首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Walker MF  Tian J  Shan X  Tamargo RJ  Ying H  Zee DS 《PloS one》2010,5(11):e13981
BACKGROUND: The otolith-driven translational vestibulo-ocular reflex (tVOR) generates compensatory eye movements to linear head accelerations. Studies in humans indicate that the cerebellum plays a critical role in the neural control of the tVOR, but little is known about mechanisms of this control or the functions of specific cerebellar structures. Here, we chose to investigate the contribution of the nodulus and uvula, which have been shown by prior studies to be involved in the processing of otolith signals in other contexts. METHODOLOGY/PRINCIPAL FINDINGS: We recorded eye movements in two rhesus monkeys during steps of linear motion along the interaural axis before and after surgical lesions of the cerebellar uvula and nodulus. The lesions strikingly reduced eye velocity during constant-velocity motion but had only a small effect on the response to initial head acceleration. We fit eye velocity to a linear combination of head acceleration and velocity and to a dynamic mathematical model of the tVOR that incorporated a specific integrator of head acceleration. Based on parameter optimization, the lesion decreased the gain of the pathway containing this new integrator by 62%. The component of eye velocity that depended directly on head acceleration changed little (gain decrease of 13%). In a final set of simulations, we compared our data to the predictions of previous models of the tVOR, none of which could account for our experimental findings. CONCLUSIONS/ SIGNIFICANCE: Our results provide new and important information regarding the neural control of the tVOR. Specifically, they point to a key role for the cerebellar nodulus and uvula in the mathematical integration of afferent linear head acceleration signals. This function is likely to be critical not only for the tVOR but also for the otolith-mediated reflexes that control posture and balance.  相似文献   

2.
The aim of this study was to investigate the effects of agonist and antagonist muscle fatigue on the performance of rapid, self-terminating movements. Six subjects performed rapid, consecutive elbow flexion and extension movements between two targets prior to and after fatiguing either the elbow flexor or elbow extensor muscles. The experiments demonstrated consistent results. Agonist muscle fatigue was associated with a decrease in peak velocity and peak deceleration, while a decrease in peak acceleration was particularly prominent. Antagonist muscle fatigue, however, was associated with a decrease in peak deceleration, while a decrease in both the peak velocity and peak acceleration was modest and, in some tests, non-significant. The relative acceleration time (i.e. acceleration time as a proportion of the total movement time) increased when agonists were fatigued, but decreased when antagonists were fatigued. Taken together, these results emphasize the mechanical roles of the agonist and antagonist muscles; namely, the fatigue of each muscle group particularly affected the movement phase in which that group accelerated a limb, while changes of the movement kinematics pattern provided more time for action of the fatigued muscles. In addition, the results presented suggest that agonist muscle fatigue affects movement velocity more than antagonist muscle fatigue, even in movements that demonstrate prominently both mechanical and myoelectric activity of the antagonist muscles, such as rapid, self-terminating movements. Accepted: 11 February 1997  相似文献   

3.
Ice hockey has the highest rates for concussion among team sports in Canada. In elite play, the most common mechanism is impact to the head by an opposing player’s upper limb, with shoulder-to-head impacts accounting for twice as many concussions as elbow- and hand-to-head impacts combined. Improved understanding of the biomechanics of head impacts in hockey may inform approaches to prevention. In this study, we measured the magnitude and duration of linear and rotational head accelerations when hockey players (n = 11; aged 21–25) delivered checks “as hard as comfortable” to the head of an instrumented dummy with their shoulder, elbow and hand. There were differences in both peak magnitude and duration of head accelerations across upper limb impact sites, based on repeated-measures ANOVA (p < 0.005). Peak linear head accelerations averaged 1.9-fold greater for hand and 1.3-fold greater for elbow than shoulder (mean values = 20.35, 14.23 and 10.55 g, respectively). Furthermore, peak rotational head accelerations averaged 2.1-fold greater for hand and 1.8-fold greater for elbow than shoulder (1097.9, 944.1 and 523.1 rad/s2, respectively). However, times to peak linear head acceleration (a measure of the duration of the acceleration impulse) were 2.1-fold longer for shoulder than elbow, and 2.5-fold longer for shoulder than hand (12.26, 5.94 and 4.98 ms, respectively), and there were similar trends in the durations of rotational head acceleration. Our results show that, in body checks to the head delivered by varsity-level hockey players, shoulder-to-head impacts generated longer durations but lower magnitude of peak head acceleration than elbow- and hand-to-head impacts.  相似文献   

4.
The goal of this study was to test whether a superposition model of smooth-pursuit and vestibulo-ocular reflex (VOR) eye movements could account for the stability of gaze that subjects show as they view a stationary target, during head rotations at frequencies that correspond to natural movements. Horizontal smooth-pursuit and the VOR were tested using sinusoidal stimuli with frequencies in the range 1.0–3.5 Hz. During head rotation, subjects viewed a stationary target either directly or through an optical device that required eye movements to be approximately twice the amplitude of head movements in order to maintain foveal vision of the target. The gain of compensatory eye movements during viewing through the optical device was generally greater than during direct viewing or during attempted fixation of the remembered target location in darkness. This suggests that visual factors influence the response, even at high frequencies of head rotation. During viewing through the optical device, the gain of compensatory eye movements declined as a function of the frequency of head rotation (P < 0.001) but, at any particular frequency, there was no correlation with peak head velocity (P > 0.23), peak head acceleration (P > 0.22) or retinal slip speed (P > 0.22). The optimal values of parameters of smooth-pursuit and VOR components of a simple superposition model were estimated in the frequency domain, using the measured responses during head rotation, as each subject viewed the stationary target through the optical device. We then compared the model's prediction of smooth-pursuit gain and phase, at each frequency, with values obtained experimentally. Each subject's pursuit showed lower gain and greater phase lag than the model predicted. Smooth-pursuit performance did not improve significantly if the moving target was a 10 deg × 10 deg Amsler grid, or if sinusoidal oscillation of the target was superimposed on ramp motion. Further, subjects were still able to modulate the gain of compensatory eye movements during pseudo-random head perturbations, making improved predictor performance during visual-vestibular interactions unlikely. We conclude that the increase in gain of eye movements that compensate for head rotations when subjects view, rather than imagine, a stationary target cannot be adequately explained by superposition of VOR and smooth-pursuit signals. Instead, vision may affect VOR performance by determining the context of the behavior. Received: 16 June 1997 / Accepted: 5 December 1997  相似文献   

5.
Summary Firing behaviour of frog (Rana temporaria) single trochlear motoneurons and multi-unit activity of trochlear nerve were studied during sinusoidal linear accelerations or ramp-hold stimuli (side-up, side-down) in the dark. Frequencies of sinusoidal stimulation ranged from 0.05 Hz to 2 Hz and peak accelerations were between 0.001g and 0.1g.Phase lead of trochlear nerve mass activity relative to imposed acceleration decreased with increasing frequency from 43±10° at 0.1 Hz to 13±6° at 1 Hz for transverse acceleration, and from 37±9° at 0.1 Hz to 1.5±5° at 1 Hz for longitudinal acceleration.The majority of trochlear motoneurons, characterized by short antidromic latencies (<3 ms), had response phases ranging from 52°±6° at 0.05 Hz to 18°±11° at 2 Hz. Their phase behaviour was thus similar to that observed in the nerve multi-unit activity. Response sensitivities typically increased with increasing frequency and showed a clear dependency on stimulus amplitude. In addition, some motoneurons were recorded at antidromic latencies between 3 ms and 6 ms. These units showed less phase lead at frequencies below 0.2 Hz and a rather constant sensitivity in the frequency range tested.The present results together with previous work on primary otolith afferents indicate that information in phasic, phasic-tonic and tonic afferents may be transmitted rather faithfully to motoneurons. This implies that, unlike the case in higher vertebrates, very little central processing occurs in the amphibian maculo-ocular reflex.  相似文献   

6.
The righting maneuver of a freely falling cat was filmed at 1000 pictures per second, and the head position about the roll axis was digitized from each film frame using a graphics input tablet. The head angular velocity and acceleration were computed from the roll axis position trajectory. Head acceleration trajectories approximated two periods of a damped sinusoid at a frequency of 26 Hz. Head acceleration peak amplitudes exceeded 120,000 deg/s2. These trajectories were used as stimuli for the horizontal semicircular canals in a computer simulation of first-order afferent responses during the fall. Linear system afferent response dynamics, characterized in a previous study of the cat horizontal canal using pseudorandom rotations, provided the basis for linear predictions of falling cat afferent responses. Results showed predicted single afferent firing rates that exceeded physiological values; and variations in afferent sensitivities and phase were predicted among different neurons. Fast head movement information could be carried by ensemble populations of vestibular neurons, and a phase-locking encoding hypothesis is proposed which accomplishes this. Implications for central program versus peripheral vestibular feedback strategies for motor control during falling are presented and discussed.  相似文献   

7.
Analysis of the acoustic signal of the chuck vocalizations of adult female squirrel monkeys (Saimiri sciureus) in Parque Nacional de Manu, Peru, revealed consistent differences within and between individuals. We quantified four peak frequency parameters: (a) the peak frequency of single chucks, (b) the first and (c) the second peak frequencies of double chucks, and (d) the peak difference: the difference between the first and the second double chuck peaks. One-way ANOVAs and a posteriori comparisons of these variables revealed that each distinguished more than 70% of all possible pairs of females. When all double chuck measures were included in a discriminant analysis, 57% of double chucks were correctly assigned to the caller. Another category of information potentially encoded in the acoustic structure of chuck vocalizations is foraging activity. When the chucks of squirrel monkeys during foraging and nonforaging activities were compared, the single chuck peak frequency, and the first peak frequency and the peak difference of double chucks, were significantly reduced during foraging contexts. Previously Boinski and Mitchell (1992) concluded that chucks facilitate group cohesion among widely dispersed troop members by providing information of the location of callers; the rate of chucks produced by an adult female increases as she becomes more spatially and visually separated from other adult females. The additional information potentially conveyed by chucks on caller identity and foraging activity documented in these new analyses further emphasizes the role chucks serve to enhance group coordination and cohesion.  相似文献   

8.
The purpose of this study was to quantify head impact exposure (frequency, location and magnitude of head impacts) for individual male and female collegiate ice hockey players and to investigate differences in exposure by sex, player position, session type, and team. Ninety-nine (41 male, 58 female) players were enrolled and 37,411 impacts were recorded over three seasons. Frequency of impacts varied significantly by sex (males: 287 per season, females: 170, p<0.001) and helmet impact location (p<0.001), but not by player position (p=0.088). Head impact frequency also varied by session type; both male and female players sustained more impacts in games than in practices (p<0.001), however the magnitude of impacts did not differ between session types. There was no difference in 95th percentile peak linear acceleration between sexes (males: 41.6 g, females: 40.8 g), but 95th percentile peak rotational acceleration and HITsp (a composite severity measure) were greater for males than females (4424, 3409 rad/s2, and 25.6, 22.3, respectively). Impacts to the back of the helmet resulted in the greatest 95th percentile peak linear accelerations for males (45.2 g) and females (50.4 g), while impacts to the side and back of the head were associated with the greatest 95th percentile peak rotational accelerations (males: 4719, 4256 rad/sec2, females: 3567, 3784 rad/sec2 respectively). It has been proposed that reducing an individual's head impact exposure is a practical approach for reducing the risk of brain injuries. Strategies to decrease an individual athlete's exposure need to be sport and gender specific, with considerations for team and session type.  相似文献   

9.
Summary Tethered flies were subjected to accelerations about their vertical axes while flying or walking. These accelerations were applied either suddenly to stationary animals or continuously by oscillating the animal from side to side. Head and wing movements resulting from the imposed angular accelerations were photographed with a camera and a stroboscopic flash.Analysis of the photographs shows that the wing movements act to counter the imposed angular accelerations and that during sinusoidal oscillations about the vertical axis, head turns are in antiphase with angular acceleration.Head turns do not occur when the halteres are absent or present and not oscillating. When oscillating, the halteres detect high values of angular acceleration, outside the known capabilities of the visual movement detection system.  相似文献   

10.
This study aimed to identify adaptive changes in running kinematics and impact shock transmission as a function of head stability requirements. Fifteen strides from twelve recreational runners were collected during preferred speed treadmill running. Head stability demands were manipulated through real-time visual feedback that required head-gaze orientation to maintain within boxes of different sizes, ranging from 21° to 3° of visual angle with 3° decrements. The main outcome measures were tibial and head peak accelerations in the time and frequency domains (impact and active phases), shock transmission from tibia to head, stride parameters, and sagittal plane joint kinematics. Increasing head stability requirements resulted in decreases in the amplitude and integrated power of head acceleration during the active phase of stance. During the impact portion of stance tibial and head acceleration and shock transmission remained similar across visual conditions. In response to increased head stability requirements, participants increased stride frequency approximately 8% above preferred, as well as hip flexion angle at impact; stance time and knee and ankle joint angles at impact did not change. Changes in lower limb joint configurations (smaller hip extension and ankle plantar-flexion and greater knee flexion) occurred at toe-off and likely contributed to reducing the vertical displacement of the center of mass with increased head stability demands. These adaptive changes in the lower limb enabled runners to increase the time that voluntary control is allowed without embedding additional impact loadings, and therefore active control of the head orientation was facilitated in response to different visual task constraints.  相似文献   

11.
The aim of this study was to examine the concurrent validity of the Kinexon local positioning system (LPS) in comparison with the Vicon motion capture system used as the reference. Five recreationally active men performed ten repetitions of linear sprints, medio-lateral side-to-side and handball-specific movements both in the centre and on the side of an indoor field. Validity was assessed for peak speed, peak acceleration and peak deceleration using standardised biases, Pearson coefficient of correlation (r), and standardised typical error of the estimate. With the exception of peak decelerations during specific movements in the centre and peak acceleration and deceleration during linear sprints on the side of the field, the standardised typical error of the estimate (TEE) values were all small to moderate (0.06–0.48), standardised bias ranged between 0.01 and 2.85 and Pearson coefficient values were all > 0.90 for all variables in all conditions. Peak acceleration and deceleration during linear sprints on the side of the field showed the largest TEEs and the greatest differences between the two systems. The ultra-wideband based (UWB) local positioning system had acceptable validity compared with Vicon to assess players’ movements in handball with the exception of high accelerations and decelerations during linear sprints on the side of the field.  相似文献   

12.
The present study investigates how the CNS deals with the omnipresent force of gravity during arm motor planning. Previous studies have reported direction-dependent kinematic differences in the vertical plane; notably, acceleration duration was greater during a downward than an upward arm movement. Although the analysis of acceleration and deceleration phases has permitted to explore the integration of gravity force, further investigation is necessary to conclude whether feedforward or feedback control processes are at the origin of this incorporation. We considered that a more detailed analysis of the temporal features of vertical arm movements could provide additional information about gravity force integration into the motor planning. Eight subjects performed single joint vertical arm movements (45° rotation around the shoulder joint) in two opposite directions (upwards and downwards) and at three different speeds (slow, natural and fast). We calculated different parameters of hand acceleration profiles: movement duration (MD), duration to peak acceleration (D PA), duration from peak acceleration to peak velocity (D PA-PV), duration from peak velocity to peak deceleration (D PV-PD), duration from peak deceleration to the movement end (D PD-End), acceleration duration (AD), deceleration duration (DD), peak acceleration (PA), peak velocity (PV), and peak deceleration (PD). While movement durations and amplitudes were similar for upward and downward movements, the temporal structure of acceleration profiles differed between the two directions. More specifically, subjects performed upward movements faster than downward movements; these direction-dependent asymmetries appeared early in the movement (i.e., before PA) and lasted until the moment of PD. Additionally, PA and PV were greater for upward than downward movements. Movement speed also changed the temporal structure of acceleration profiles. The effect of speed and direction on the form of acceleration profiles is consistent with the premise that the CNS optimises motor commands with respect to both gravitational and inertial constraints.  相似文献   

13.
Summary An eye-movement detector, using the reflection of a light beam on the cornea and a properly designed feedback loop to counterbalance the ocular rotation by suitably adjusting the position of the light source, is presented. The displacement of the light source is transduced into an electrical signal whose functional dependence on the eye rotation is linear, to a very good approximation, for a proper choice of the parameters of the system. Both two-dimensional and temporal evolution of the eye-movements in any direction, as well as velocity and acceleration components along two perpendicular axes, can be measured and recorded. The range is of the order of 60°, with a noise level of about 10 and a bandwidth of 100 Hz. Some preliminary results, in particular on the saccadic movements during free observation, are presented.  相似文献   

14.
The nonlinear properties of the dendrites of the prepositus hypoglossi nucleus (PHN) neurons are essential for the operation of the vestibular neural integrator that converts a head velocity signal to one that controls eye position. A novel system of frequency probing, namely quadratic sinusoidal analysis (QSA), was used to decode the intrinsic nonlinear behavior of these neurons under voltage clamp conditions. Voltage clamp currents were measured at harmonic and interactive frequencies using specific nonoverlapping stimulation frequencies. Eigenanalysis of the QSA matrix reduces it to a remarkably compact processing unit, composed of just one or two dominant components (eigenvalues). The QSA matrix of rat PHN neurons provides signatures of the voltage dependent conductances for their particular dendritic and somatic distributions. An important part of the nonlinear response is due to the persistent sodium conductance (gNaP), which is likely to be essential for sustained effects needed for a neural integrator. It was found that responses in the range of 10 mV peak to peak could be well described by quadratic nonlinearities suggesting that effects of higher degree nonlinearities would add only marginal improvement. Therefore, the quadratic response is likely to sufficiently capture most of the nonlinear behavior of neuronal systems except for extremely large synaptic inputs. Thus, neurons have two distinct linear and quadratic functions, which shows that piecewise linear?+?quadratic analysis is much more complete than just piecewise linear analysis; in addition quadratic analysis can be done at a single holding potential. Furthermore, the nonlinear neuronal responses contain more frequencies over a wider frequency band than the input signal. As a consequence, they convert limited amplitude and bandwidth input signals to wider bandwidth and more complex output responses. Finally, simulations at subthreshold membrane potentials with realistic PHN neuron models suggest that the quadratic functions are fundamentally dominated by active dendritic structures and persistent sodium conductances.  相似文献   

15.
《IRBM》2020,41(2):80-87
ObjectivesThe number of elderly people is growing rapidly and aging is found to affect activities of daily living. Older adults are found to perform less physical activity when compared to younger ones. In the perspective of movement behavior, it is not well understood how are elderly different from younger ones. It is not known whether they produce only low frequency movement accelerations or the overall number of movements produced are reduced in elderly. It is also not known how elderly and younger ones perform movement transitions throughout the duration of a day and during night-time sleep.Material and methodsIn this study, 10 healthy young and 10 healthy old participants wore inertial measurement unit at their lower back for 3-days. The 24 hours of day were divided into four 6 hour time zones and transitions made by young and elderly were investigated. All participants performed their regular daily activities unhindered and longitudinal multi-day signals for acceleration and angular velocity were analyzed. Time-frequency analysis was performed using wavelet transform and frequency content of each movement performed was computed.ResultsWe found that both young and older adults performed significantly more low amplitude movements than medium and high amplitude movements. Healthy young adults produced significantly more movements at 1.1 Hz than older adults. Healthy young adults were also found to have produced significantly smaller number of transitions in the mid-phases of sleep. They were also found to produce significantly larger accelerations during night-time sleep transitions than their older counterparts.ConclusionThe advantages of collecting longitudinal data about human movement and sleep transition data can lead us to important clinical diagnosis. The information from longitudinal assessment can help develop lifestyle interventions for disease prevention, monitoring of chronic diseases to prevent or slow disease progression among elderly people.  相似文献   

16.
The revised Federal Motor Vehicle Safety Standard (FMVSS) No. 201 specifies that the safety performance of vehicle upper interiors is determined from the resultant linear acceleration response of a free motion headform (FMH) impacting the interior at 6.7 m/s. This study addresses whether linear output data from the FMH test can be used to select an upper interior padding that decreases the likelihood of rotationally induced brain injuries. Using an experimental setup consisting of a Hybrid III head-neck structure mounted on a mini-sled platform, sagittal plane linear and angular head accelerations were measured in frontal head impacts into foam samples of various stiffness and density with a constant thickness (51 mm) at low (approximately 5.0 m/s), intermediate (approximately 7.0 m/s), and high (approximately 9.6 m/s) impact speeds. Provided that the foam samples did not bottom out, recorded peak values of angular acceleration and change in angular velocity increased approximately linearly with increasing peak resultant linear acceleration and value of the Head Injury Criterion (HIC36). The results indicate that the padding that produces the lowest possible peak angular acceleration and peak change in angular velocity without causing high peak forces is the one that produces the lowest possible HIC36 without bottoming out in the FMH test.  相似文献   

17.
The effects of applying adequate vestibular stimulation to the mesencephalic locomotor region on locomotor activity in fore- and hindlimb muscles was investigated during experiments on decerebrate guinea pigs. This stimulation was produced by linear sinusoidal shifting of the animal along a vertical axis at rates of 0.08, 0.2, 0.4, and 0.8 Hz (with peak accelerations of 0.010, 0.063, 0.252, and 1.010 m·sec–2 respectively). A downwards shift was found to increase electromyographic extensor muscle activity in fore- and hindlimbs occurring during the swing phase of the locomotor cycle. An upwards movement was accompanied by the opposite changes in muscle activity. Minimum acceleration required to produce an alteration in muscle activity equaled 0.063 m·sec–2 (0.006g). These alterations were characterized by cyclical delay in relation to linear (active) acceleration. Phase lags in the activity of fore- and hindlimb extensor muscles at the rate of 0.8 Hz reached 63° and 86° respectively. Changes in flexor muscle activity ran counterphasically to these; phasic delay equalled 264° and 275° respectively. The part played by the vestibular system in control over locomotor activity in vertebrate muscles is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 192–197, March–April, 1989.  相似文献   

18.
There is mounting evidence of reduced long-term cognitive ability in rugby players, even in those without a reported history of concussion. The tackle height law is an area of controversy. However, little is known about the effects of repetitive inertial head loading in rugby. Furthermore, the magnitude and influencing factors for head kinematics are generally unknown. In this exploratory study, 45 multibody front-on shoulder tackles simulated with the MADYMO pedestrian model and 20 staged rugby tackles executed by professional rugby players in a marker-based 3D motion laboratory were used to assess the effect of tackle height on ball carrier head kinematics. The peak resultant head linear accelerations, angular accelerations and change in angular velocities were measured and examined. The results suggest that tackle height strongly affects the head kinematics experienced by the ball carrier. In particular, higher ball carrier head kinematic values were identified for upper trunk tackles compared to mid/lower trunk tackles in both the multibody simulations and the staged rugby tackles. Average ball carrier peak resultant head linear acceleration, angular acceleration and change in angular velocity values for upper trunk tackles were greater than for mid/lower trunk tackles by a factor of 1.5, 2.5 and 1.7, in the multibody simulations, respectively, and 1.8 (p = 0.102), 2.2 (p = 0.025) and 2.3 (p = 0.004), in the staged tackles, respectively. The results of the study support the proposition of lowering the current tackle height laws to below the chest.  相似文献   

19.
Eye movements were investigated in cats while following a visual target. Wire coils implanted into the eyes served as transducers; the animal was placed in a revolving magnetic field (the magnetic search coil technique). The linear nature of amplitude-velocity relationships in saccadic eye movements was demonstrated. With combined head and eye movements, slope of plot was unrelated to maximum velocity of head movement over the entire test range (of up to 250 deg/sec); saccades decelerated when the head was immobile. Duration of gaze shift rose as it increased in amplitude. Amplitude of gaze was found to depend on head velocity. Experimentally obtained data on the interaction between head and eye movements when combined in following a target may be interpreted from the aspect of a mechanism operating to suppress saccadic signals by an efferent copy signal for head movement.M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 631–637, September–October, 1988.  相似文献   

20.
The purpose of this study was to examine how inducing fatigue of the 1) lumbar erector spinae and 2) cervical erector spinae (CES) muscles affected the ability to maintain head stability during walking. Triaxial accelerometers were attached to the head, upper trunk, and lower trunk to measure accelerations in the vertical, anterior-posterior, and mediolateral directions during walking. Using three accelerometers enabled two adjacent upper body segments to be defined: the neck segment and trunk segment. A transfer function was applied to root mean square acceleration, peak power, and harmonic data derived from spectral analysis of accelerations to quantify segmental gain. The structure of upper body accelerations were examined using measures of signal regularity and smoothness. The main findings were that head stability was only affected in the anterior-posterior direction, as accelerations of the head were less regular following CES fatigue. Furthermore, following CES fatigue, the central nervous system altered the attenuation properties of the trunk segment in the anterior-posterior direction, presumably to enhance head stability. Following lumbar erector spinae fatigue, the trunk segment had greater gain and increased regularity and smoothness of accelerations in the mediolateral direction. Overall, the results of this study suggest that erector spinae fatigue differentially altered segmental attenuation during walking, according to the level of the upper body that was fatigued and the direction that oscillations were attenuated. A compensatory postural response was not only elicited in the sagittal plane, where greater segmental attenuation occurred, but also in the frontal plane, where greater segmental gain occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号