated genes upon AE1-329 treatment. These results suggest that PGE(2) inhibits a crucial step of the adipocyte differentiation process by acting on the EP4 receptor in 3T3-L1 cells.  相似文献   

6.
We examined the involvement of cyclooxygenase (COX)-1 as well as COX-2 in the healing of gastric ulcers and investigated which prostaglandin (PG) EP receptor subtype is responsible for the healing-promoting action of PGE2. Male SD rats and C57BL/6 mice, including wild-type, COX-1(-/-), and COX-2(-/-), were used. Gastric ulcers were produced by thermocauterization under ether anesthesia. Gastric ulcer healing was significantly delayed in both rats and mice by indomethacin and rofecoxib but not SC-560 given for 14 days after ulceration. The impaired healing was also observed in COX-2(-/-) but not COX-1(-/-) mice. Mucosal PGE2 content increased after ulceration, and this response was significantly suppressed by indomethacin and rofecoxib but not SC-560. The delayed healing in mice caused by indomethacin was significantly reversed by the coadministration of 11-deoxy-PGE1 (EP3/EP4 agonist) but not other prostanoids, including the EP1, EP2, and EP3 agonists. By contrast, CJ-42794 (selective EP(4) antagonist) significantly delayed the ulcer healing in rats and mice. VEGF expression and angiogenesis were both upregulated in the ulcerated mucosa, and these responses were suppressed by indomethacin, rofocoxib, and CJ-42794. The expression of VEGF in primary rat gastric fibroblasts was increased by PGE2 or AE1-329 (EP4 agonist), and these responses were both attenuated by coadministration of CJ-42794. These results confirmed the importance of COX-2/PGE2 in the healing mechanism of gastric ulcers and further suggested that the healing-promoting action of PGE2 is mediated by the activation of EP4 receptors and is associated with VEGF expression.  相似文献   

7.
Prostaglandin (PG) E2, a bioactive lipid produced in the brains of various mammals, decreases food intake after central administration. We examined which of four distinct subtypes of PGE2 receptors (EP1-EP4) mediated the anorexigenic action of PGE2 using highly selective ligands. PGE2 at a dose of 0.1-10 nmol/mouse decreased food intake after intracerebroventricular (i.c.v.) administration in a dose-dependent manner in fasted mice. A centrally administered EP4 agonist, ONO-AE1-329 at a dose of 1-10 nmol/mouse mimicked the anorexigenic action by PGE2. The anorexigenic action of PGE2 or EP4 agonist was ameliorated by EP4 antagonist ONO-AE3-208 at a dose of 10 nmol/mouse. Thus, activation of PGE2-EP4 signaling in the central nervous system suppresses food intake. The EP4 agonist at a dose of 10 nmol/mouse delayed gastric emptying and elevated blood glucose.  相似文献   

8.
Prostaglandin E(2) (PGE(2)) is a bioactive prostanoid implicated in the inflammatory processes of acute lung injury/acute respiratory distress syndrome. This study investigated whether PGE(2) can induce production of interleukin (IL)-8, the major chemokine for neutrophil activation, from human pulmonary microvascular endothelial cells (HPMVECs). PGE(2) significantly enhanced IL-8 protein production with increases in IL-8 mRNA expression and intracellular cAMP levels. HPMVECs expressed only EP4 receptor mRNA. The PGE(2) effects were mimicked by a selective EP4 receptor agonist, ONO-AE1-329, and inhibited by a selective EP4 receptor antagonist, ONO-AE3-208, or a protein kinase A inhibitor, Rp-adenosine 3',5'-cyclic monophosphorothioate triethylamine salt. The specific agonist for EP1, EP2, or EP3 receptor did not induce IL-8 production. PGE(2)-induced IL-8 production was accompanied by p38 phosphorylation and was significantly inhibited by a p38 inhibitor, SB-203580, but not by an ERK1/2 inhibitor, U-0126, or a JNK inhibitor, SP-600125. Additionally, PGE(2) increased cyclooxygenase-2 expression with no change in constitutive cyclooxygenase-1 expression, suggesting possible involvement of an autocrine or paracrine manner. In conclusion, PGE(2) enhances IL-8 production via EP4 receptor coupled to G(s) protein in HPMVECs. Activation of the cAMP/protein kinase A pathway, followed by p38 activation, is essential for these mechanisms. Because neutrophils play a critical role in the inflammation of acute lung injury/acute respiratory distress syndrome, IL-8 released from the pulmonary microvasculature in response to PGE(2) may contribute to pathophysiology of this disease.  相似文献   

9.
The ductus arteriosus (DA) is a fetal shunt that directs right ventricular outflow away from pulmonary circulation and into the aorta. Critical roles for prostaglandin E(2) (PGE(2)) and the EP4 receptor (EP4) have been established in maintaining both the patency of the vessel in utero and in its closure at birth. Here we have generated mice in which loss of EP4 expression is limited to either the smooth muscle (SMC) or endothelial cells and demonstrated that SMC, but not endothelial cell expression of EP4 is required for DA closure. The genome wide expression analysis of full term wild type and EP4(-/-) DA indicates that PGE(2)/EP4 signaling modulates expression of a number of unique pathways, including those involved in SMC proliferation, cell migration, and vascular tone. Together this supports a mechanism by which maturation and increased contractility of the vessel is coupled to the potent smooth muscle dilatory actions of PGE(2).  相似文献   

10.
Aihara E  Nomura Y  Sasaki Y  Ise F  Kita K  Takeuchi K 《Life sciences》2007,80(26):2446-2453
We investigated the involvement of prostaglandin E (PGE) receptor subtype EP3 in the regulatory mechanism of duodenal HCO3 secretion in rats. A proximal duodenal loop or a chambered stomach was perfused with saline, and HCO3 secretion was measured using a pH-stat method and by adding 2 mM HCl. Mucosal acidification was achieved through 10 min of exposure to 10 mM HCl in the duodenum or 100 mM HCl in the stomach. Various EP agonists or the EP4 antagonist were given i.v., while the EP1 or EP3 antagonist was given s.c. or i.d., respectively. Sulprostone (EP1/EP3 agonists) stimulated duodenal HCO3 secretion in a dose-dependent manner, and this response was inhibited by AE5-599 (EP3 antagonist) but not AE3-208 (EP4 antagonist). AE1-329 (EP4 agonist) also increased duodenal HCO3 secretion, and this action was inhibited by AE3-208 but not AE5-599. The response to PGE2 or acidification in the duodenum was partially attenuated by AE5-599 or AE3-208 alone but completely abolished by the combined administration. Duodenal damage caused by mucosal perfusion with 150 mM HCl for 4 h was worsened by pretreatment with AE5-599 and AE3-208 as well as indomethacin and further aggravated by co-administration of these antagonists. Neither the EP3 nor EP4 antagonist had any effect on the gastric response induced by PGE2 or acidification. These results clearly demonstrate the involvement of EP3 receptors, in addition to EP4 receptors, in the regulation of duodenal HCO3 secretion as well as the maintenance of the mucosal integrity of the duodenum against acid injury.  相似文献   

11.
Prostaglandin E2 (PGE2) mediates the organization of male rat sexual behavior and medial preoptic area (MPOA) neuroanatomy during a sensitive perinatal window. PGE2 is up-regulated in response to estradiol, and initiates a two-fold increase in dendritic spines densities on neurons. All the four receptors for PGE2 and EP1-4 are present in developing POA, a critical region controlling male sexual behavior. Previous studies explored that EP receptors are involved in PGE2-induction of neonatal levels of spinophilin protein, a surrogate marker for dendritic spine formation, but did not assess behavioral masculinization. Here, we used two approaches, suppression of EP receptor expression with antisense oligonucleotides and activation of EP receptors with selective agonists, to test which receptors are necessary and sufficient, respectively, for the effects of PGE2 on behavior and neuronal morphology. In female rats, neonatal treatment with antisense oligonucleotides against EP2 or EP4 but not EP1 or EP3 completely prevented the expression of adult behavior organized by PGE2 exposure. The effects of ONO-DI-004, ONO-AE-259-01, ONO-AE-248, and ONO-AE1-329 (EP1-4 agonists respectively) were equivalent to PGE2 treatment, which suggests activating any EP receptor neonatally suffices in masculinizing sex behavior. When given alone, not all EP agonists increased neonatal POA spinophilin levels; yet giving each agonist neonatally increased adult levels. Moreover, adult spinophilin levels significantly correlated with two measures of male sexual behavior. The body of evidence suggests that EP2 and EP4 are both necessary and sufficient for PGE2-induced masculinization of sex behavior, whereas EP1 and EP3 provide redundant roles.  相似文献   

12.
Use of cyclooxygenase (COX) inhibitors to delay preterm birth is complicated by in utero constriction of the ductus arteriosus and delayed postnatal closure. Delayed postnatal closure has been attributed to loss of vasa vasorum flow and ductus wall ischemia resulting from constriction in utero. We used the murine ductus (which does not depend on vasa vasorum flow) to determine whether delayed postnatal closure may be because of mechanisms independent of in utero constriction. Acute inhibition of both COX isoforms constricted the fetal ductus on days 18 and 19 (term) but not earlier in gestation; COX-2 inhibition constricted the fetal ductus more than COX-1 inhibition. In contrast, mice exposed to prolonged inhibition of COX-1, COX-2, or both COX isoforms (starting on day 15, when the ductus does not respond to the inhibitors) had no contractile response to the inhibitors on days 18 or 19. Newborn mice closed their ductus within 4 h of birth. Prolonged COX inhibition on days 11-14 of gestation had no effect on newborn ductal closure; however, prolonged COX inhibition on days 15-19 resulted in delayed ductus closure despite exposure to 80% oxygen after birth. Similarly, targeted deletion of COX-2 alone, or COX-1/COX-2 together, impaired postnatal ductus closure. Nitric oxide inhibition did not prevent the delay in ductus closure. These data show that impaired postnatal ductus closure is not the result of in utero ductus constriction or upregulation of nitric oxide synthesis. They are consistent with a novel role for prostaglandins in ductus arteriosus contractile development.  相似文献   

13.
Nonselective cyclooxygenase (COX) inhibitors are potent tocolytic agents; however, they also have adverse fetal effects such as constriction of the fetal ductus arteriosus. Recently, selective COX-2 inhibitors have been used in the management of preterm labor in the hope of avoiding fetal complications. However, both COX-1 and -2 are expressed by cells of the ductus arteriosus. We used fetal lambs (0.88 gestation) to assess the ability of selective COX-2 inhibitors celecoxib and NS398 to affect the ductus arteriosus. Both selective COX-2 inhibitors decreased PGE(2) and 6ketoPGF(1alpha) production in vitro; both inhibitors constricted the isolated ductus in vitro. The nonselective COX-1/COX-2 inhibitor indomethacin produced a further reduction in PG release and an additional increase in ductus tension in vitro. We used a prodrug of celecoxib to achieve 1.4 +/- 0.6 microg/ml, mean +/- standard deviation, of the active drug in vivo. This concentration of celecoxib produced both an increase in pressure gradient and resistance across the ductus; celecoxib also decreased fetal plasma concentrations of PGE(2) and 6ketoPGF(1alpha). Indomethacin (0.7 +/- 0.2 microg/ml) produced a significantly greater fall in ductus blood flow than celecoxib and tended to have a greater effect on ductus resistence in vivo. We conclude that caution should be used when recommending COX-2 inhibitors for use in pregnant women, because COX-2 appears to play a significant role in maintaining patency of the fetal ductus arteriosus.  相似文献   

14.
Endothelin is a potent constrictor of the lamb ductus arteriosus   总被引:7,自引:0,他引:7  
Endothelin was tested on isolated ductus arteriosus preparations from mature fetal lambs. At low PO2 (18-24 Torr; 1 Torr = 133.3 Pa), the compound constricted the vessel dose-dependently over the range from about 10(-10) to 10(-7) M. The contraction was sustained and did not subside even after an extended period of washing. Endothelin was also effective on tissues (PO2,217-231 Torr; indomethacin, 2.8 X 10(-6) M) that had been completely relaxed with CO (CO/O2 ratio, 0.28). CO treatment interferes with a cytochrome P-450 mechanism, which is considered crucial for the contractile response of the vessel to oxygen. These findings are consistent with a role of endothelin in the closure of the ductus arteriosus at birth.  相似文献   

15.
Although the role of PGE2 in maintaining ductus arteriosus (DA) patency is well established, the specific PGE2 receptor subtype(s) (EP) involved have not been clearly identified. We used late gestation fetal and neonatal lambs to study developmental regulation of EP receptors. In the fetal DA, radioligand binding and RT-PCR assays virtually failed to detect EP1 but detected EP2, EP3D, and EP4 receptors in equivalent proportions. In the newborn lamb, DA total density was one-third of that found in the fetus and only EP2 was detected. Stimulation of EP2 and EP4 increased cAMP formation and was associated with DA relaxation. Though stimulation of EP3 inhibited cAMP formation, it surprisingly relaxed the fetal DA both in vitro and in vivo. This EP3-induced relaxation was specifically diminished by the ATP-sensitive K(+) (K(ATP)) channel blocker glibenclamide. In conclusion, PGE2 dilates the late gestation fetal DA through pathways that involve either cAMP (EP2 and EP4) or K(ATP) channels (EP3). The loss of EP3 and EP4 receptors in the newborn DA is consistent with its decreased responsiveness to PGE2.  相似文献   

16.
Prostaglandins E1, E2, A1, and A2 have been shown by cineaortography to open and dilate the ductus arteriosus in anesthetised piglets 3 to 6 hours of age. The dosage of PGEs required was 1 to 4 μg/kg/min. and of PGAs 20 to 40 μg/kg/min. The effect of PGEs faded within 20 minutes of stopping infusion but the effect of PGAs was still evident up to 45 minutes after stopping the infusion. Little effect was noted from hypoxia or from the addition of indomethacin to prostaglandin infusion. Side effects were not troublesome with the dosage employed but hypotension and apnea sometimes occurred at the onset of PGE infusions.  相似文献   

17.
The prostanoid receptors on human airway smooth muscle cells (HASMC) that augment the release by IL-1beta of granulocyte colony-stimulating factor (G-CSF) have been characterized and the signaling pathway elucidated. PCR of HASM cDNA identified products corresponding to EP(2), EP(3), and EP(4) receptor subtypes. These findings were corroborated at the protein level by immunocytochemistry. IL-1beta promoted the elaboration of G-CSF, which was augmented by PGE(2). Cicaprost (IP receptor agonist) was approximately equiactive with PGE(2), whereas PGD(2), PGF(2alpha), and U-46619 (TP receptor agonist) were over 10-fold less potent. Neither SQ 29,548 nor BW A868C (TP and DP(1) receptor antagonists, respectively) attenuated the enhancement of G-CSF release evoking any of the prostanoids studied. With respect to PGE(2), the EP receptor agonists 16,16-dimethyl PGE(2) (nonselective), misoprostol (EP(2)/EP(3) selective), 17-phenyl-omega-trinor PGE(2) (EP(1) selective), ONO-AE1-259, and butaprost (both EP(2) selective) were full agonists at enhancing G-CSF release. AH 6809 (10 microM) and L-161,982 (2 microM), which can be used in HASMC as selective EP(2) and EP(4) receptor antagonists, respectively, failed to displace to the right the PGE(2) concentration-response curve that described the augmented G-CSF release. In contrast, AH 6809 and L-161,982 in combination competitively antagonized PGE(2)-induced G-CSF release. Augmentation of G-CSF release by PGE(2) was mimicked by 8-BrcAMP and abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA). These data demonstrate that PGE(2) facilitates G-CSF secretion from HASMC through a PKA-dependent mechanism by acting through EP(2) and EP(4) prostanoid receptors and that effective antagonism is realized only when both subtypes are blocked concurrently.  相似文献   

18.
In this study, we investigated the role of PGE(2) in mouse mastocytoma P-815 cell adhesion to extracellular matrix proteins (ECMs) in vitro. We report that PGE(2) accelerated ProNectin F(TM) (a proteolytic fragment of fibronectin)-mediated adhesion, which was abolished by addition of the GRGDS peptide, an inhibitor of the RDG binding site of ProNectin F(TM). We show that the cAMP level and cAMP-regulated protein kinase (PKA) activity are critical mediators of this PGE(2) effect, because the cell-permeable cAMP analogue 8-Br-cAMP accelerated P-815 cell adhesion to ProNectin F(TM) and the pharmacological inhibitor of PKA, H-89, blocked PGE(2)-mediated adhesion. Consistent with mRNA expression of the G(s)-coupled EP4- and G(i)-coupled EP3-PGE receptor subtypes, P-815 cell adhesion was accelerated by treatment with a selective EP4 agonist, ONO-AE1-329, but not a selective EP1/EP3 agonist, sulprostone. However, simultaneous treatment with ONO-AE1-329 and sulprostone resulted in augmentation of both the cAMP level and cell adhesion. The augmentation of EP3-mediated cAMP synthesis was dose-dependent, without affecting the half-maximal concentration for EP4-mediated G(s)-activity, which was inhibited by a G(i) inhibitor, pertussis toxin. In conclusion, these findings suggest that PGE(2) accelerates RGD-dependent adhesion via cooperative activation between EP3 and EP4 and contributes to the recruitment of mast cells to the ECM during inflammation.  相似文献   

19.
Costimulatory molecules play important roles in immune responses. In the present study we investigated the effects of PGE(2) on the expression of ICAM-1, B7.1, and B7.2 on monocytes in IL-18-stimulated PBMC using FACS analysis. Addition of PGE(2) to PBMC inhibited ICAM-1 and B7.2 expression elicited by IL-18 in a concentration-dependent manner. We examined the involvement of four subtypes of PGE(2) receptors, EP1, EP2, EP3, and EP4, in the modulatory effect of PGE(2) on ICAM-1 and B7.2 expression elicited by IL-18, using subtype-specific agonists. ONO-AE1-259-01 (EP2R agonist) inhibited IL-18-elicited ICAM-1 and B7.2 expression in a concentration-dependent manner with a potency slightly less than that of PGE(2), while ONO-AE1-329 (EP4R agonist) was much less potent than PGE(2). The EP2/EP4R agonist 11-deoxy-PGE(1) mimicked the effect of PGE(2) with the same potency. ONO-D1-004 (EP1R agonist) and ONO-AE-248 (EP3R agonist) showed no effect on IL-18-elicited ICAM-1 or B7.2 expression. These results indicated that EP2 and EP4Rs were involved in the action of PGE(2). Dibutyryl cAMP and forskolin down-regulated ICAM-1 and B7.2 expression in IL-18-stimulated monocytes. As EP2 and EP4Rs are coupled to adenylate cyclase, we suggest that PGE(2) down-regulates IL-18-induced ICAM-1 and B7.2 expression in monocytes via EP2 and EP4Rs by cAMP-dependent signaling pathways. The fact that anti-B7.2 as well as anti-ICAM-1 Ab inhibited IL-18-induced cytokine production implies that PGE(2) may modulate the immune response through regulation of the expression of particular adhesion molecules on monocytes via EP2 and EP4Rs.  相似文献   

20.
K Fujimori  M Yano  T Ueno 《PloS one》2012,7(9):e44698
We recently reported that aldo-keto reductase 1B3-produced prostaglandin (PG) F(2α) suppressed the early phase of adipogenesis. PGE(2) is also known to suppress adipogenesis. In this study, we found that microsomal PGE(2) synthase (PGES)-1 (mPGES-1; PTGES1) acted as the PGES in adipocytes and that PGE(2) and PGF(2α) synergistically suppressed the early phase of adipogenesis. PGE(2) production was detected in preadipocytes and transiently enhanced at 3 h after the initiation of adipogenesis of mouse adipocytic 3T3-L1 cells, followed by a quick decrease; and its production profile was similar to the expression of the cyclooxygenase-2 (PTGS2) gene. When 3T3-L1 cells were transfected with siRNAs for any one of the three major PTGESs, i.e., PTGES1, PTGES2 (mPGES-2), and PTGES3 (cytosolic PGES), only PTGES1 siRNA suppressed PGE(2) production and enhanced the expression of adipogenic genes. AE1-329, a PTGER4 (EP4) receptor agonist, increased the expression of the Ptgs2 gene with a peak at 1 h after the initiation of adipogenesis. PGE(2)-mediated enhancement of the PTGS2 expression was suppressed by the co-treatment with L-161982, a PTGER4 receptor antagonist. Moreover, AE1-329 enhanced the expression of the Ptgs2 gene by binding of the cyclic AMP response element (CRE)-binding protein to the CRE of the Ptgs2 promoter; and its binding was suppressed by co-treatment with L-161982, which was demonstrated by promoter luciferase and chromatin immunoprecipitation assays. Furthermore, when 3T3-L1 cells were caused to differentiate into adipocytes in medium containing both PGE(2) and PGF(2α), the expression of the adipogenic genes and the intracellular triglyceride level were decreased to a greater extent than in medium containing either of them, revealing that PGE(2) and PGF(2α) independently suppressed adipogenesis. These results indicate that PGE(2) was synthesized by PTGES1 in adipocytes and synergistically suppressed the early phase of adipogenesis of 3T3-L1 cells in cooperation with PGF(2α) through receptor-mediated activation of PTGS2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号