首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Freeze substitution proved to be a valuable technique for studying the early stages of ascosporogenesis inAscodesmis nigricans. Our observations indicate that the ascus vesicle originated from the ascus plasma membrane. Invaginations of the plasma membrane produced ascus vesicle initials consisting of two closely spaced unit membranes. The appearance of the outer leaflet of each of these membranes was identical to that of the inner leaflet of the ascus plasma membrane. Apparent points of continuity between ascus vesicle initials and the plasma membrane were observed. Ascus vesicle initials accumulated in the ascus cytoplasm near the plasma membrane and then coalesced to form the ascus vesicle, a peripheral, cylinder-like structure consisting of two closely spaced unit membranes that extended from the ascus apex to the ascus base. The ascus vesicle then became invaginated in a number of regions and subsequently gave rise to eight sheet-like segments, or ascosporedelimiting membranes, that encircled uninucleate segments of cytoplasm forming ascospore initials. Like the ascus vesicle, each ascospore-delimiting membrane consisted of two closely spaced unit membranes, the inner of which became the ascospore plasma membrane. The ascospore wall then developed between the spore plasma membrane and the outer membrane. Many details of ascospore maturation were clearly visible in freeze substituted samples.  相似文献   

2.
Ultrastructure of ascosporogenesis in Nannizzia gypsea.   总被引:1,自引:0,他引:1       下载免费PDF全文
Ascosporogenesis in Nannizzia gypsea was studied by electron microscopy. Development of ascospores began with the formation of an ascus vesicle composed of two paired unit membranes. Myelin figures consisting of coiled or concentric membranes were regularly connected with the growing ascus vesicle. Both the ascus vesicle and the myelin figures possessed an electron-dense line between paired membranes, and both were stained by the periodic acid-silver methenamine technique. Invagination of the ascus vesicle about the haploid nuclei resulted in eight uninucleate prospores bounded by two concentric membranes. Spore wall material was deposited between the two membranes of the prospores, and deposition was greatest in areas of the wall overlying stacked elements of endoplasmic reticulum. A single myelin figure surrounded by a polysaccharide halo was observed in the spore.  相似文献   

3.
Summary Observations of ascospore fromation in KMnO4-fixed Saccobolus kerverni apothecia with the electron microscope reveal the following sequence. Ascus formation is preceded by the development of croziers whose fine structure differs little from that of vegetative hyphae. Following fusion of the two nuclei in the ascus mother cell, the resultant ascus elongates, and two large vacuoles appear, first below and later above the fusion nucleus. These vacuoles soon occupy dominant positions at the tip and bottom of the ascus and assume a flocculent appearance. Nuclear blebbing occurs during meiosis, mitosis, and the subsequent spore delimitation process in the central cytoplasmic portion of the ascus. Each spore initial is surrounded by two membranes, the plasma and investing membranes, between which the spore wall is deposited in two layers, an inner primary wall and an outer secondary wall. Following primary wall deposition the spores clump; secondary wall deposition begins outside the primary wall at the places where the spores are contiguous. Interdigitation of these walls and disappearance of the investing membranes in the sutures lead to the envelopment of all eight ascospores in a common secondary wall. A flocculent material in the epiplasmic vacuoles aggregates around the mature spore balls.Based on a portion of a dissertation presented to the Faculty of the Graduate School of the University of Texas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

4.
Sporulation inSchwanniomyces alluvius appeared to be preceded by fusion of a mother and a daughter cell. Meiosis probably occurred in the mother cell and one or two spores were formed in the latter. A study of thin sections showed that the spore wall developed from a prospore wall. The mature spore wall consisted of a broad light inner layer and a thinner dark outer layer including warts. An equatorial ledge was present. During germination in the ascus, a new light inner layer was formed and the old layers of the spore wall partly broke up. Ascospores in a strain ofS. persoonii had a different wall structure in that the dark layer had changed into light areas separated by dark material which formed bulges at the surface.  相似文献   

5.
The ultrastructure of developing basidiospores in Rhizopogon roseolus is described. When viewed in the fruiting body chamber using scanning electron microscopy, basidiospores appear narrowly ellipsoid and have smooth walls. Eight basidiospores are usually produced on the apex of each sterigma on the basidium. Transmission electron micrographs showed that basidiospores formed by movement of cytoplasm (including the nuclei) via the sterigmata, and then each basidiospore eventually became separated from its sterigma by an electron-lucent septum. The sterigma and basidium subsequently collapsed, resulting in spore release. Freshly released spores retained the sterigmal appendage connected to the collapsed basidium. After spore release, the major ultrastructural changes in the spore concerned the lipid bodies and the spore wall. During maturation, lipid bodies formed and then expanded. Before release, the spore wall was homogeneous and electronlucent, but after release the spore wall comprised two distinct layers with electron-dense depositions at the inner wall, and the dense depositions formed an electron-dense third layer. The mature spore wall complex comprised at least four distinct layers: the outer electron-lucent thin double layers, the mottled electron-dense third layer, and the electron-lucent fourth layer in which electron-lucent granular substances were dispersed.  相似文献   

6.
Two different ways of achieving a spore ornamentation have been demonstrated in Sphaereophorus , belonging to the Caliciales. In S. globosus the ornamentation is formed within the ascus by an external secondary spore wall in an ontogenetic process with several unique features. In S. murrayi the ornamentation is formed at a late stage, when the spores have been released from the asci. Carbonaceous material formed among the asci and paraphyses is added to the surface of the primary wall, and a very irregular ornamentation is formed. The name Sphaerophorus murrayi Ohlsson is validated.  相似文献   

7.
N B Raju  J F Leslie 《Génome》1992,35(5):815-826
Wild-collected strains of Neurospora crassa harbor recessive mutations that are expressed in the sexual phase when homozygous. Thirty-two representative mutants that produced barren perithecia were examined cytologically. Six of these mutants failed to form asci. Of the remaining 26, chromosome pairing was disturbed in 12 and meiosis was disturbed at pachytene or diplotene in 5. Seven mutants showed normal meiosis I but then diverged from the normal sequence, and two showed perithecial beak abnormalities. In many mutants, ascus development and nuclear divisions continued after the initial defect, albeit abnormally. Nuclear divisions were often delayed, essentially uncoupling them from other ascus events such as the formation of enlarged spindle pole body plaques, ascospore wall membranes, and spore delimitation. All 32 mutants were recessive and none showed obvious morphological abnormalities during vegetative growth. This phenotype contrasts sharply with that of numerous laboratory-induced ascus mutants, which are frequently expressed pleiotropically in the vegetative phase and several are dominant in the sexual phase.  相似文献   

8.
Hanlin , Richard T. (Georgia Experiment Station, Experiment.) Studies in the genus Nectria. II. Morphology of N. gliocladioides. Amer. Jour. Bot. 48(10): 900–908. Illus. 1961.—Swollen tips of vegetative hyphae develop into multicellular archicarps from which multinucleate ascogonia form. From basal cells of each archicarp arise hyphae which grow up into a prosenchymatous, true perithecial wall; around this wall is formed a thin pseudoparenchymatous stroma of compacted hyphae. The ascogonia give rise to ascogenous cells from which croziers and asci form directly. At the same time, an apical meristem forms cells that grow downward into the centrum. These are pseudoparaphyses. Asci grow up among the pseudoparaphyses, which deliquesce as the ascocarp matures. The ascus tip contains a thick ring with a pore and lateral thickening of the ascus wall. Ascospores are forcibly ejected. The chromosome number is 4. This species conforms to the Nectria Developmental Type of Luttrell.  相似文献   

9.
Summary In the alkane yeast Saccharomycopsis lipolytica (formerly: Candida lipolytica) the variability in the ascospore number is caused by the absence of a correlation between the meiotic divisions and spore wall formation. In four spored yeasts, after meiosis II, a spore wall is formed around each of the four nuclei produced by meiosis II. However, in the most frequently occurring two spored asci of S. lipolytica, the two nuclei are already enveloped by the spore wall after meiosis I due to a delay of meiosis II. This division takes place within the spore during the maturation of the ascus. In this case germination of the binucleate ascospore is not preceded by a mitosis. It follows that the cells of the new haploid clones are mononucleate. In the three spored asci, which occur rarely, only one nucleus is surrounded by a spore wall after meiosis I; the other nucleus undergoes meosis II before the onset of spore wall formation. The result is one binucleate and two mononucleate spores. In the one spored asci the two meiotic divisions occur within the young ascospore, i.e. spore wall formation starts immediately after development of the ascus. These cytological observations were substantiated by genetic data, which in addition confirmed the prediction that binucleate spores may be heterokaryotic. This occurs when there is a postreduction of at least one of the genes by which the parents of the cross differ. This also explains the high frequency of prototrophs in the progeny on non-allelic auxotrophs since random spore isolates are made without distinguishing between mono-and binucleate spores. The possibility of analysing offspring of binucleate spores by tetrad analysis is discussed. These findings enable us to understand the life cycle of S. lipolytica in detail and we are now in a position to start concerted breeding for strain improvement especially with respect to single cell protein production.  相似文献   

10.
Ascospore development inCeratocystis fimbriata Ell. & Halst. commenced in an eight-nucleate ascus. A single vesicle formed along the periphery of the ascus from fragments of ascospore delimiting membranes, surrounded all eight nuclei and eventually invaginated, first forming pouches with open ends, then finally enclosing each of the eight nuclei in a separate sac, thus delimiting ascospores. Pairing of the ascospores followed and brim formation occurred at the contact area between two ascospores. Osmiophilic bodies contributed to the formation of brim-like appendages by fusing to the ascospore walls. Additional brims were observed at opposite ends of the ascospores giving them a double-brimmed appearance.Abbreviations AV ascus vesicle - DM delimiting membrane - EV electron translucent bodies - G granules - M mitochondria - N nucleus - OB osmiophilic bodies - PMV plasmamembrane vesicles - PW primary wall - SW secondary wall  相似文献   

11.
Fine Structure of Bacillus megaterium during Microcycle Sporogenesis   总被引:10,自引:7,他引:3       下载免费PDF全文
Ultrathin sections were prepared from cultures of Bacillus megaterium QM B1551 undergoing microcycle sporogenesis (initial spore to primary cell to second-stage spore without intervening cell division) on a chemically defined medium. The cytoplasmic core of the dormant spore was surrounded by plasma membrane, cell-wall primordium, cortex, outer cortical layer, and spore coats. Early in the cycle, the coat opened at the germinal groove, the cortex swelled, ribosomes and a chromatinic area associated with large mesosomes (which may later be incorporated into the expanding plasma membrane) appeared in the core, and the cell wall became defined at the site of the cell wall primordium. Poly-β-hydroxybutyrate granules began to appear in the primary cell at about 3 hr. By 7 hr, the forespore of the second-stage spore was delineated by typical double membranes. Between 7 and 12 hr, second-stage cell-wall primordium and cortex developed between the separating forespore membranes. The inner membrane became the plasma membrane of the second-stage spore, and the outer membrane eventually disintegrated within the second-stage spore cortex. A densely staining double layer (spore-coat primordium) developed external to the outer forespore membrane. The inner spore coat and the outer cortical layer of the second-stage spore developed from this primordium. The outer part of the spore coat, probably of sporangial origin, was laid down on the external surface of the inner spore coat. By 12 hr, second-stage spores were almost mature. By 20 hr, the mature endospores, with a thickened outer coat, were often still enclosed by degenerate primary cell wall and by the outer cortical layer and spore coat of the initial spore.  相似文献   

12.
FLETCHER  J. 《Annals of botany》1973,37(5):963-971
Fully formed pre-cleavage sporangia and sporangiola of Thamnidiumelegans Link were bounded by a primary wall plus a thick, internalsecondary wall layer. In sporangia in late pre-cleavage, Golgi-likecisternae were associated with groups of cytoplasmic vesiclesof characteristic size and appearance which were not found insporangia containing large cleavage vesicles. In both sporangia and sporangiola, protoplast cleavage was effectedby enlargement of endogenous cleavage vesicles each containinga lining layer of variable appearance, mutual fusion of cleavagevesicle membranes and fusion of cleavage vesicle membranes withthe plasmalemma. Golgi-like cisternae and small vesicular profileswere present in sporangium protoplasts at all stages of cleavagevesicle enlargement. In sporangia, the columella zone was delimitedby cleavage vesicles and separated from the sporogenous zoneby a fibrillar wall. A similar wall, which sometimes protrudedto form a small columella, was formed in sporangiola. Recently delimited spore protoplasts were bounded by plasmalemmamembrane derived from cleavage vesicle bounding membrane andsporangium or sporangiolum plasmalemma and surrounded by aninvesting layer derived from cleavage vesicle lining material.The investing layer at first appeared single, but later twoelectron opaque profiles were discernible. The spore wall wasformed between the investing layer and the plasmalemma. Wallsof sporangia and sporangiola which contained fully formed sporesconsisted of the primary layers only.  相似文献   

13.
Summary The origin of ascospore-delimitig membranes in Taphrina deformans has been studied in material fixed in KMnO4 and stained either in lead citrate or selectively with a phosphotungstic acid-chromic acid mixture (PTA-CA). Structural continuities exist between the ascus plasmalemma and the delimiting membranes. Both of these membrane systems stain preferentially with PTA-CA while other cell membranes do not stain. The spore-delimiting membranes are formed by invagination of the ascus plasmalemma at specific sites adjacent to nuclei. An ascus vesicle is not formed.  相似文献   

14.
The germination of ascospores of the marine fungusHalosphaeria appendiculata was investigated with transmission electron microscopy. Prior to germination, settled ascospores became surrounded by a fibro-granular layer. Small, membrane-bounded vesicles and larger electron-dense membrane-bounded vesicles aggregated at the site of germ tube formation where the plasmalemma adjacent to the aggregation was convoluted. The vesicles appeared to fuse with the plasmalemma, releasing their contents. Enzymatic digestion of the spore wall probably occurred at the time of germ tube emergence. After the nucleus had migrated into the newly formed germ tube, a septum was formed to delimit the germ tube from the ascospore. The growing germ tube can be divided into 3 morphological regions, namely the apical, sub-apical and vacuolated regions, and is typical of other fungi. A mucilaginous sheath was associated with the older mycelium. The germ tube displaced the polar appendage, and the ascospore, germ tube and appendage were enclosed in a mucilaginous sheath. In ascospores which subtended old germ tubes, the nucleus and lipid body became irregular in shape and the cytoplasm was more vacuolated. Microbody-like structures remained associated with the lipid throughout development, and were present in old ascospores.  相似文献   

15.
The ultrastructural features of developing and mature ascospores were delineated after mating Arthroderma quadrifidum on pablum cereal agar. Incipient ascospores each contained a granulated nucleus bounded by a nuclear envelope while presumptive ascospore cytoplasm was bounded by a double membrane and resided in glycogen-rich epiplasm of the ascus. Mature ascospores contained nuclei and mitochondria while the ascus epiplasm still retained abundant inclusions. The ascospore wall demonstrated the presence of heterogeneous material between the plasmalemma and the outer spore membrane which appeared smooth.  相似文献   

16.
Summary The fine structure of ungerminated and aerobically germinated sporangiospores of Mucor rouxii was compared. The germination process may be divided into two stages: I, spherical growth; II, emergence of a germ tube. In both stages, germination is growth in its strictest sense with overall increases in cell organelles; e.g., the increase in mitochondria is commensurate with the overall increase in protoplasmic mass. Noticeable changes occurring during germination are the disappearance of electron-dense lipoid bodies, formation of a large central vacuole and, most strikingly, formation of a new cell wall. Unlike many other fungi, M. rouxii does not germinate by converting the spore wall into a vegetative wall. Instead, as in other Mucorales, a vegetative wall is formed de novo under the spore wall during germination stage I. This new wall grows out, rupturing the spore wall, to become the germ tube wall. Associated with the apical wall of the germ tube is an apical corpuscle previously described. The vegetative wall exhibits a nonlayered, uniformly microfibrillar appearance in marked distinction to the spore wall which is triple-layered, with two thin electron dense outer layers, and a thick transparent inner stratum. The lack of continuity between the spore and vegetative walls is correlated with marked differences in wall chemistry previously reported. A separate new wall is also formed under the spore wall during anaerobic germination leading to yeast cell formation. On the other hand, in the development of one vegetative cell from another, such as in the formation of hyphae from yeast cells, the cell wall is structurally continuous. This continuity is correlated with a similarity in chemical composition of the cell wall reported earlier.  相似文献   

17.
Ascus formation in Debaryomyces hansenii includes fusion of two cells, usually mother and daughter while still attached to each other, through short protuberances developed from the cross wall between them. Nuclear fusion takes place in the channel connecting the two cells; meiosis apparently occurs in the mother cell. Generally, only one lobe of the meiotic nucleus is surrounded by a prospore wall and it becomes the nucleus of a spore with a warty wall. The rest of the nucleus disappears. The spores germinate by swelling in the ascus and forming one or more buds.  相似文献   

18.
19.
The sexual process of Schizosaccharomyces japonicus consistsof sexual flocculation, zygote formation, eight-spored ascusformation and liberation of spores from the ascus. The culturemedium in which this sexual process took place synchronouslywas prepared. For the completion of the sexual process, glucosewas essential and inorganic salts and vitamins were also required.Elimination of the nitrogen source stimulated the rate of sporeformation. The temporal relationship among the sexual eventswas also elucidated: sexual flocculation, zygote formation,ascus formation and spore liberation occurred at 4, 7, 13 and20 hr, respectively, after transfer to the medium for the synchronoussexual process. (Received May 11, 1978; )  相似文献   

20.
Liu J  Tang X  Wang H  Balasubramanian M 《FEBS letters》2000,478(1-2):105-108
Previously we have reported that Drc1p/Cps1p, a 1,3-beta-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe. In this report, we present evidence that S. pombe Bgs2p, a 1,3-beta-glucan synthase that shows 56% identity to Drc1p/Cps1p, is essential for maturation of ascospore wall in S. pombe, but is not required for vegetative growth. Diploid cells homozygous for the bgs2-null mutation, as well as homothallic bgs2-null mutant haploids undergo meiosis normally. However, a 1, 3-beta-glucan containing spore wall is not assembled in these cells. The spores resulting from meiosis of a bgs2-null mutant lyse upon release from the ascus and are therefore inviable. Using a green fluorescent protein-tagged Bgs2p, we demonstrate that Bgs2p is localized at the periphery of the ascospores during meiosis and sporulation. However, Bgs2p is not detected in vegetative cells. We conclude that Bgs2p is required for 1,3-beta-glucan synthesis during ascospore wall maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号