首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination and repair. In Saccharomyces cerevisiae, several mutants in the RFA1 gene encoding the large subunit of RPA have been isolated and one of the mutants with a missense allele, rfa1-D228Y, shows a synergistic reduction in telomere length when combined with a yku70 mutation. So far, only one mutant allele of the rad11+ gene encoding the large subunit of RPA has been reported in Schizosaccharomyces pombe. To study the role of S.pombe RPA in DNA repair and possibly in telomere maintenance, we constructed a rad11-D223Y mutant, which corresponds to the S.cerevisiae rfa1-D228Y mutant. rad11-D223Y cells were methylmethane sulfonate, hydroxyurea, UV and γ-ray sensitive, suggesting that rad11-D223Y cells have a defect in DNA repair activity. Unlike the S.cerevisiae rfa1-D228Y mutation, the rad11-D223Y mutation itself caused telomere shortening. Moreover, Rad11-Myc bound to telomere in a ChIP assay. These results strongly suggest that RPA is directly involved in telomere maintenance.  相似文献   

2.
In Saccharomyces cerevisiae, RAD1 and RAD52 are required for alternate pathways of mitotic recombination. Double-mutant strains exhibit a synergistic interaction that decreases direct repeat recombination rates dramatically. A mutation in RFA1, the largest subunit of a single-stranded DNA-binding protein complex (RP-A), suppresses the recombination deficiency of rad1 rad52 strains (J. Smith and R. Rothstein, Mol. Cell. Biol. 15:1632-1641, 1995). Previously, we hypothesized that this mutation, rfa1-D228Y, causes an increase in recombinogenic lesions as well as the activation of a RAD52-independent recombination pathway. To identify gene(s) acting in this pathway, temperature-sensitive (ts) mutations were screened for those that decrease recombination levels in a rad1 rad52 rfa1-D228Y strain. Three mutants were isolated. Each segregates as a single recessive gene. Two are allelic to RSP5, which encodes an essential ubiquitin-protein ligase. One allele, rsp5-25, contains two mutations within its open reading frame. The first mutation does not alter the amino acid sequence of Rsp5, but it decreases the amount of full-length protein in vivo. The second mutation results in the substitution of a tryptophan with a leucine residue in the ubiquitination domain. In rsp5-25 mutants, the UV sensitivity of rfa1-D228Y is suppressed to the same level as in strains overexpressing Rfa1-D228Y. Measurement of the relative rate of protein turnover demonstrated that the half-life of Rfa1-D228Y in rsp5-25 mutants was extended to 65 min compared to a 35-min half-life in wild-type strains. We propose that Rsp5 is involved in the degradation of Rfa1 linking ubiquitination with the replication-recombination machinery.  相似文献   

3.
Soustelle C  Vedel M  Kolodner R  Nicolas A 《Genetics》2002,161(2):535-547
In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis.  相似文献   

4.
K Umezu  N Sugawara  C Chen  J E Haber  R D Kolodner 《Genetics》1998,148(3):989-1005
Replication protein A (RPA) is a single-stranded DNA-binding protein identified as an essential factor for SV40 DNA replication in vitro. To understand the in vivo functions of RPA, we mutagenized the Saccharomyces cerevisiae RFA1 gene and identified 19 ultraviolet light (UV) irradiation- and methyl methane sulfonate (MMS)-sensitive mutants and 5 temperature-sensitive mutants. The UV- and MMS-sensitive mutants showed up to 10(4) to 10(5) times increased sensitivity to these agents. Some of the UV- and MMS-sensitive mutants were killed by an HO-induced double-strand break at MAT. Physical analysis of recombination in one UV- and MMS-sensitive rfa1 mutant demonstrated that it was defective for mating type switching and single-strand annealing recombination. Two temperature-sensitive mutants were characterized in detail, and at the restrictive temperature were found to have an arrest phenotype and DNA content indicative of incomplete DNA replication. DNA sequence analysis indicated that most of the mutations altered amino acids that were conserved between yeast, human, and Xenopus RPA1. Taken together, we conclude that RPA1 has multiple roles in vivo and functions in DNA replication, repair, and recombination, like the single-stranded DNA-binding proteins of bacteria and phages.  相似文献   

5.
Ty1 mobile DNA element is the most abundant and mutagenic retrotransposon present in the genome of the budding yeast Saccharomyces cerevisiae. Protein regulator of Ty1 transposition 105 (Rtt105) associates with large subunit of RPA and facilitates its loading onto a single-stranded DNA at replication forks. Here, we dissect the role of RTT105 in the maintenance of genome stability under normal conditions and upon various replication stresses through multiple genetic analyses. RTT105 is essential for viability in cells experiencing replication problems and in cells lacking functional S-phase checkpoints and DNA repair pathways involving homologous recombination. Our genetic analyses also indicate that RTT105 is crucial when cohesion is affected and is required for the establishment of normal heterochromatic structures. Moreover, RTT105 plays a role in telomere maintenance as its function is important for the telomere elongation phenotype resulting from the Est1 tethering to telomeres. Genetic analyses indicate that rtt105Δ affects the growth of several rfa1 mutants but does not aggravate their telomere length defects. Analysis of the phenotypes of rtt105Δ cells expressing NLS-Rfa1 fusion protein reveals that RTT105 safeguards genome stability through its role in RPA nuclear import but also by directly affecting RPA function in genome stability maintenance during replication.  相似文献   

6.
The telomere complex must allow nucleases and helicases to process chromosome ends to make them substrates for telomerase, while preventing these same activities from disrupting chromosome end-protection. Replication protein A (RPA) binds to single-stranded DNA and is required for DNA replication, recombination, repair, and telomere maintenance. In fission yeast, the telomere binding protein Taz1 protects telomeres and negatively regulates telomerase. Here, we show that taz1-d rad11-D223Y double mutants lose their telomeric DNA, indicating that RPA (Rad11) and Taz1 are synergistically required to prevent telomere loss. Telomere loss in the taz1-d rad11-D223Y double mutants was suppressed by additional mutation of the helicase domain in a RecQ helicase (Rqh1), or by overexpression of Pot1, a single-strand telomere binding protein that is essential for protection of chromosome ends. From our results, we propose that in the absence of Taz1 and functional RPA, Pot1 cannot function properly and the helicase activity of Rqh1 promotes telomere loss. Our results suggest that controlling the activity of Rqh1 at telomeres is critical for the prevention of genomic instability.  相似文献   

7.
The rfa1-M2 and rfa1-M4 Saccharomyces cerevisiae mutants, which are altered in the 70 kDa subunit of replication protein A (RPA) and sensitive to UV and methyl methane sulfonate (MMS), have been analyzed for possible checkpoint defects. The G1/S and intra-S DNA damage checkpoints are defective in the rfa1-M2 mutant, since rfa1-M2 cells fail to properly delay cell cycle progression in response to UV irradiation in G1 and MMS treatment during S phase. Conversely, the G2/M DNA damage checkpoint and the S/M checkpoint are proficient in rfa1-M2 cells and all the checkpoints tested are functional in the rfa1-M4 mutant. Preventing S phase entry by alpha-factor treatment after UV irradiation in G1 does not change rfa1-M4 cell lethality, while it allows partial recovery of rfa1-M2 cell viability. Therefore, the hypersensitivity to UV and MMS treatments observed in the rfa1-M4 mutant might only be due to impairment of RPA function in DNA repair, while the rfa1-M2 mutation seems to affect both the DNA repair and checkpoint functions of Rpa70.  相似文献   

8.
Replication protein-A (RPA) is involved in many processes of DNA metabolism, including DNA replication, repair, and recombination. Cells carrying a mutation in the largest subunit of RPA (rfa1-t11: K45E) have defects in meiotic recombination, mating-type switching, and survival after DNA damage caused by UV and methyl methanesulfonate, as well as increased genome instability; however, this mutant has no significant defect in DNA replication. We purified the RPA heterotrimer containing the rfa1-t11 substitution (RPA(rfa1-t11)). This mutant RPA binds single-stranded DNA (ssDNA) with the same site size, and the RPA(rfa1-t11).ssDNA complex shows a similar sensitivity to disruption by salt as the wild-type RPA.ssDNA complex. RPA(rfa1-t11) stimulates DNA strand exchange, provided that the Rad51 protein.ssDNA nucleoprotein complex is assembled prior to introduction of the mutant RPA. However, RPA(rfa1-t11) is displaced from ssDNA by Rad51 protein more slowly than wild-type RPA and, as a consequence, Rad51 protein-mediated DNA strand exchange is inhibited when the ssDNA is in a complex with RPA(rfa1-t11). Rad52 protein can stimulate displacement of RPA(rfa1-t11) from ssDNA by Rad51 protein, but the rate of displacement remains slow compared with wild-type RPA. These in vitro results suggest that, in vivo, RPA is bound to ssDNA prior to Rad51 protein and that RPA displacement by Rad51 protein is a critical step in homologous recombination, which is impaired in the rfa1-t11 mutation.  相似文献   

9.
To understand the mechanisms involved in homologous recombination, we have performed a search for Saccharomyces cerevisiae mutants unable to carry out plasmid-to-chromosome gene conversion. For this purpose, we have developed a colony color assay in which recombination is induced by the controlled delivery of double-strand breaks (DSBs). Recombination occurs between a chromosomal mutant ade2 allele and a second plasmid-borne ade2 allele where DSBs are introduced via the site-specific HO endonuclease. Besides isolating a number of new alleles in known rad genes, we identified a novel allele of the RFA1 gene, rfa1-44, which encodes the large subunit of the heterotrimeric yeast single-stranded DNA-binding protein RPA. Characterization of rfa1-44 revealed that it is, like members of the RAD52 epistasis group, sensitive to X rays, high doses of UV, and HO-induced DSBs. In addition, rfa1-44 shows a reduced ability to undergo sporulation and HO-induced gene conversion. The mutation was mapped to a single-base substitution resulting in an aspartate at amino acid residue 77 instead of glycine. Moreover, all radiation sensitivities and repair defects of rfa1-44 are suppressed by RAD52 in a dose-dependent manner, and one RAD52 mutant allele, rad52-34, displays nonallelic noncomplementation when crossed with rfa1-44. Presented is a model accounting for this genetic interaction in which Rfa1, in a complex with Rad52, serves to assemble other proteins of the recombination-repair machinery at the site of DSBs and other kinds of DNA damage. We believe that our findings and those of J. Smith and R. Rothstein (Mol. Cell. Biol. 15:1632-1641, 1995) are the first in vivo demonstrations of the involvement of a eukaryotic single-stranded binding protein in recombination and repair processes.  相似文献   

10.
L. Giot  R. Chanet  M. Simon  C. Facca    G. Faye 《Genetics》1997,146(4):1239-1251
The POL3 encoded catalytic subunit of DNA polymerase δ possesses a highly conserved C-terminal cysteine-rich domain in Saccharomyces cerevisiae. Mutations in some of its cysteine codons display a lethal phenotype, which demonstrates an essential function of this domain. The thermosensitive mutant pol3-13, in which a serine replaces a cysteine of this domain, exhibits a range of defects in DNA repair, such as hypersensitivity to different DNA-damaging agents and deficiency for induced mutagenesis and for recombination. These phenotypes are observed at 24°, a temperature at which DNA replication is almost normal; this differentiates the functions of POL3 in DNA repair and DNA replication. Since spontaneous mutagenesis and spontaneous recombination are efficient in pol3-13, we propose that POL3 plays an important role in DNA repair after irradiation, particularly in the error-prone and recombinational pathways. Extragenic suppressors of pol3-13 are allelic to sdp5-1, previously identified as an extragenic suppressor of pol3-11. SDP5, which is identical to HYS2, encodes a protein homologous to the p50 subunit of bovine and human DNA polymerase δ. SDP5 is most probably the p55 subunit of Polδ of S. cerevisiae and seems to be associated with the catalytic subunit for both DNA replication and DNA repair.  相似文献   

11.
Davis AP  Symington LS 《Genetics》2001,159(2):515-525
The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing.  相似文献   

12.
13.
Replication Protein A (RPA) is an evolutionary conserved essential complex with single-stranded DNA binding properties that has been implicated in numerous DNA transactions. At damaged telomeres, Saccharomyces cerevisiae RPA recruits the Mec1–Ddc2 module of the DNA damage checkpoint network, its only known function in DNA damage signaling. Here, we describe rfa1 mutants (rfa1-1, rfa1-9, rfa1-10, rfa1-11 and rfa1-12) that are proficient in this checkpoint but nevertheless exhibit deregulation of cell cycle control upon telomere uncapping induced by the cdc13-1 mutation. Overriding of this damage-induced checkpoint-independent cell cycle block in the rfa1 mutants was suppressed following genetic inactivation of either TEL1 or EST2/telomerase. Altogether, our results suggest that a previously non-suspected function of RPA is to block cell cycle progression upon telomere uncapping using a yet unidentified pathway that functions in a Mec1–Ddc2-independent manner. We propose that in the rfa1 mutants, ill-masking of uncapped telomeres provokes inappropriate access of Tel1 and inappropriate functioning of telomerase, which, by yet unknown mechanisms, allows cell division to take place in spite of the block established by the DNA damage checkpoint. In the present study, we also observed that upon telomere uncapping, rfa1-12, but not the other studied rfa1 mutants, triggered telomeric recombination in the presence of functional telomerase. In conclusion, the present study identifies a novel pathway of telomere end protection that utilizes a previously unsuspected function of RPA at the telomeres.  相似文献   

14.
Single-stranded DNA binding proteins (SSBs) are known to play a role in DNA replication and recombination in prokaryotes. An SSB was previously purified from the yeast Saccharomyces cerevisiae. This SSB stimulated the activity of a cognate strand exchange protein (SEP1) in vitro suggesting a role in recombination. We have cloned and functionally analyzed the gene encoding this protein. DNA sequencing of the cloned DNA revealed a 621 amino acid open reading frame with a coding potential for a Mr 70,269 polypeptide. Highly significant amino acid homology was detected between this S.cerevisiae gene and the Mr 70,000 subunit polypeptide of human RP-A, a cellular protein essential for SV40 DNA replication in vitro. Therefore, we named the S.cerevisiae gene RPA1. RPA1 encodes an essential function in this organism as shown by tetrad analysis of heterozygous insertion mutants and is continuously required for mitotic growth. Cells lacking RPA1 accumulate as multiply budded cells with a single nucleus suggesting a defect in DNA replication.  相似文献   

15.
16.
The RFA1 gene encodes the large subunit of the yeast trimeric single-stranded DNA binding protein replication protein A (RPA), which is known to play a critical role in DNA replication. A Saccharomyces cerevisiae strain carrying the rfa1-44 allele displays a number of impaired recombination and repair phenotypes, all of which are suppressible by overexpression of RAD52. We demonstrate that a rad52 mutation is epistatic to the rfa1-44 mutation, placing RFA1 and RAD52 in the same genetic pathway. Furthermore, two-hybrid analysis indicates the existence of interactions between Rad52 and all three subunits of RPA. The nature of this Rad52-RPA interaction was further explored by using two different mutant alleles of rad52. Both mutations lie in the amino terminus of Rad52, a region previously defined as being responsible for its DNA binding ability (U. H. Mortenson, C. Beudixen, I. Sunjeuaric, and R. Rothstein, Proc. Natl. Acad. Sci. USA 93:10729–10734, 1996). The yeast two-hybrid system was used to monitor the protein-protein interactions of the mutant Rad52 proteins. Both of the mutant proteins are capable of self-interaction but are unable to interact with Rad51. The mutant proteins also lack the ability to interact with the large subunit of RPA, Rfa1. Interestingly, they retain their ability to interact with the medium-sized subunit, Rfa2. Given the location of the mutations in the DNA binding domain of Rad52, a model incorporating the role of DNA in the protein-protein interactions involved in the repair of DNA double-strand breaks is presented.  相似文献   

17.
The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus simultaneously with the appearance of the DSB, and binding spreads away from the DSB as 5′ to 3′ exonuclease activity creates more ssDNA. RPA binding precedes binding of the Rad51 recombination protein. The extent of RPA binding is greater when Rad51 is absent, supporting the idea that Rad51 displaces RPA from ssDNA. RPA plays an important role during RAD51-mediated strand invasion of the MAT ssDNA into the donor sequence HML. The replication-proficient but recombination-defective rfa1-t11 (K45E) mutation in the large subunit of RPA is normal in facilitating Rad51 filament formation on ssDNA, but is unable to achieve synapsis between MAT and HML. Thus, RPA appears to play a role in strand invasion as well as in facilitating Rad51 binding to ssDNA, possibly by stabilizing the displaced ssDNA.  相似文献   

18.
The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus simultaneously with the appearance of the DSB, and binding spreads away from the DSB as 5′ to 3′ exonuclease activity creates more ssDNA. RPA binding precedes binding of the Rad51 recombination protein. The extent of RPA binding is greater when Rad51 is absent, supporting the idea that Rad51 displaces RPA from ssDNA. RPA plays an important role during RAD51-mediated strand invasion of the MAT ssDNA into the donor sequence HML. The replication-proficient but recombination-defective rfa1-t11 (K45E) mutation in the large subunit of RPA is normal in facilitating Rad51 filament formation on ssDNA, but is unable to achieve synapsis between MAT and HML. Thus, RPA appears to play a role in strand invasion as well as in facilitating Rad51 binding to ssDNA, possibly by stabilizing the displaced ssDNA.  相似文献   

19.
To investigate the relationship between the DNA replication apparatus and the control of telomere length, we examined the effects of several DNA replication mutations on telomere length in Saccharomyces cerevisiae. We report that a mutation in the structural gene for the large subunit of DNA replication factor C (cdc44/rfc1) causes striking increases in telomere length. A similar effect is seen with mutations in only one other DNA replication gene: the structural gene for DNA polymerase alpha (cdc17/pol1) (M.J. Carson and L. Hartwell, Cell 42:249-257, 1985). For both genes, the telomere elongation phenotype is allele specific and appears to correlate with the penetrance of the mutations. Furthermore, fluorescence-activated cell sorter analysis reveals that those alleles that cause elongation also exhibit a slowing of DNA replication. To determine whether elongation is mediated by telomerase or by slippage of the DNA polymerase, we created cdc17-1 mutants carrying deletions of the gene encoding the RNA component of telomerase (TLC1). cdc17-1 strains that would normally undergo telomere elongation failed to do so in the absence of telomerase activity. This result implies that telomere elongation in cdc17-1 mutants is mediated by the action of telomerase. Since DNA replication involves transfer of the nascent strand from polymerase alpha to replication factor C (T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1950-1960, 1991; T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1961-1968, 1991; S. Waga and B. Stillman, Nature [London] 369:207-212, 1994), one possibility is that this step affects the regulation of telomere length.  相似文献   

20.
Replication protein A (RPA) is a highly conserved heterotrimeric single‐stranded DNA‐binding protein involved in DNA replication, recombination, and repair. In fission yeast, the Rpa1‐D223Y mutation provokes telomere shortening. Here, we show that this mutation impairs lagging‐strand telomere replication and leads to the accumulation of secondary structures and recruitment of the homologous recombination factor Rad52. The presence of these secondary DNA structures correlates with reduced association of shelterin subunits Pot1 and Ccq1 at telomeres. Strikingly, heterologous expression of the budding yeast Pif1 known to efficiently unwind G‐quadruplex rescues all the telomeric defects of the D223Y cells. Furthermore, in vitro data show that the identical D to Y mutation in human RPA specifically affects its ability to bind G‐quadruplex. We propose that RPA prevents the formation of G‐quadruplex structures at lagging‐strand telomeres to promote shelterin association and facilitate telomerase action at telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号