首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of artificial structures along urbanised shorelines is a global phenomenon. Such modifications of habitats have important consequences to the abundance of fouling organisms on primary substrata, but the influence on fouling of habitat-formers living on these structures is poorly understood. Fouling of habitat-forming kelps Ecklonia radiata on pier-pilings was compared to that on rocky reefs at three locations in Sydney Harbour. Kelps on pilings supported different assemblages of bryozoans from those on reefs. The abundances of bryozoans on kelps, inparticular of the non-indigenous species Membranipora membranacea, were significantly greater on pilings. Differences were consistent in time and space. This indicates that the addition of artificial structures also affects fouling on secondary biogenic substrata, altering biodiversity and potentially facilitating the introduction and dispersal of non-indigenous epibiota. Understanding the processes that cause these patterns is necessary to allow sensible predictions about ecological effects of built structures.  相似文献   

2.
Epibiota were sampled on nine small jetties in the tidal, urban canals of south-east Queensland, Australia, to determine if the small fishes that are associated with these jetties prey on the epibiota on the pilings of the jetties and whether these fishes depend on the epibiota as a source of food. Epibiota was dominated by barnacles, filamentous and foliose algae and ranged in thickness from 4 to 11 mm. The two species of fishes that associated most closely with jetty pilings, Pandaka lidwilli (Gobiidae) and Monodactylus argenteus (Monodactylidae), were sampled twice during the day and twice during the night for analysis of stomach contents. During the day, the diet of P. lidwilli was dominated by amphipods ( c. 70%, by mass of organic content), with copepods, bivalves and bryozoans each contributing <10%. At night, amphipods contributed less ( c. 45%) and copepods more ( c. 35%). The diet of M. argenteus was dominated by filamentous algae (55%) and amphipods (20%) during the day and filamentous algae (70%) and barnacle cirri (23%) at night. Epibiota, therefore, made a substantial contribution to the diet of the fishes but were not the sole source of food for either species. As jetties were the only structures that supported epibiota in the area, fishes probably sourced their epibiota from the pilings of the jetties. Whether fishes depended on the epibiota was, therefore, tested using a manipulative before-after-control-impact (BACI) study. Three jetties were assigned randomly to each of three treatments: (1) epibiota removed from pilings, (2) epibiota cut and damaged (a procedural control) and (3) epibiota left undisturbed. Abundances of P. lidwilli and M. argenteus around jetty pilings remained similar across all treatments from before to after the removal of epibiota. These results indicate that although fishes consumed epibiota on the jetties, they did not depend on the epibiota of the jetties for food.  相似文献   

3.
Foraging by predatory fish is thought to be one of the primary ecological processes affecting the abundances of plants and animals in subtidal habitats. The importance of this process was assessed on the subtidal surfaces of urban structures (pontoons and pilings) that represent major coastal habitats for marine organisms. Fish feed with greater intensity on epibiota attached to pilings than pontoons and it was hypothesised that greater predation on pilings explained why the structure of epibiotic assemblages differs between these habitats. I predicted that the structure of epibiotic assemblages would develop differently between pilings and pontoons in the presence of fish (plates open to predation) but not in the absence of fish (plates inside exclusion cages). Results revealed large differences in abundance between pilings and pontoons that were largely independent of the caged and uncaged plates. Predation may be intense (as it appeared on pilings) but unimportant because it does not explain observed abundances of prey (epibiota between pilings and pontoons).  相似文献   

4.
Urban structures in the form of pontoons and pilings represent major coastal habitats for marine organisms and understanding the factors causing abundances of organisms to differ between these and natural habitat has been neglected in the study of coastal ecology. It has been proposed that composition of substrata explain differences previously described between subtidal assemblages of epibiota on rocky reef (sandstone) and pontoons (concrete) in Sydney Harbour, Australia. This study tested the hypothesis that differences in the composition of substratum (sandstone vs. concrete) independent of type of habitat (rocky reef vs. pontoon) affects the development of epibiotic assemblages. This was tested by experimentally providing substratum of the two types in both habitats. Epibiotic assemblages were unaffected by the composition of substratum but strongly affected by the type of habitat; demonstrating that pontoons constitute novel habitats for epibiota. This result highlights a need for determining how current ecological understanding of subtidal epibiota, which is heavily based on studies of urban structures (pilings and pontoons), relates to natural reef. Future tests of hypotheses about the nature of these differences will not only contribute to better ecological understanding of epibiota and their use of urban structures as habitats, but also to better predictions of future changes to the ecology of coastal habitats.  相似文献   

5.
Marzinelli EM 《Biofouling》2012,28(3):339-349
The addition of artificial structures along urbanised shorelines is a global phenomenon. Such modifications of habitats have important consequences to the abundance of fouling organisms on primary substrata, but the influence on fouling of habitat-formers living on these structures is poorly understood. Fouling of habitat-forming kelps Ecklonia radiata on pier-pilings was compared to that on rocky reefs at three locations in Sydney Harbour. Kelps on pilings supported different assemblages of bryozoans from those on reefs. The abundances of bryozoans on kelps, in particular of the non-indigenous species Membranipora membranacea, were significantly greater on pilings. Differences were consistent in time and space. This indicates that the addition of artificial structures also affects fouling on secondary biogenic substrata, altering biodiversity and potentially facilitating the introduction and dispersal of non-indigenous epibiota. Understanding the processes that cause these patterns is necessary to allow sensible predictions about ecological effects of built structures.  相似文献   

6.
Modified habitats influence kelp epibiota via direct and indirect effects   总被引:1,自引:0,他引:1  
Addition of man-made structures alters abiotic and biotic characteristics of natural habitats, which can influence abundances of biota directly and/or indirectly, by altering the ecology of competitors or predators. Marine epibiota in modified habitats were used to test hypotheses to distinguish between direct and indirect processes. In Sydney Harbour, kelps on pier-pilings supported greater covers of bryozoans, particularly of the non-indigenous species Membranipora membranacea, than found on natural reefs. Pilings influenced these patterns and processes directly due to the provision of shade and indirectly by altering abundances of sea-urchins which, in turn, affected covers of bryozoans. Indirect effects were more important than direct effects. This indicates that artificial structures affect organisms living on secondary substrata in complex ways, altering the biodiversity and indirectly affecting abundances of epibiota. Understanding how these components of habitats affect ecological processes is necessary to allow sensible prediction of the effects of modifying habitats on the ecology of organisms.  相似文献   

7.
Human-made structures, such as groynes, breakwaters, seawalls, pier pilings and floating pontoons, are becoming common features of the landscape in urbanised coastal and estuarine areas. Despite this tendency few studies have focused on their ecology or on their potential impacts on natural assemblages of organisms. When artificial structures are introduced in areas with little or no hard substrata, they not only provide novel habitats, which enables the colonisation of sandy areas by hard-bottom dwelling species, but they can also provide suitable habitats for exotic species. Along the north-east coast of Italy, sandy shores are protected from erosion by a line of breakwaters, which runs almost uninterrupted for about 300 km. These structures provide habitat for a variety of macroalgae and invertebrates and also for the invasive green alga Codium fragile ssp. tomentosoides. The aim of this study was, therefore, to investigate patterns of distribution of this alga on breakwaters in Cesenatico. In particular, we compared the density of thalli, biomass, length and degree of branching of C. fragile ssp. tomentosoides between the landward and the seaward sides of breakwaters, to test the hypothesis that sheltered habitats (landward) represent more suitable habitats than exposed habitats (seaward). In general, the landward side of breakwaters supported greater numbers of thalli of C. fragile ssp. tomentosoides than seaward sides. Thalli grew longer and more branched in sheltered habitats, leading to an overall larger biomass of the alga on the landward side of breakwaters. The presence of sheltered human-made hard substrata in the vicinity of major trading ports and sources of eutrophication could enhance the dispersal of invasive species across regional and geographic scales. Thus, the effects of artificial structures and introduced species on coastal assemblages cannot be evaluated separately, but their synergistic nature should be considered in planning strategies for conservation of biodiversity in coastal habitats.  相似文献   

8.
We characterized demersal fish and decapod crustacean habitats in 14 shallow (< 12m) areas in Penobscot Bay, Maine, by mapping the distribution of subtidal substrata with an acoustic sea bottom profiler. We identified the aquatic vegetation and the fishes and decapods associated with these habitats. Samples of fishes and decapods in each habitat were collected with a small beam trawl. The seabed at most of the stations sampled was composed of a mosaic of substrata. More species of fishes tow-1 and higher abundances of fishes and decapods were found in stations with vegetation present, particularly eelgrass, Zostera marina. Decapod species richness tow-1 was similar between vegetated and unvegetated habitats. Shallow habitats in Penobscot Bay were dominated by juvenile fishes and function as nursery areas. The greater species diversity and higher abundances of epibenthic fishes and decapod crustaceans observed in vegetated habitats, particularly beds of Zostera marina, compared with unvegetated areas in Penobscot Bay conform to the hypothesis that increased habitat complexity results in increased species richness and abundance.The first author is also senior author  相似文献   

9.
Anthropogenic habitats are increasingly prevalent in coastal marine environments. Previous research on sessile epifauna suggests that artificial habitats act as a refuge for nonindigenous species, which results in highly homogenous communities across locations. However, vertebrate assemblages that live in association with artificial habitats are poorly understood. Here, we quantify the biodiversity of small, cryptic (henceforth “cryptobenthic”) fishes from marine dock pilings across six locations over 35° of latitude from Maine to Panama. We also compare assemblages from dock pilings to natural habitats in the two southernmost locations (Panama and Belize). Our results suggest that the biodiversity patterns of cryptobenthic fishes from dock pilings follow a Latitudinal Diversity Gradient (LDG), with average local and regional diversity declining sharply with increasing latitude. Furthermore, a strong correlation between community composition and spatial distance suggests distinct regional assemblages of cryptobenthic fishes. Cryptobenthic fish assemblages from dock pilings in Belize and Panama were less diverse and had lower densities than nearby reef habitats. However, dock pilings harbored almost exclusively native species, including two species of conservation concern absent from nearby natural habitats. Our results suggest that, in contrast to sessile epifaunal assemblages on artificial substrates, artificial marine habitats can harbor diverse, regionally characteristic assemblages of vertebrates that follow macroecological patterns that are well documented for natural habitats. We therefore posit that, although dock pilings cannot function as a replacement for natural habitats, dock pilings may provide cost‐effective means to preserve native vertebrate biodiversity, and provide a habitat that can be relatively easily monitored to track the status and trends of fish biodiversity in highly urbanized coastal marine environments.  相似文献   

10.
J. PEOPLE 《Austral ecology》2006,31(2):271-281
Abstract Artificial structures, such as seawalls, pilings and pontoons, are common features of urban estuaries. They replace natural structures or add to the amount of hard substratum in an area and provide habitats for many fish and invertebrates. Previous work has concentrated on fish or on the invertebrates that occupy the primary substratum of artificial structures. Mussels often grow on different types of structures (pontoons, pilings, seawalls and natural reefs) and provide a secondary substratum for other organisms to inhabit. Counting and identifying organisms associated with mussel beds is traditionally done to species level, which is very time‐consuming. To save time, organisms in this study were identified to coarse levels of taxonomic resolution (a mix of taxa, such as class, order, family and genus), which showed similar patterns to those when particularly speciose and abundant groups were identified to species. This study tests hypotheses that the distribution and abundance of mobile and sessile organisms that inhabit mussel beds will differ among natural and various types of artificial structures. When the associated assemblages of mussel beds from different types of structures and from different locations were examined, assemblages varied according to the type of structure they inhabited and its location. Assemblages associated with mussels on pontoons differed consistently from those on other types of structures. Patterns in the assemblages were also consistent through time. These data show that the types and amounts of artificial structures added to an environment can affect the types, distribution and abundances of organisms living in biogenic habitats.  相似文献   

11.
Sargassum muticum (Phaeophyceae, Fucales) has recently been introduced to Limfjorden (Denmark) where its closest relative is the indigenous Halidrys siliquosa. Previous studies have demonstrated large quantitative (canopy biomass) and qualitative (canopy persistence) differences in the habitat available to epibiota within the canopies of these two macroalgae. We therefore hypothesised that these algae would support different epibiota communities and tested this by sampling the epibiota of S. muticum and H. siliquosa on seven occasions throughout 1997 by enclosing entire thalli in mesh bags. We found 53 epibiota taxa and, with only one exception, they were all recorded on both host species. Species richness and abundance of epibiota exhibited clear seasonal variation on both host species, although epibiota biomass was seasonally constant on H. siliquosa but not on S. muticum. These patterns were consistent with the different life histories of the host species. There was a weakly negative correlation between thallus size and epibiota biomass for both host species. When taking species-specific seasonal variation in thallus size into consideration, S. muticum and H. siliquosa were found to support significantly different epibiota biomasses. Multivariate analyses showed that epibiota community structure was different, although highly overlapping, between the two species, whereas there was an almost parallel temporal development in epibiota community structure. We conclude that it is unlikely that the introduction of S. muticum to Limfjorden has caused major changes in local epibiota community structure. However, the standing stock of epibiota is likely to have increased.Communicated by H.-D. Franke  相似文献   

12.
Branching corals, like many in the genus Acropora, provide structurally complex habitats for reef fishes and other organisms. Fluctuations in the abundance, distribution and characteristics of thicket-forming staghorn Acroporids may contribute to changes in the abundance and species composition of reef fishes due to changes in the availability of shelter habitat and food. Farming damselfishes of the genus Stegastes can occur in high abundances in staghorn corals and actively defend food and nest space against organisms that threaten these resources. Here we assess the value of staghorn as habitat for fishes in the central South Pacific, and how the presence of territorial farming damselfishes may influence the assemblage of fishes that associate with staghorn corals. Surveys of 185 Acropora pulchra patches located in the lagoons surrounding the island of Moorea, French Polynesia revealed 85 species of fish from 25 families. Total fish abundance and species richness values ranged from no fish on a patch to a high of 275 individuals and 26 species. Patch area was the most important characteristic in explaining variation in attributes of the fish assemblage, with other characteristics explaining little of the species composition or trophic structure. Behavioral observations revealed that farming damselfishes were most aggressive toward corallivores, herbivores, and egg predators, while they ignored most carnivores and omnivores. Despite this pattern, we observed positive covariance between Stegastes and the group of fishes that elicited the strongest aggressive response when the effect of patch area was removed, suggesting these fishes remain drawn to the resources produced or enhanced by Stegastes on A. pulchra.  相似文献   

13.
Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave‐swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification—a winged pectoral fin that facilitates efficient underwater flight in high‐flow environments—is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high‐intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high‐speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.  相似文献   

14.
With large-scale development of offshore wind farms, vertical structures are becoming more common in open water areas. To examine how vertical structures of different materials may be colonized by epibenthic organisms, an experiment was carried out using steel and concrete pilings constructed to resemble those commonly used in wind farm constructions as well as in bridges, jetties and oil platforms. The early recruitment and succession of the epibenthic communities were sampled once a month for the first 5 months and then again after 1 year. Further, the fish assemblages associated with the pillars were sampled and compared to natural areas. The main epibenthic species groups, in terms of coverage, differed between the two materials at five out of six sampling occasions. Dominant organisms on steel pillars were the barnacle Balanus improvisus, the calcareous tubeworm Pomatoceros triqueter and the tunicate Ciona intestinalis. On the concrete pillars, the hydroid Laomedea sp. and the tunicates Corella parallelogramma and Ascidiella spp. dominated. However, there was no different in coverage at different heights on the pillars or in biomass and species abundance at different directions (north-east or south-west) 5 months after submergence. Fish showed overall higher abundances and species numbers on the pillars (but no difference between steel and concrete) compared to the surrounding soft bottom habitats but not compared to natural vertical rock walls. Two species were attracted to the pillars, indicating a reef effect; Gobiusculus flavescens and Ctenolabrus rupestris. The bottom-dwelling gobies, Pomatoschistus spp., did not show such preferences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Plant species invasions, i.e., the entry of additional plant species into a habitat with negative effects on species already there, are a major ecological problem in natural habitats and a major economic problem in agricultural habitats. Nutrient availability, disturbance, and proximity to other habitats are likely factors that may interact to control invasion in both types of habitat. We hypothesized (1) that elevated nutrient availability can promote the abundance of introduced species even when high cover of the existing plant community is maintained, and (2) that higher levels of invasion on the edges than in the interiors of habitats are due to differences in resource availability between edges and interiors. To test these hypotheses, we measured soil characteristics and the abundances of plant species in natural and agricultural cranberry (Vaccinium macrocarpon Ait.) bogs in southeastern Massachusetts. Contrary to the first hypothesis, agricultural bogs did not have higher cover or richness of introduced species than natural bogs, despite having higher levels of soil nutrients. Contrary to the second hypothesis, the edges of both agricultural and natural bogs had a higher cover and richness of introduced species than the interiors, even though only natural bogs showed differences in resource availabilities between edges and interiors. Results suggest that having a high cover of existing species can counter positive effects of elevated nutrients on the spread of introduced and non-crop species. However, maintaining similar resource availabilities on the edges and interiors of habitats may not prevent greater invasion of edges. Avoiding disturbances to natural communities, maintaining high crop cover, and focusing active control of introduced or non-crop species on the edges of habitats could help limit plant invasions into natural and agricultural habitats alike.  相似文献   

16.
In arid regions, spring-fed habitats are frequently the only year-round source of surface water and are essential habitats for aquatic organisms and primary water sources for terrestrial animals and human settlements. While these habitats have been relatively well-studied in some regions, those of the southern Sonoran Desert have received little attention. In 2008 and 2009, we documented the biodiversity of aquatic animals at 19 sites across three arid mountain ranges in Sonora, Mexico, characterized macrohabitat types, examined seasonal variation in aquatic invertebrate communities, and explored the effects of an exotic fish (tilapia) on native communities. We documented >220 aquatic animal species, including several new species and range extensions for others. Macrohabitat type (oasis, tinaja, riffle, and seep) was more important than geographic location in structuring aquatic invertebrate communities at the scale of our study area (~9,000 km2). We found little evidence of predictable seasonal variation in invertebrate communities, despite dramatic hurricane-induced flooding. Aquatic vertebrates were not diverse across the study region (4 amphibian species and 2 species each of fishes and reptiles), but were often locally abundant. Presence of non-native tilapia at one site was associated with reduced abundances of native leopard frogs and reduced richness and density of native aquatic invertebrates. The most pressing aquatic habitat conservation concerns in the region, as in other deserts, are groundwater withdrawal, unmanaged recreational visitation, and the introduction of exotic species. Spring-fed habitats around the world have been called hotspots of freshwater biodiversity, and those of the Sonoran Desert are no exception.  相似文献   

17.
To clarify differences in community structures and habitat utilization patterns of fishes in Enhalus acoroides- and Thalassia hemprichii-dominated seagrass beds on fringing coral reefs, visual censuses were conducted at Iriomote and Ishigaki islands, southern Japan. The numbers of fish species and individuals were significantly higher in the E. acoroides bed than in the T. hemprichii bed, although the 15 most dominant fishes in each seagrass bed were similar. Cluster and ordination analyses based on the number of individuals of each fish species also demonstrated that fish community structures were similar in the two seagrass beds. Species and individual numbers of coral reef fishes which utilized the seagrass beds numbered less than about 15% of whole coral reef fish numbers, although they comprised about half of the seagrass bed fishes. Of the 15 most dominant species, 5 occurred only in the two seagrass beds, including seagrass feeders. Ten other species were reef species, their habitat utilization patterns not differing greatly between the two seagrass beds. Some reef species, such as Lethrinus atkinsoni and L. obsoletus, showed ontogenetic habitat shifts with growth, from the seagrass beds to the coral areas. These results indicate that community structures and habitat utilization patterns of fishes were similar between E. acoroides- and T. hemprichii-dominated seagrass beds, whereas many coral reef fishes hardly utilized the seagrass beds.  相似文献   

18.
Most eucaryotic organisms classified as living in an extreme habitat are invertebrates. Here we report of a fish living in a Mexican cave (Cueva del Azufre) that is rich in highly toxic H2S. We compared the water chemistry and fish communities of the cave and several nearby surface streams. Our study revealed high concentrations of H2S in the cave and its outflow (El Azufre). The concentrations of H2S reach more than 300 μM inside the cave, which are acutely toxic for most fishes. In both sulfidic habitats, the diversity of fishes was heavily reduced, and Poecilia mexicana was the dominant species indicating that the presence of H2S has an all-or-none effect, permitting only few species to survive in sulfidic habitats. Compared to habitats without H2S, P. mexicana from the cave and the outflow have a significantly lower body condition. Although there are microhabitats with varying concentrations of H2S within the cave, we could not find a higher fish density in areas with lower concentrations of H2S. We discuss that P. mexicana is one of the few extremophile vertebrates. Our study supports the idea that extreme habitats lead to an impoverished species diversity.  相似文献   

19.
Video cameras recorded the diurnal visitation rates of transient (large home range) piscivorous fishes to coral patch reefs in The Bahamas and identified 11 species. Visits by bar jack Caranx ruber, mutton snapper Lutjanus analis, yellowtail snapper Ocyurus chrysurus, barracuda Sphyraena barracuda and cero Scomberomorus regalis were sufficiently frequent to correlate with a range of biophysical factors. Patch‐reef visitation rates and fish abundances varied with distance from shore and all species except S. regalis were seen more frequently inshore. This pattern is likely to be caused by factors including close proximity to additional foraging areas in mangroves and on fore‐reefs and higher abundances close to inshore nursery habitats. Visitation rates and abundances of C. ruber, L. analis, O. chrysurus and S. regalis also varied seasonally (spring v. winter), possibly as fishes responded to temperature changes or undertook spawning migrations. The abundance of each transient predator species on the patch reefs generally exhibited limited diurnal variability, but L. analis was seen more frequently towards dusk. This study demonstrates that the distribution of transient predators is correlated spatially and temporally with a range of factors, even within a single lagoon, and these drivers are species specific. Transient predators are considered an important source of mortality shaping reef‐fish assemblages and their abundance, in combination with the biomass of resident predators, was negatively correlated with the density of prey fishes. Furthermore, transient predators are often targeted by fishers and understanding how they utilize seascapes is critical for protecting them within reserves.  相似文献   

20.
Synopsis Twenty-two fish aggregation devices were deployed in 14 m of water off South Carolina. Species composition and abundance were determined by diver visual census on eight occasions from May through November, 1985. A total of 21 families and 36 species of fishes was observed at 121 stations. Pelagic fishes dominated the fauna with a 99.3% relative abundance, and Decapterus punctatus accounted for 97.6% of the individuals. Caranx crysos, Diplectrum formosum, Decapterus punctatus, Centropristis striata and Monacanthus hispidus were the most frequent species. Total fish abundance, number of species and abundance of four of the six most common species were significantly affected by season. Hurricane activity may have caused a significant drop in pelagic fish abundance at the FADs in July. No significant correlations among species abundances were found after removal of season and FAD type effects. Spatial zonation and seasonal occurrence patterns suggest some competition among pelagic fishes. Several factors that regulate FAD faunal abundance and composition are hypothesized, including: juvenile fish availability, availability of shelter, availability of adequate food resources, interspecific and intraspecific competition, severe sea conditions, and sporadic intrusions of large predatory fishes. It is hypothesized that the abundances of benthic and pelagic FAD fishes are correlated and that there is a direct or indirect energetic link between shallow water pelagic and benthic fish assemblages near FADs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号