首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental potential of bovine fetal germ cells was evaluated using nuclear transfer. Male and female germ cells at three stages of fetal development from 50- to 57-, 65- to 76- or 95- to 105-day-old fetuses were fused to enucleated oocytes 2 to 4 hr prior to activation with 7% ethanol (5 min) followed by 5 hr culture in 10 microg/ml cycloheximide and 5 microg/ml cytochalasin B. The in vitro development of nuclear transfer embryos derived from germ cells was compared with those derived from embryonic cells (blastomeres from day 5 or day 6 embryos). Blastocyst rate (38%) obtained with germ cells from 50- to 57-day-old fetuses tended to be higher than when using germ cells from 65- to 76- or 95- to 105-day-old fetuses (23% and 20%, respectively). Within each stage of fetal development, the proportion of blastocysts derived from male germ cells tended to be higher than that obtained with female germ cells, but due to the high variation between individual fetuses this difference was not significant. With the post activation procedure used in this study, germ cells from 50- to 57-day-old fetuses supported the development of nuclear transfer embryos to the blastocyst stage significantly (P<0.05) better than nuclei of embryonic cells (38% vs. 3%). After transfer of blastocysts derived from germ cells of 50-to 57- and 65- to 76-day fetuses, respectively, 45% (5/11) and 50% (3/6) recipients were pregnant on day 30. The corresponding pregnancy rates on day 90 were 36% (4/11) and 17%(1/6). One live male calf was delivered by cesarean section at day 277 of gestation. Our results show that nuclei of bovine fetal germ cells may successfully be reprogrammed to support full-term development of nuclear transfer embryos.  相似文献   

2.
Epigenetic perturbations are assumed to be responsible for abnormalities observed in fetuses and offspring derived by in vitro techniques. We have designed an experiment with bovine Day 80 fetuses generated by somatic cell nuclear transfer (SCNT), in vitro fertilization (IVF), and artificial insemination (AI) to determine the relationship between fetal phenotype and genome-wide 5-methylcytosine (5mC) content. When compared with AI controls, SCNT and IVF fetuses displayed significantly increased body weight (61% and 28%), liver weight (100% and 36%), and thorax circumference (20% and 11%). A reduced crown-rump length:thorax circumference ratio (1.175 +/- 0.017 in SCNT and 1.292 +/- 0.018 in IVF vs. 1.390 +/- 0.018 in AI, P < 0.001 and P < 0.002) was the external hallmark of this disproportionate overgrowth phenotype. The SCNT fetuses showed significant hypermethylation of liver DNA in comparison with AI controls (3.46% +/- 0.08% vs. 3.17% +/- 0.09% 5mC, P < 0.03), and the cytosine methylation levels for IVF fetuses (3.34% +/- 0.09%) were, as observed for phenotypic parameters, intermediate to the other groups. Regressions of fetal body and liver weight and thorax circumference on 5mC content of liver DNA were positive (P < 0.073-0.079). Furthermore, a significant negative regression (P < 0.021) of the crown-rump length:thorax circumference ratio on liver 5mC was observed. The 5mC content of placental cotyledon DNA was 46% lower than in liver DNA (P < 0.0001) but did not differ among groups. These data are in striking contrast with the recently reported hypomethylation of DNA from SCNT fetuses and indicate that hypermethylation of fetal tissue, but not placenta, is linked to the overgrowth phenotype in bovine SCNT and IVF fetuses.  相似文献   

3.
Blood flow to the heart and brain of 31 control and 15 growth retarded (IUGR) guinea pig fetuses was measured between 60-64 days of pregnancy by the microsphere technique. The animals were anaesthetized with diazepam and pentobarbitone. Brain weight was reduced by 11% in IUGR fetuses from 2.61 +/- 0.03 to 2.33 +/- 0.05 g and heart weight by 39% from 0.42 +/- 0.01 to 0.25 +/- 0.01 g, compared to a decrease in body weight of 42% from 83.6 +/- 2.3 to 48.2 +/- 2.2 g. The myocardial blood flow of control animals was negatively correlated to arterial O2 content (r = 0.78, P less than 0.001) and arterial pH (r = 0.68, P less than 0.001). Brain blood flow was inversely correlated to arterial O2 content in control fetuses (r = 0.79, P less than 0.001). Eight regions of the brain were examined: cerebral hemispheres, caudate nucleus, hippocampus, thalamus + hypothalamus, cerebellum, pons, and medulla. Regional blood flows were significantly correlated to fetal oxygenation in the controls. Growth retarded fetuses were characterized by poor oxygenation (arterial O2 content less than or equal to 2.5 mM) and were frequently acidaemic (pH less than 7.20). No relation could be demonstrated between the myocardial or cerebral blood flows of IUGR fetuses and arterial O2 content or pH. It is concluded that growth retarded fetuses are unable to maintain O2 delivery to the brain and myocardium by increases in blood flow. Although O2 extraction could be increased to meet the O2 requirements of the heart, IUGR fetuses had a lower rate pressure product, suggesting a decline in myocardial O2 consumption.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
ObjectiveThe objective of this study is to measure aortic intima-media thickness (aIMT) and aortic diameter (AD) in appropriate for gestational age (AGA) fetuses, small for gestational age (SGA) fetuses, and intrauterine growth restricted (IUGR) fetuses.MethodsCase-control study performed between June 2011 and June 2012. Forty-nine AGA fetuses, 40 SGA fetuses, and 35 IUGR fetuses underwent concomitant measurement of aIMT and AD at a mean gestational age of 34.4 weeks.ResultsMedian aIMT was higher in fetuses with IUGR (0.504 mm [95%CI: 0.477-0.530 mm]), than in SGA fetuses (0.466 mm [95% CI: 0.447–0.485 mm]), and AGA fetuses (0.471 mm [95% CI: 0.454-0.488 mm]) (p = 0.023). Mean AD was significantly lower in fetuses with IUGR (4.451 mm [95% CI: 4.258–4.655 mm]), than in AGA fetuses (4.74 mm [95% CI: 4.63-4.843 mm]) (p = 0.028).ConclusionsGrowth restricted fetuses have a thicker aortic wall than AGA and SGA fetuses, which possibly represents preclinical atherosclerosis and a predisposition to later cardiovascular disease.  相似文献   

5.
Preterm infants are often treated with intravenous dopamine to increase mean arterial blood pressure (MAP). However, there are few data regarding cerebrovascular responses of developing animals to dopamine infusions. We studied eight near-term and eight preterm chronically catheterized unanesthetized fetal sheep. We measured cerebral blood flow and calculated cerebral vascular resistance (CVR) at baseline and during dopamine infusion at 2.5, 7.5, 25, and 75 microg x kg(-1) x min(-1). In preterm fetuses, MAP increased only at 75 microg x kg(-1) x min(-1) (25 +/- 5%), whereas in near-term fetuses MAP increased at 25 microg x kg(-1) x min(-1) (28 +/- 4%) and further at 75 microg x kg(-1) x min(-1) (51 +/- 3%). Dopamine infusion was associated with cerebral vasoconstriction in both groups. At 25 microg x kg(-1) x min(-1), CVR increased 77 +/- 51% in preterm fetuses and 41 +/- 11% in near-term fetuses, and at 75 microg x kg(-1) x min(-1), CVR increased 80 +/- 33% in preterm fetuses and 83 +/- 21% in near-term fetuses. We tested these responses to dopamine in 11 additional near-term fetuses under alpha-adrenergic blockade (phenoxybenzamine, n = 5) and under dopaminergic D(1)-receptor blockade (SCH-23390, n = 6). Phenoxybenzamine completely blocked dopamine's pressor and cerebral vasoconstrictive effects, while D(1)-receptor blockade had no effect. Therefore, in unanesthetized developing fetuses, dopamine infusion is associated with cerebral vasoconstriction, which is likely an autoregulatory, alpha-adrenergic response to an increase in blood pressure.  相似文献   

6.
To investigate the effects of bilateral cervical vagotomy on arousal and breathing responses, we studied eight sham-operated and eight chronically instrumented unanesthetized vagotomized sheep fetuses between 136 and 144 days of gestation (term approximately 147 days). Each fetus was instrumented to record sleep states, diaphragmatic electromyogram, blood pressure, pH, and blood gas tensions. In a randomized order, fetal lungs were distended with four different O2 concentrations: 0 (100% N2), 21, 50, and 100% at a continuous positive airway pressure of 30 cmH2O via an in situ Y-endotracheal tube. Under control conditions, inspiratory time and the duration of the single longest breathing episode decreased from 598 +/- 99 (SD) ms and 24 +/- 10 min in sham group to 393 +/- 162 ms and 11.0 +/- 3.0 min in vagotomized group (P = 0.04 and 0.033), respectively. In response to lung distension with 100% N2, breathing time decreased from 44 +/- 17 to 20 +/- 18% (P = 0.045) in sham-operated fetuses, whereas it remained unchanged in the vagotomized group. In response to 100% O2, fetal arterial PO2 increased in five of eight fetuses sham-operated from 18.2 +/- 5.1 to 227 +/- 45 Torr (P = 0.0001) and in six of eight vagotomized fetuses from 18.5 +/- 4.4 to 172 +/- 39 Torr (P < 0.001). Although arousal was observed in all oxygenated fetuses at the onset of breathing, the duration of arousal was markedly attenuated in vagotomized fetuses (14 +/- 10 vs. 46 +/- 29 min in sham group; P = 0.024). Frequency and amplitude of breathing and respiratory output (frequency x amplitude) increased only in sham group (P = 0.02, 0.004, and 0.0002, respectively). We conclude that in response to lung distension and oxygenation, arousal and stimulation of breathing during active and quite sleep are critically dependent on intact vagal nerves.  相似文献   

7.
Maternal administration of DDAVP induces maternal and fetal plasma hyponatremia, accentuates fetal urine flow, and increases amniotic fluid volume. Fetal hemorrhage represents an acute stress that results in fetal AVP secretion and reduced urine flow rate. In view of the potential therapeutic use of DDAVP for pregnancies with reduced amniotic fluid volume, we sought to examine the impact of maternal hypotonicity during acute fetal hemorrhage. Chronically catheterized pregnant ewes (130 +/- 2 days) were allocated to control or to DDAVP-induced hyponatremia groups. In the latter group, tap water (2,000 ml) was administered intragastrically to the ewe followed by DDAVP (20 microg bolus, 4 microg/h) and a maintenance intravenous infusion of 5% dextrose water for 4 h to achieve maternal hyponatremia of 10-12 meq/l. Thereafter, ovine fetuses from both groups were continuously hemorrhaged to 30% of estimated blood volume over a 60-min period. DDAVP caused similar degree of reductions in plasma sodium and osmolality in pregnant ewes and their fetuses. In response to hemorrhage, DDAVP fetuses showed greater reduction in hematocrit than control fetuses (14 vs. 10%). Both groups of fetuses demonstrated similar increases in plasma AVP concentration. However, the AVP-hemorrhage threshold was greater in DDAVP fetuses (22.5%) than in control (17.5%). Hemorrhage had no significant impact on plasma osmolality, electrolyte levels, or cardiovascular responses in either group of fetuses. Despite similar increases in plasma AVP, DDAVP fetuses preserved fetal urine flow rates, with values threefold those of control fetuses. These results suggest that under conditions of acute fetal stress of hemorrhage, maternal DDAVP may preserve fetal urine flow and amniotic fluid volume.  相似文献   

8.
We studied by immunocytochemistry the expression of AM in human carotid bodies, sampled at autopsy from 16 adult subjects (mean age+/-S.D.: 44.3+/-3.4 years) and from six fetuses (mean gestational age+/-S.D.: 167+/-11 days). No AM immunoreactivity was visible in the type II cells of both series. The percentage of immunoreactive type I cells was higher in the adult subjects (32.3+/-7.7%) with respect to the fetuses (11.8+/-2.7%, P < 0.001). Dark cells showed a higher percentage of positive immunoreaction with respect to light cells, both in adult subjects (61.7+/-13.4% versus 19.2+/-5.2%) and in fetuses (25.3+/-4.4% versus 6.2+/-2.0%). AM may play a role in the regulation of chemoreceptor discharge through paracrine releasing action and/or vasodilator effect. The low expression of AM in fetuses may be ascribed to the absence of pulmonary respiration with lack of regulatory role of the carotid body during the prenatal period.  相似文献   

9.
Our aim was to determine whether cortisol's effect on alveolar epithelial cell (AEC) phenotypes in the fetus is mediated via a sustained alteration in lung expansion. Chronically catheterized fetal sheep were exposed to 1) saline infusion, 2) cortisol infusion (122-131 days' gestation, 1.5-4.0 mg/day), 3) saline infusion plus reduced lung expansion, or 4) cortisol infusion plus reduced lung expansion. The proportions of type I and II AECs were determined by electron microscopy, and surfactant protein (SP)-A, -B, and -C mRNA levels were determined by Northern blot analysis. Cortisol infusions significantly increased type II AEC proportions (to 38.2 +/- 2.2%), compared with saline-infused fetuses (23.8 +/- 2.4%), and reduced type I AEC proportions (to 59.0 +/- 2.2%), compared with saline-infused fetuses (70.4 +/- 2.4%). Reduced lung expansion also increased type II AEC proportions (to 52.9 +/- 3.5%) and decreased type I AEC proportions (to 34.2 +/- 3.7%), compared with control, saline-infused fetuses. The infusion of cortisol into fetuses exposed to reduced lung expansion tended to further increase type II (to 60.3 +/- 2.1%, P = 0.066) and reduce type I AEC (to 26.6 +/- 2.3%, P = 0.07) proportions. SP-A, -B, and -C mRNA levels changed in parallel with the changes in type II AEC proportions. These results indicate that cortisol alters the proportion of type I and type II AECs via a mechanism unrelated to the degree of fetal lung expansion. However, reductions in fetal lung expansion appear to have a greater impact on the proportion of AECs than cortisol.  相似文献   

10.
Epigenetic perturbations are assumed to be responsible for phenotypic abnormalities of fetuses and offspring originating from in vitro embryo techniques. We studied 29 viable Day-80 bovine fetuses to assess the effects of two in vitro fertilization protocols (IVF1 and IVF2) on fetal phenotype and genomic cytosine methylation levels in liver, skeletal muscle, and brain. The IVF1 protocol employed 0.01 U/ml of FSH and LH in oocyte maturation medium and 5% estrous cow serum (ECS) in embryo culture medium, whereas the IVF2 protocol employed 0.2 U/ml of FSH and no LH for oocyte maturation and 10% ECS for embryo culture. Comparisons with in vivo-fertilized controls (n=14) indicated an apparently normal phenotype for IVF1 fetuses (n=5), but IVF2 fetuses (n=10) were significantly heavier (19.9%) and longer (4.7%), with increased heart (25.2%) and liver (27.9%) weights, and thus displayed an overgrowth phenotype. A clinicochemical screen of 18 plasma parameters revealed significantly increased levels of insulin-like growth factor 1 (40.8%) and creatinine (37.5%) in IVF2, but not in IVF1, fetuses. Quantification of genomic 5-methylcytosine (5mC) by capillary electrophoresis indicated that both IVF1 and IVF2 fetuses differed from controls. We observed significant DNA hypomethylation in liver and muscle of IVF1 fetuses (-16.1% and -9.3%, respectively) and significant hypermethylation in liver of IVF2 fetuses (+11.2%). The 5mC level of cerebral DNA was not affected by IVF protocol. Our data indicate that bovine IVF procedures can affect fetal genomic 5mC levels in a protocol- and tissue-specific manner and show that hepatic hypermethylation is associated with fetal overgrowth and its correlated endocrine changes.  相似文献   

11.
Mice lacking catecholamines die before birth, some with cardiovascular abnormalities. To investigate the role of catecholamines in development, embryonic day 12.5 (E12.5) fetuses were cultured and heart rate monitored. Under optimal oxygenation, wild-type and catecholamine-deficient fetuses had the same initial heart rate (200-220 beats/min), which decreased by 15% in wild-type fetuses during 50 min of culture. During the same culture period, catecholamine-deficient fetuses dropped their heart rate by 35%. Hypoxia reduced heart rate of wild-type fetuses by 35-40% in culture and by 20% in utero, assessed by echocardiography. However, catecholamine-deficient fetuses exhibited greater hypoxia-induced bradycardia, reducing their heart rate by 70-75% in culture. Isoproterenol, a beta-adrenergic receptor (beta-AR) agonist, reversed this extreme bradycardia, restoring the rate of catecholamine-deficient fetuses to that of nonmutant siblings. Moreover, isoproterenol rescued 100% of catecholamine-deficient pups to birth in a dose-dependent, stereo-specific manner when administered in the dam's drinking water. An alpha-AR agonist was without effect. When wild-type fetuses were cultured with adrenoreceptor antagonists to create pharmacological nulls, blockade of alpha-ARs with 10 microM phentolamine or beta-ARs with 10 microM bupranolol alone or in combination did not reduce heart rate under optimal oxygenation. However, when combined with hypoxia, beta-AR blockade reduced heart rate by 35%. In contrast, the muscarinic blocker atropine and the alpha-AR antagonist phentolamine had no effect. These data suggest that beta-ARs mediate survival in vivo and regulate heart rate in culture. We hypothesize that norepinephrine, acting through beta-ARs, maintains fetal heart rate during periods of transient hypoxia that occur throughout gestation, and that catecholamine-deficient fetuses die because they cannot withstand hypoxia-induced bradycardia.  相似文献   

12.
In the present study, we derived parthenogenetic porcine fetuses from in vitro-matured oocytes following a simple activation process in order to evaluate their developmental limitations in-vivo. Follicular oocytes collected from gilts at local slaughterhouses were matured for 48 h. They were subjected to a single square pulse of direct current for 100 microsec at 1,500 V/cm and then treated with 5 microg/mL cytochalasin B for 4 h to obtain activated diploid oocytes. The diploids were cultured in modified Whitten's medium until transfer. Diploids which had cleaved to the 2- and 3- to 4-cell stages were transferred to oviducts of recipients. Live and/or dead parthenogenetic fetuses were recovered in 6 of 8 trials at 17, 18, 19, 24 and 29 d post activation. The total proportion of fetuses to transferred diploids was 31.3% (62/198). When fetuses were recovered at 19 d post activation, the proportion of development into fetuses was 71% (15/21). Our results, however, suggest that periods of gestation longer than 19 d resulted in a decrease of these proportions to 45% (18/40) at 24 d and to 18% (7/40) at 29 d. The hearts were beating in nearly all of the fetuses recovered at 19, 24 and 29 d post activation. Thus, parthenogenetic porcine diploids developed to at least the stage of limb-bud formation beyond the early heart-beating stage. Abnormalities were also externally visible on some fetuses. Formation of cyst-like structures in the heart and liver, and insufficient development of the head region and acephali were observed in some cases.  相似文献   

13.
Reduced amniotic fluid volume often results in fetal lung hypoplasia. Our aim was to examine the effects of prolonged drainage of amniotic and allantoic fluids on lung liquid volume (Vl), secretion rate (Vs), and tracheal flow rate (Vtr) in fetal sheep. In five experimental animals, amniotic and allantoic fluids were drained from 107 to 135 days of gestation. The volume of fluid drained from the experimental animals was 411.8 +/- 24.4 ml/day (n = 140). In six control animals, amniotic fluid volume was 747.7 +/- 89.7 ml (n = 15). Wet and dry lung weights were 20-25% lower in experimental fetuses than in control fetuses. Fetal hemoglobin, O2 saturation, arterial PO2, pH, and hematocrit were unchanged by drainage. During the drainage period, Vl was up to 65% lower, Vs was up to 35% lower, and Vtr was up to 40% lower in experimental fetuses than in control fetuses. We conclude that prolonged drainage of amniotic and allantoic fluids decreases Vl, Vs, and Vtr in fetal sheep. These findings indicate that fetal lung hypoplasia associated with oligohydramnios may be the result of a prolonged reduction in Vl.  相似文献   

14.
Blood flow to the placenta and lower body of control and growth retarded (IUGR) guinea pig fetuses was measured between 60-64 days of pregnancy by the microsphere technique. Further information about the hepatic blood supply and its interlobular distribution was obtained by injecting microspheres into the umbilical vein and a branch of the portal vein. Liver weight was reduced by 60% in IUGR fetuses from 5.0 +/- 0.2 to 2.0 +/- 0.1 g, compared to a decrease in body weight of 50% from 91.6 +/- 3.0 to 45.4 +/- 2.6 g. In addition, there was a proportionately greater reduction in the size of the right liver lobe. Umbilical blood flow was 10.8 +/- 1.0 ml min-1 in control fetuses and 4.9 +/- 1.2 ml.min-1 in IUGR fetuses, whilst blood flow in the portal vein was reduced from 1.4 +/- 0.1 to 0.8 +/- 0.3 ml min-1 and that in the hepatic artery from 0.6 +/- 0.1 to 0.3 +/- 0.1 ml.min-1. Since ductus venosus flow was absent or negligible, the umbilical venous return accounted for greater than 80% of the hepatic blood supply in both control and IUGR fetuses. Blood flows were, however, unequally distributed between the liver lobes. The right lobe was supplied mainly by the portal vein in IUGR fetuses as well as the controls, and received less than 6% of the umbilical venous return. No significant change occurred in total liver perfusion, which was 2.8 +/- 0.2 ml min-1 per g in control fetuses and 2.6 +/- 0.4 ml min-1 per g in IUGR fetuses. It is therefore suggested that a high rate of liver metabolism is maintained in IUGR, but by a smaller tissue mass, and that the rate of umbilical blood flow may be one factor determining the size of the liver. The relatively greater reduction in size of the right lobe in IUGR is probably the result of poor oxygenation of the portal venous blood.  相似文献   

15.
1. Haematological values of non-pregnant/non-lactating, pregnant as well as lactating rabbits and 28-day-old fetuses were measured. 2. The haemoglobin content in does decreased during the observed periods from 122 +/- 8 g/l to 100 +/- 11 g/l. In 28-day-old fetuses it was 85 +/- 0 g/l. 3. The erythrocyte count in 28-day-old fetuses was 2.4 X 10(12)/l. In the does, the erythrocyte count was 5.2 X 10(12)/l in week 4 of gestation. The erythrocyte volume in fetuses was about 45% higher than that of the doe. 4. In fetuses the leucocyte count was approximately one ninth that of the mother in week 4 of gestation (0.41 +/- 0.08 X 10(9)/l vs 3.8 +/- 0.4 X 10(9)/l).  相似文献   

16.
Pulmonary maturation in 8 ovine fetuses bilaterally adrenalectomized at 98-101 days and infused at term with either ACTH1-24 or cortisol was compared with that in 4 untreated sham-operated controls. Four of the adrenalectomized fetuses were infused intravascularly with ACTH1-24 5 micrograms/h for 84 h before delivery and the other four were infused with cortisol 1 mg/h for 72 h. The high plasma concentrations of immunoreactive ACTH in the adrenalectomized fetuses (2762 +/- 1339 ng/l, mean +/- SD) were not significantly elevated by infusion of ACTH1-24 but were markedly depressed by infusion of cortisol. Distensibility (V40) of the lungs was less than that of controls in both the ACTH1-24-infused and cortisol-infused fetuses (1.86 +/- 0.31 ml/g vs 0.62 +/- 0.13 ml/g and 1.27 +/- 0.34 ml/g respectively) but it was significantly greater in the cortisol-infused fetuses compared to those infused with ACTH1-24. The volume of air retained at 5 cm H2O pressure (V5) during deflation was markedly reduced in adrenalectomized fetuses (controls 1.14 +/- 0.52 ml/g vs 0.25 +/- 0.25 ml/g and 0.12 +/- 0.6 ml/g). The wet weight of the lungs and the concentrations of saturated phosphatylcholine in lung tissue and lavage fluid were lower in the adrenalectomized fetuses than in controls but the differences were not significant. It is concluded that infusion of ACTH1-24 at term in adrenalectomized fetuses is probably without effect whereas cortisol enhances distensibility.  相似文献   

17.
Fetal breathing movements (FBM) are inhibited by both exogenous prostaglandin E2 (PGE2) and ethanol in sheep. Maternal ethanol exposure in late-gestation sheep also increases fetal [PGE2]. However, during prolonged reduced uterine blood flow (RUBF) when [PGE2] in fetal plasma is already elevated, FBM are not inhibited by ethanol. These experiments were designed, therefore, to test the hypothesis that the FBM response to PGE2 is also diminished during RUBF. PGE2 (594+/-19 ng.min(-1).kg(-1) fetal body weight) was infused for 6 h into the jugular vein of RUBF (PO2 = 14+/-1 mmHg (1 mmHg = 133.3 Pa); n = 7) and control (PO2 = 22+/-1 mmHg (p < 0.01); n = 7) ovine fetuses, and the effect on FBM, electrocortical (ECoG), and electroocular activities was determined. The infusion of PGE2 increased plasma [PGE2] from 881+/-162 to 1189+/-114 pg.mL(-1) in RUBF fetuses and from 334+/-72 to 616+/-118 pg.mL(-1) (p < 0.05) in control fetuses. FBM were initially inhibited by PGE2 from 22.5+/-9.4 and 17.9+/-6.5% of the time to 6.9+/-2.4 and 0.5+/-0.4% (p < 0.01) in RUBF and control fetuses, respectively. FBM remained inhibited in control fetuses throughout the infusion but returned to baseline incidence in RUBF fetuses in the last 2 h of the infusion. These results are consistent with the hypothesis that one component of the adaptative mechanisms of the fetus to prolonged RUBF is an altered response of FBM to exogenous PGE2. We speculate that the lack of a sustained inhibition in FBM during RUBF with infusion of PGE2 may be a result of an alteration in brainstem receptor function or number or local PGE2 removal.  相似文献   

18.
Eleven Merino sheep fetuses were supplemented with glucose by direct continuous intravenous infusion of 50% dextrose into the fetus from day 115 of gestation until spontaneous delivery. Infusion rates of 15 or 25 g/day per kg were used and equivalent volumes of saline were infused into 11 control fetuses. Infusion periods approximated 27 days in both groups. Fetal plasma glucose concentrations were significantly (P less than 0.001) elevated throughout glucose infusion and resulted in variable but consistently higher plasma insulin concentrations in the glucose than in the saline-infused fetuses. Glucose-infused fetuses were significantly heavier than controls (mean +/- SEM; 3.86 +/- 0.16 vs 3.28 +/- 0.24 kg, P less than 0.05) and body fat depots (in g/kg body wt.) were larger in glucose-infused than control fetuses (9.91 +/- 0.65 vs 6.73 +/- 0.37, P less than 0.005, for internal brown fat depots; 1.25 +/- 0.44 vs 0.27 + 0.13, P less than 0.05, for subcutaneous white adipose tissue). The results indicate that growth and lipid deposition in the sheep fetus are responsive to increased glucose supply, an effect which may be mediated through the actions of insulin. Mean gestation length was 146.60 +/- 1.45 days for controls and 144.18 +/- 1.23 days for glucose-infused animals (normal term 150 days).  相似文献   

19.
OBJECTIVE--To examine the significance of fetal nuchal translucency at 10-14 weeks'' gestation in the prediction of abnormal fetal karyotype. DESIGN--Prospective screening study. SETTING--The Harris Birthright Research Centre for Fetal Medicine, King''s College Hospital, London. SUBJECTS--827 fetuses undergoing first trimester karyotyping by amniocentesis or chorionic villus sampling. MAIN OUTCOME MEASURE--Incidence of chromosomal defects. RESULTS--The incidence of chromosomal defects was 3% (28 of 827 cases). In the 51 (6%) fetuses with nuchal translucency 3-8 mm thick the incidence of chromosomal defects was 35% (18 cases). In contrast, only 10 of the remaining 776 (1%) fetuses were chromosomally abnormal. CONCLUSION--Fetal nuchal translucency > or = 3 mm is a useful first trimester marker for fetal chromosomal abnormalities.  相似文献   

20.
Renal function was studied in unanaesthetized fetal sheep aged 112-120 and 126-132 days and in adult nonpregnant ewes. The clearance of lithium was used to measure proximal and distal fractional sodium reabsorption. In five nonpregnant adult sheep, 80.6 +/- 1.7% (SE) of the filtered sodium load was reabsorbed proximally and 18.2 +/- 1.53% distally. This was different from all groups of fetal sheep (p less than 0.001). In younger fetuses, proximal fractional sodium reabsorption was less (51.3 +/- 2.3% (SE), p less than 0.05) and distal fractional sodium reabsorption greater (42.4 +/- 2.3% (SE), p less than 0.05) than older fetuses (126-132 days old) in which 61.4 +/- 2.4% (SE) was reabsorbed proximally and 33.6 +/- 2.5% (SE) distally. In another group of fetuses aged 125-137 days, in which proximal tubular sodium reabsorption was measured after distal tubular blockade, proximal fractional sodium reabsorption was 57.8 +/- 2.95% (SE) and distal fractional sodium reabsorption, 38.7 +/- 2.64% (SE). In adult sheep there was no relationship between distal tubular sodium reabsorption and glomerular filtration rate, i.e., proximal tubular function was responsible for glomerulotubular balance. However, in the fetuses, both proximal and distal tubular sodium reabsorption contributed to glomerulotubular balance. Thus in fetal life, the proximal tubule participates to a lesser extent in reabsorbing the filtered sodium load possibly because its function is suppressed by its relatively "volume-expanded" state or because it is functionally immature. Therefore, a greater proportion is reabsorbed distally and the distal nephron participates under physiological conditions in glomerulotubular balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号