首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase   总被引:23,自引:0,他引:23  
Hepatic poly(A+) RNA from rats induced for stearyl-CoA desaturase was used for primer-extension of cDNA coding for stearyl-CoA desaturase. Previously, Northern blot analysis showed that translatable desaturase mRNA is 4,900 nucleotides in length (Thiede, M. A., and Strittmatter, P. (1985) J. Biol. Chem. 260, 14459-14463). Six overlapping cDNAs, ranging from 850 to 1450 bases, were used to compile the 4,689-nucleotide sequence. The cDNA includes a 1,074-base open reading frame coding for 358 amino acids, corresponding to a molecular mass of 41,400 daltons. Positive identification of this open reading frame was accomplished by matching the amino acid sequence of both amino-terminal and cyanogen bromide peptides of the purified enzyme with regions of the sequence deduced from the cDNA. Amino acid composition data from the cDNA compares well with that from the desaturase. The protein contains 62% hydrophobic amino acids. An interesting feature of this mRNA is the 3,500-base 3' noncoding region, which has been localized on a single 3' exon by Southern blot analysis.  相似文献   

2.
Porcine and rat microsomal stearyl-CoA desaturases require reduced pyridine nucleotide and oxygen, are cyanide sensitive, and are insensitive to carbon monoxide. The Km for stearyl-CoA is somewhat larger for liver than for the adipose desaturases, but, in general, assay conditions are quite similar. Adipose tissue microsomes contain cytochromes b5 and P-450, as well as the NADH- and NADPH-specific cytochrome reductases. Compared to liver, the specific contents and activities of electron carriers are much lower in adipose tissue, and activities of 4-methyl sterol oxidase of cholesterol biosynthesis, as well as the cytochrome P-450-dependent aminopyrene demethylase and benzypyrene hydroxylase, are negligible in adipose tissue microsomes. Furthermore, unlike hepatic desaturase, administration of insulin stimulates the adipose desaturase 3-fold without affecting either the amounts or activities of microsomal oxidation-reduction proteins; the changes in desaturase activities produced either by altering dietary fat or by fasting and/or fasting followed by refeeding are, in general, both more extensive and more permanent in adipose compared to liver microsomes. The effects produced by isotopic hydrogen substitution both in stearyl-CoA and in the medium (2H2O) are similar with microsomes from both tissues. The rate-determining step of desaturase appears to be similar in both tissues. The primary isotope effect, k H/Tr, observed with [9,10-3H2]stearyl-CoA is relatively small, 2.88. Since little, if any, primary isotope effect is associated with methyl sterol oxidase, these two mixed function oxidases of biosynthetic processes also appear to share this property in common.  相似文献   

3.
The three purified proteins which are required for microsomal stearyl-CoA desaturation, NADH-cytochrome b5 reductase, cytochrome b5, and desaturase, have been combined with egg lecithin or dimyristyl lecithin vesicles to reconstruct a functional electron transport system capable of utilizing NADH and O2 in the desaturation of stearyl-CoA. Such preparations appear to consist of phospholipid vesicles which contain the three proteins bound to the outer surface of the vesicles. Acyl-CoA derivatives containing 12 to 19 carbon fatty acyl chains are required for desaturase activity while derivatives containing 9 to 20 carbons are capable of binding to the enzyme. Shorter chain acyl-CoA derivatives, free CoA, and free fatty acids do not appear to bind to the enzyme. Inhibition and analog studies suggest that the methylene chain of stearyl-CoA assumes an eclipsed ("gauche") conformation at carbon atoms 9,10 in the enzyme-substrate complex. Furthermore, isotope rate effects obtained with deuterated stearyl-CoA derivatives indicate that hydrogen removal is the rate-limiting step of desaturation. Stearyl-CoA binds to pure liposomes and desaturase-containing liposomes, and it is this form of stearyl-CoA which appears to be the substrate for desaturase. The Arrhenius plots of desaturase activity obtained using desaturase bound to egg lecithin liposomes, in which the liquid crystalline to crystalline phase transition temperature is -5 degrees, was linear between 15 and 35 degrees, while that obtained using desaturase bound to dimyristyl lecithin liposomes showed a break at 24 degrees coinciding with the liquid crystalline to crystalline phase transition temperature for this lipid. The decrease observed in the deuterium isotope rate effect below the transition temperature indicates that a step in the reaction sequence other than hydrogen abstraction becomes rate-limiting when the lipid is in the crystalline state. In this system translational diffusion does not emerge as the rate-limiting step. The liposomes contained sufficient reductase and cytochrome b5 so that translational diffusion was not rate-limiting.  相似文献   

4.
1. Rat liver microsomal stearoyl-CoA desaturase activity was shown to be stimulated by both bovine serum albumin and a basic cytoplasmic protein from rat liver. 2. Partially purified desaturase is unaffected by either of these two proteins. 3. Bovine serum albumin appears to exert its effect on the crude system by protecting the desaturase substrate, stearoly-CoA, from the action of endogenous thiolesterases. 4. By using partially purified enzyme preparations, it was possible to establish the substate specificity of the delta9-fatty acyl-CoA desaturase with the C14, C15, C16, C17, C18 and C19 fatty acyl-CoA substrates. Maximum enzyme activity was shown with stearoyl-CoA decreasing with both palmitoyl-CoA and nonadecanoyl-CoA, as reported previously for free fatty acids. 5. Both cytochrome b5 and NADH-cytochrome b5 reductase (EC 1.6.2.2) are required for these studies and a method is described for the purification of homogeneous preparations of detergent-isolated cytochrome b5 from rat liver. 6. From amino acid analyses, a comparison was made of the hydrophobicity of the membrane portion of cytochrome b5 with the hydrophobicity reported for stearoyl-CoA desaturase. The close resemblance of the two values suggested that unlike cytochrome b5 and its reductase, the stearoyl-CoA desaturase may be largely buried in the endoplasmic reticulum.  相似文献   

5.
6.
Cytochrome P450b is an integral membrane protein of the rat hepatocyte endoplasmic reticulum (ER) which is cotranslationally inserted into the membrane but remains largely exposed on its cytoplasmic surface. The extreme hydrophobicity of the amino-terminal portion of P450b suggests that it not only serves to initiate the cotranslational insertion of the nascent polypeptide but that it also halts translocation of downstream portions into the lumen of the ER and anchors the mature protein in the membrane. In an in vitro system, we studied the cotranslational insertion into ER membranes of the normal P450b polypeptide and of various deletion variants and chimeric proteins that contain portion of P450b linked to segments of pregrowth hormone or bovine opsin. The results directly established that the amino-terminal 20 residues of P450b function as a combined insertion-halt-transfer signal. Evidence was also obtained that suggests that during the early stages of insertion, this signal enters the membrane in a loop configuration since, when the amino-terminal hydrophobic segment was placed immediately before a signal peptide cleavage site, cleavage by the luminally located signal peptidase took place. After entering the membrane, the P450b signal, however, appeared to be capable of reorienting within the membrane since a bovine opsin peptide segment linked to the amino terminus of the signal became translocated into the microsomal lumen. It was also found that, in addition to the amino-terminal combined insertion-halt-transfer signal, only one other segment within the P450b polypeptide, located between residues 167 and 185, could serve as a halt-transfer signal and membrane-anchoring domain. This segment was shown to prevent translocation of downstream sequences when the amino-terminal combined signal was replaced by the conventional cleavable insertion signal of a secretory protein.  相似文献   

7.
The effect of potassium cyanide on the desaturase activity for stearyl-CoA in microsomes of various mammalian tissues has been investigated. Potassium cyanide inhibited the desaturase activities in microsomes from livers of rat, hen, guinea pig and rat lung, but not the activities in microsomes from rabbit liver, pig thyroid and bovine adrenocortex, It is concluded that the so-called "cyanide-sensitive factor" does not seem to be common to all the desaturase activities of stearyl-CoA in the microsomes of mammalian tissues.  相似文献   

8.
Monoamine oxidase B, a typical intrinsic protein of the outer mitochondrial membrane, has an uncleavable targeting signal and is inserted into the membrane without proteolytic maturation. To investigate the region responsible for targeting the enzyme to the outer mitochondrial membrane, various mutated proteins were expressed in cultured mammalian cells, and the distributions of the expressed proteins were analyzed by immunofluorescence microscopy and subcellular fractionation. Deletion of the carboxy-terminal 28 amino acids of monoamine oxidase B abolished the transfer of the enzyme to mitochondria, while the deletion of the amino-terminal 55 amino acids had no effect on the transfer to mitochondria. The existence of the targeting signal at the carboxy-terminal portion of the enzyme was confirmed by using hybrid proteins in which the amino- or carboxy-terminal portion of the enzyme was fused to the hydrophilic portion of cytochrome b5. The fused protein with the carboxy-terminal 29 amino acid residues of monoamine oxidase B was localized in mitochondria, whereas that with 10 amino acids remained in the cytoplasm. These results indicate that the targeting signal of monoamine oxidase B is present within its carboxy-terminal 29 amino acid residues.  相似文献   

9.
We have shown that the isolated sarcoplasmic reticulum from rabbit slow muscle contains cytochrome b5 which can be reduced via a flavoprotein, with FAD as the prosthetic group. In the presence of NADH and oxygen, these sarcoplasmic reticulum membranes can convert stearyl-CoA to oleyl-CoA, similarly to liver endoplasmic reticulum membranes. However, the stearyl-CoA desaturase system is virtually lacking in fast muscle sarcoplasmic reticulum. The data suggest that these differences between fast and slow twitch muscle may be related to the characteristic fatty acid composition of phospholipids and the function of the sarcoplasmic reticulum.  相似文献   

10.
Two polyclonal antibodies were raised to synthetic peptides corresponding to amino acids Ser21-Tyr35 and Lys247-Phe261 of cytochrome b561. These antibodies were used to test the native orientation of the amino and carboxyl termini of this transmembrane electron transport protein. Carboxyl-terminal epitopes were lost when intact chromaffin granules were treated with Pronase. This result indicates that the carboxyl terminus is cytoplasmically exposed and confirms a theoretical prediction obtained from hydropathy plots. Epitopes that were recognized by an amino-terminal antipeptide antibody were not removed under the same conditions. This finding implied that the amino terminus was not proteolytically accessible on the exterior of the granule. The abundance of threonine and serine residues in the amino-terminal region suggested that the amino terminus could be held in the membrane by covalent fatty acylation. Treatment of purified delipidated cytochrome b561 with hydroxylamine resulted in the release of a fatty acid hydroxamate. Sulfhydryl analysis of purified cytochrome b561 showed that all 3 cysteine residues were in the free sulfhydryl form. These observations indicate that cytochrome b561 is covalently fatty acylated and that the lipid is bound through ester linkages of serine or threonine residues.  相似文献   

11.
Summary Various gene fusions between the arginine permease and invertase have been constructed in order to obtain information about whether part of the CAN1 gene product can induce secretion of biologically active invertase missing its own signal sequence. A construction containing 30 N-terminal amino acid residues of the CAN1 gene product fused to invertase was not secreted. When the CAN1 portion was elongated to 477 or 560 amino acid residues, secretion of the fusion proteins was observed. A fusion lacking 59 amino acids at the amino-terminal end of the arginine permease was also secreted. These results indicate that the amino-terminal end of the arginine permease is neither sufficient nor essential for membrane insertion; instead this enzyme should contain an internal targeting sequence facilitating secretion. Some general implications on the biosynthesis and topology of membrane proteins are also discussed as well as the homology with histidine permease.  相似文献   

12.
Cytochromes P-450f, P-450g, P-450h, and P-450i are four hepatic microsomal hemoproteins that have been purified from adult rats. Whereas cytochromes P-450g and P-450h appear to be male-specific hemoproteins, cytochrome P-450i is apparently a female-specific enzyme purified from untreated adult female rats. Cytochrome P-450f has been purified from adult male and female rats with equivalent recoveries. Amino-terminal sequence analyses of the first 15-20 amino acid residues of each of these cytochromes P-450 has been accomplished in the current investigation. Each protein possesses a hydrophobic leader sequence consisting of 65-87% hydrophobic amino acids, and only one charged amino acid (Asp) in the amino-terminal region. Although differences in the amino-terminal sequences of cytochromes P-450f, P-450g, P-450h, and P-450i are identified, these hemoproteins all begin with Met-Asp, and marked structural homology is observed among certain of these enzymes. Cytochromes P-450g and P-450h, two male-specific proteins, have 11-12/15 identical residues with cytochrome P-450i, a female-specific isozyme. Cytochromes P-450f and P-450h have 16/20 identical amino-terminal residues. Only limited sequence homology is observed between the amino-terminal sequences of cytochromes P-450f-i compared to rat liver cytochromes P-450a-e. The results demonstrate that cytochromes P-450f, P-450g, P-450h, and P-450i are isozymic to each other and five additional rat hepatic microsomal cytochrome P-450 isozymes (P-450a-e).  相似文献   

13.
Dipeptidyl peptidase IV (DPPIV) is a membrane glycoprotein with a type II orientation in the plasma membrane. As shown in a cell-free translation system, the amino-terminal 34 amino acids of rat DPPIV are involved in translocating nascent polypeptide across the membrane of microsomes and in anchoring the translocated polypeptide in the microsomal membrane. The amino-terminal sequence performing this dual function is composed of: a central hydrophobic core of 22 amino acid residues; 6 amino-terminal residues preceding the hydrophobic core (MKTPWK); and 6 residues following the hydrophobic core. The six residues preceding the hydrophobic core are exposed on the outside (cytoplasmic side) of the microsomal membrane. Site-directed mutagenesis studies show that deletion of this cytoplasmic domain, excluding the amino-terminal initiating methionine, does not affect translocation of nascent DPPIV polypeptide, but does affect significantly anchoring of the translocated polypeptide in the microsomal membrane. In contrast, changing the two cytoplasmic Lys to Glu residues or shortening of the hydrophobic core from 22 to 15 residues or converting the last 11e of the shortened hydrophobic core into Ala affects neither translocation across nor anchoring of the DPPIV polypeptide in the microsomal membrane. These and other structural features of the DPPIV amino-terminal signal-anchor sequences are discussed along with other types of sequences for their role in targeting nascent polypeptides to the RER.  相似文献   

14.
The development of the stearyl-CoA desaturase system was studied in newly hatched chicks. The desaturation activity was very low in hepatic microsomes from chick embryos, less than 0.05 nmol of oleate formed min?1 (mg of protein)?1. After hatching and feeding, the desaturation activity gradually increased to 4–5 nmol of oleate formed min?1 (mg of protein)?1 in 6-day-old chicks. This increase could be prevented by administration of cycloheximide or actinomycin D. Measurement of the microsomal electron transfer components throughout the induction period showed no significant changes in the NADH- or NADPH-specific reductases or in the concentrations of cytochromes b5 and P-450. However, the activity of the terminal component of the desaturase system (the desaturase enzyme) increased in parallel with the desaturation activity. Supplementing the liver microsomes from chick embryos with isolated desaturase enzyme resulted in the formation of an active desaturation system. It is proposed that the induction of the stearyl-CoA desaturase system during development of newly hatched chicks is dependent on the synthesis of the terminal desaturase enzyme.  相似文献   

15.
Deletion and insertion mutants of the multidrug transporter   总被引:5,自引:0,他引:5  
The multidrug transporter is a 170,000-dalton membrane glycoprotein which confers multidrug resistance through its activity as an ATP-dependent efflux pump for hydrophobic, cytotoxic drugs. To determine the essential structural components of this complex membrane transporter we have altered an MDR1 cDNA in an expression vector by deletion and insertion mutations. The structure of the transporter deduced from its amino acid sequence suggests that it consists of two homologous, perhaps functionally autonomous, halves each with six transmembrane segments and a cytoplasmic ATP-binding domain. However, several carboxyl-terminal deletions, one involving 53 amino acids, the second removing 253 amino acids, and an internal deletion within the carboxyl-terminal half of the molecule, totally eliminate the ability of the mutant transporter to confer drug resistance. An internal deletion of the amino-terminal half, which removed residues 140-229, is also nonfunctional. Small carboxylterminal deletions of up to 23 amino acids leave a functional transporter, although the removal of 23 COOH-terminal amino acids reduces its ability to confer colchicine resistance. Insertions of 4 amino acids in a transmembrane domain, and in one of the two ATP-binding regions, have no effect on activity. These studies define some of the limits of allowable deletions and insertions in the MDR1 gene, and demonstrate the requirement for two intact halves of the molecule for a functional multidrug transporter.  相似文献   

16.
Strains of Saccharomyces cerevisiae bearing the ole1 mutation are defective in unsaturated fatty acid (UFA) synthesis and require UFAs for growth. A previously isolated yeast genomic fragment complementing the ole1 mutation has been sequenced and determined to encode the delta 9 fatty acid desaturase enzyme by comparison of primary amino acid sequence to the rat liver stearoyl-CoA desaturase. The OLE1 structural gene encodes a protein of 510 amino acids (251 hydrophobic) having an approximate molecular mass of 57.4 kDa. A 257-amino acid internal region of the yeast open reading frame aligns with and shows 36% identity and 60% similarity to the rat liver stearoyl-CoA desaturase protein. This comparison disclosed three short regions of high consecutive amino acid identity (greater than 70%) including one 11 of 12 perfect residue match. The predicted yeast enzyme contains at least four potential membrane-spanning regions and several shorter hydrophobic regions that align exactly with similar sequences in the rat liver protein. An ole1 gene-disrupted yeast strain was transformed with a yeast-rat chimeric gene consisting of the promoter region and N-terminal 27 codons of OLE1 fused to the rat desaturase coding sequence. Fusion gene transformants displayed near equivalent growth rates and modest lipid composition changes relative to wild type yeast control implying a significant conservation of delta 9 desaturase tertiary structure and efficient interaction between the rat desaturase and yeast cytochrome b5.  相似文献   

17.
There is very little information on the capacity of freshwater carnivorous fish to biosynthesize highly unsaturated fatty acids (HUFA). The striped snakehead fish (Channa striata) is a carnivorous species cultured inland of several Southeast Asian countries due to its pharmaceutical properties in wound healing enhancement. We described here the full-length cDNA cloning of a striped snakehead fatty acid desaturase (fads), which is responsible for desaturation of unsaturated fatty acids in the HUFA biosynthesis. Bioinformatics analysis reveals a protein coding region with length of 445 amino acids containing all characteristic features of desaturase enzyme, including a cytochrome b5-domain with the heme-binding motif, two transmembrane domains and three histidine-rich regions. The striped snakehead fads amino acid sequence shares high similarity with known fads of other teleosts. The mRNA expression of striped snakehead fads also showed an ontogenic-related increase in expression in 0-20 days after hatch larva. Using ISH, we localized the presence of fads in larva brain, liver and intestinal tissues.  相似文献   

18.
Yeast porin, the major outer mitochondrial membrane protein, is synthesized without a cleavable extension peptide and post-translationally inserted into the membrane. When inserted into the membrane, it acquires resistance to externally added trypsin. To locate the sequences responsible for membrane insertion and topogenesis in the primary structure of yeast porin, we constructed several deletion and chimeric mutants of the porin cDNA. These cDNAs were expressed in vitro and the products were assayed for capacity to be correctly inserted into isolated mitochondria. It was thus found that deletion of the segment spanning residues 37-98 did not appreciably impair the insertion competence and the inserted protein became resistant to trypsin. On the other hand, the porin mutant lacking the segment consisting of residues 17-98 did not acquire the trypsin resistance, though it could bind to mitochondria specifically. Deletion of the carboxy-terminal 62 amino acid residues also abolished the capacity to be correctly inserted into mitochondria. We conclude that information required for membrane insertion and intramembranous topogenesis of the porin molecule is stored not only in the amino-terminal region but also in the carboxy-terminal portion.  相似文献   

19.
In order to establish the role of the extension peptide of the precursor of P-450(SCC), a mitochondrial inner membrane protein, in the import into the organella, three deletion mutants of the precursor, in which the deletions were in the mature portion, were constructed. These mutant precursors were imported into mitochondria in vitro as efficiently as the original precursor, indicating that the extension peptide contains sufficient information for the import of the precursor into mitochondria. To investigate which portion of the extension peptide contains the mitochondrial targeting signal, various lengths of the amino-terminal portion of the extension peptide of P-450(SCC) precursor were fused to the mature portion of adrenodoxin. The fusion proteins consisting of 44 and 19 amino-terminal amino acids and mature adrenodoxin were imported into mitochondria, whereas those containing 14, 7, and 2 amino-terminal amino acid residues were not. The importance of the amino-terminal portion of the extension peptide was confirmed by the deletion from the amino-terminal end of a fusion protein consisting of the amino-terminal 44 amino acid residues of P-450(SCC) precursor and mature adrenodoxin, SCC44RAd. The amino-terminal deletions abolished the import of the fusion proteins into mitochondria. Substitution of all of the three basic amino acids, Arg(4), Arg(9), and Lys(14) in the extension peptide of SCC44RAd to Ser or Thr inhibited the binding of the fusion protein to mitochondria as well as its import.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号