首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
 Adherent cells sense their mechanical environment, which, in turn, regulates their functions. During the past decade, a growing body of evidence has indicated that a deformable, solid-state intracellular structure known as the cytoskeleton (CSK) plays a major role in transmitting and distributing mechanical stresses within the cell as well as in their conversion into a chemical response. Therefore in order to understand mechanical regulation and control of cellular functions, one needs to understand mechanisms that determine how the CSK changes its shape and mechanics in response to stress. In this survey, we examined commonly used structurally based models of the CSK. In particular, we focused on two classes of these models: open-cell foam networks and stress-supported structures. We identified the underlying mechanisms that determine deformability of those models and compare model predictions with data previously obtained from mechanical tests on cultured living adherent cells at steady state. We concluded that stress-supported structures appear more suitable for describing cell deformability because this class of structures can explain the central role that the cytoskeletal contractile prestress plays in cellular mechanics. Received: 2 January 2002 / Accepted: 27 February 2002  相似文献   

2.
Morphogenesis is a physical process that requires the generation of mechanical forces to achieve dynamic changes in cell position, tissue shape, and size as well as biochemical signals to coordinate these events. Mechanical forces are also used by the embryo to transmit detailed information across space and detected by target cells, leading to downstream changes in cellular properties and behaviors. Indeed, forces provide signaling information of complementary quality that can both synergize and diversify the functional outputs of biochemical signaling. Here, we discuss recent findings that reveal how mechanical signaling and biochemical signaling are integrated during morphogenesis and the possible context-specific advantages conferred by the interactions between these signaling mechanisms.  相似文献   

3.
Mechanical aspects of cell shape regulation and signaling   总被引:10,自引:0,他引:10  
Physical forces play a critical role in cell integrity and development, but little is known how cells convert mechanical signals into biochemical responses. This mini-review examines potential molecular mediators like integrins, focal adhesion proteins, and the cytoskeleton in the context of a complex cell structure. These molecules-when activated by cell binding to the extracellular matrix-associate with the skeletal scaffold via the focal adhesion complex. Vinculin is presented as a mechanical coupling protein that contributes to the integrity of the cytoskeleton and cell shape control, and examples are given of how mechanical signals converge into biochemical responses through force-dependent changes in cell geometry and molecular mechanics.  相似文献   

4.
5.
Mechanobiology aims to discover how the mechanical environment affects the biological activity of cells and how cells’ ability to sense these mechanical cues is converted into elicited cellular responses. Musculoskeletal mechanobiology is of particular interest given the high mechanical loads that musculoskeletal tissues experience on a daily basis. How do cells within these mechanically active tissues interpret external loads imposed on their extracellular environment, and, how are cell–substrate interactions converted into biochemical signals? This review outlines many of the main mechanotransduction mechanisms known to date, and describes recent literature examining effects of both external forces and cell–substrate interactions on musculoskeletal cells. Whether via application of external forces and/or cell–substrate interactions, our understanding and regulation of musculoskeletal mechanobiology can benefit by expanding upon traditional models, and shedding new light through novel investigative approaches. Current and future work in this field is focused on identifying specific forces, stresses, and strains at the cellular and tissue level through both experimental and computational approaches, and analyzing the role of specific proteins through fluorescence-based investigations and knockdown models.  相似文献   

6.
Physical forces play an important role in modulating cell function and shaping tissue structure. Mechanotransduction, the process by which cells transduce physical force-induced signals into biochemical responses, is critical for mediating adaptations to mechanical loading in connective tissues. While much is known about mechanotransduction in cells involving forces delivered through extracellular matrix proteins and integrins, there is limited understanding of how mechanical signals are propagated through the interconnected cellular networks found in tissues and organs. We propose that intercellular mechanotransduction is a critical component for achieving coordinated remodeling responses to force application in connective tissues. We examine here recent evidence on different pathways of intercellular mechanotransduction and suggest a general model for how multicellular structures respond to mechanical loading as an integrated unit.  相似文献   

7.
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique ‘off-the-shelf’ candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.  相似文献   

8.
Cells in vivo can reside in diverse physical and biochemical environments. For example, epithelial cells typically live in a two-dimensional (2D) environment, whereas metastatic cancer cells can move through dense three-dimensional matrices. These distinct environments impose different kinds of mechanical forces on cells and thus potentially can influence the mechanism of cell migration. For example, cell movement on 2D flat surfaces is mostly driven by forces from focal adhesion and actin polymerization, whereas in confined geometries, it can be driven by water permeation. In this work, we utilize a two-phase model of the cellular cytoplasm in which the mechanics of the cytosol and the F-actin network are treated on an equal footing. Using conservation laws and simple force balance considerations, we are able to describe the contributions of water flux, actin polymerization and flow, and focal adhesions to cell migration both on 2D surfaces and in confined spaces. The theory shows how cell migration can seamlessly transition from a focal adhesion- and actin-based mechanism on 2D surfaces to a water-based mechanism in confined geometries.  相似文献   

9.
As the brain develops, proliferating cells organize into structures, differentiate, migrate, extrude long processes, and connect with other cells. These biological processes produce mechanical forces that further shape cellular dynamics and organ patterning. A major unanswered question in developmental biology is how the mechanical forces produced during development are detected and transduced by cells to impact biochemical and genetic programs of development. This gap in knowledge stems from a lack of understanding of the molecular players of cellular mechanics and an absence of techniques for measuring and manipulating mechanical forces in tissue. In this review article, we examine recent advances that are beginning to clear these bottlenecks and highlight results from new approaches that reveal the role of mechanical forces in neurodevelopmental processes.  相似文献   

10.
Mechanobiology of tendon   总被引:9,自引:0,他引:9  
Tendons are able to respond to mechanical forces by altering their structure, composition, and mechanical properties--a process called tissue mechanical adaptation. The fact that mechanical adaptation is effected by cells in tendons is clearly understood; however, how cells sense mechanical forces and convert them into biochemical signals that ultimately lead to tendon adaptive physiological or pathological changes is not well understood. Mechanobiology is an interdisciplinary study that can enhance our understanding of mechanotransduction mechanisms at the tissue, cellular, and molecular levels. The purpose of this article is to provide an overview of tendon mechanobiology. The discussion begins with the mechanical forces acting on tendons in vivo, tendon structure and composition, and its mechanical properties. Then the tendon's response to exercise, disuse, and overuse are presented, followed by a discussion of tendon healing and the role of mechanical loading and fibroblast contraction in tissue healing. Next, mechanobiological responses of tendon fibroblasts to repetitive mechanical loading conditions are presented, and major cellular mechanotransduction mechanisms are briefly reviewed. Finally, future research directions in tendon mechanobiology research are discussed.  相似文献   

11.
Cells are exposed to a variety of mechanical cues, including forces from their local environment and physical properties of the tissue. These mechanical cues regulate a vast number of cellular processes, relying on a repertoire of mechanosensors that transduce forces into biochemical pathways through mechanotransduction. Forces can act on different parts of the cell, carry information regarding magnitude and direction, and have distinct temporal profiles. Thus, the specific cellular response to mechanical forces is dependent on the ability of cells to sense and transduce these physical parameters. In this review, we will highlight recent findings that provide insights into the mechanisms by which different mechanosensors decode mechanical cues and how their coordinated response determines the cellular outcomes.  相似文献   

12.
Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM's large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM's ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis.  相似文献   

13.
Cranial sutures are dynamic structures in which stem cell biology, bone formation, and mechanical forces interface, influencing the shape of the skull throughout development and beyond. Over the past decade, there has been significant progress in understanding mesenchymal stromal cell (MSC) differentiation in the context of suture development and genetic control of suture pathologies, such as craniosynostosis. More recently, the mechanosensory function of sutures and the influence of mechanical signals on craniofacial development have come to the forefront. There is currently a gap in understanding of how mechanical signals integrate with MSC differentiation and ossification to ensure appropriate bone development and mediate postnatal growth surrounding sutures. In this review, we discuss the role of mechanosensation in the context of cranial sutures, and how mechanical stimuli are converted to biochemical signals influencing bone growth, suture patency, and fusion through mediation of cell differentiation. We integrate key knowledge from other paradigms where mechanosensation forms a critical component, such as bone remodeling and orthodontic tooth movement. The current state of the field regarding genetic, cellular, and physiological mechanisms of mechanotransduction will be contextualized within suture biology.  相似文献   

14.
Although the processes of haemostasis and thrombosis have been studied extensively in the past several decades, much of the effort has been spent characterizing the biological and biochemical aspects of clotting. More recently, researchers have discovered that the function and physiology of blood cells and plasma proteins relevant in haematologic processes are mechanically, as well as biologically, regulated. This is not entirely surprising considering the extremely dynamic fluidic environment that these blood components exist in. Other cells in the body such as fibroblasts and endothelial cells have been found to biologically respond to their physical and mechanical environments, affecting aspects of cellular physiology as diverse as cytoskeletal architecture to gene expression to alterations of vital signalling pathways. In the circulation, blood cells and plasma proteins are constantly exposed to forces while they, in turn, also exert forces to regulate clot formation. These mechanical factors lead to biochemical and biomechanical changes on the macro‐ to molecular scale. Likewise, biochemical and biomechanical alterations in the microenvironment can ultimately impact the mechanical regulation of clot formation. The ways in which these factors all balance each other can be the difference between haemostasis and thrombosis. Here, we review how the biomechanics of blood cells intimately interact with the cellular and molecular biology to regulate haemostasis and thrombosis in the context of health and disease from the macro‐ to molecular scale. We will also show how these biomechanical forces in the context of haemostasis and thrombosis have been replicated or measured in vitro.  相似文献   

15.
This article is a summary of a lecture presented at a symposium on "Mechanics and Chemistry of Biosystems' in honor of Professor Y.C. Fung that convened at the University of California, Irvine in February 2004. The article reviews work from our laboratory that focuses on the mechanism by which mechanical and chemical signals interplay to control how individual cells decide whether to grow, differentiate, move, or die, and thereby promote pattern formation during tissue morphogenesis. Pursuit of this challenge has required development and application of new microtechnologies, theoretical formulations, computational models and bioinformatics tools. These approaches have been used to apply controlled mechanical stresses to specific cell surface molecules and to measure mechanical and biochemical responses; to control cell shape independently of chemical factors; and to handle the structural, hierarchical and informational complexity of living cells. Results of these studies have changed our view of how cells and tissues control their shape and mechanical properties, and have led to the discovery that integrins and the cytoskeleton play a central role in cellular mechanotransduction. Recognition of these critical links between mechanics and cellular biochemistry should lead to novel strategies for the development of new drugs and engineered tissues, as well as biomimetic microdevices and nanotechnologies that more effectively function within the context of living tissues.  相似文献   

16.
Blood cells are subjected to various mechanical forces; including pressure, flow, shear force, gravity, and forces acting against them with varying stiffness (eg. blood vessel wall). Scientists have discovered that these forces have profound effects on cellular growth, differentiation, secretion of cytokines, cell death, and migration. These processes are called mechanotransduction, a conversion of mechanical forces to biochemical signals. In this article the author reviews biophysical forces that affect biological functions of blood cells and their responses in normal physiology and pathophysiology. Although input (forces) and output (cellular responses) have been well studied by utilizing recently developed various force-generating devices, the molecular mechanism of mechanotransudction is still a mystery. This is because reconstructing molecular interaction in the presence of mechanical forces in vitro is highly challenging and until now the molecular dynamics involved in structural changes caused by these forces are largely unknown. Nevertheless, the author has reviewed a few examples of potential structural effects on the molecular mechanism of mechanotransduction.  相似文献   

17.
Cell deformability and mechanical responses of living cells depend closely on the dynamic changes in the structural architecture of the cytoskeleton (CSK). To describe the dynamic reorganization and the heterogeneity of the prestressed multi-modular CSK, we developed a two-dimensional model for the CSK which was taken to be a system of tension and compression interactions between the nodes in a divided medium. The model gives the dynamic reorganization of the CSK consisting of fast changes in connectivity between nodes during medium deformation and the resulting mechanical behavior is consistent with the strain-hardening and prestress-induced stiffening observed in cells in vitro. In addition, the interaction force networks which occur and balance to each other in the model can serve to identify the main CSK substructures: cortex, stress fibers, intermediate filaments, microfilaments, microtubules and focal adhesions. Removing any of these substructures results in a loss of integrity in the model and a decrease in the prestress and stiffness, and suggests that the CSK substructures are highly interdependent. The present model may therefore provide a useful tool for understanding the cellular processes involving CSK reorganization, such as mechanotransduction, migration and adhesion processes.  相似文献   

18.
19.
《Biophysical journal》2022,121(4):629-643
Tissue and cell mechanics are crucial factors in maintaining homeostasis and in development, with aberrant mechanics contributing to many diseases. During the epithelial-to-mesenchymal transition (EMT), a highly conserved cellular program in organismal development and cancer metastasis, cells gain the ability to detach from their original location and autonomously migrate. While a great deal of biochemical and biophysical changes at the single-cell level have been revealed, how the physical properties of multicellular assemblies change during EMT, and how this may affect disease progression, is unknown. Here we introduce cell monolayer deformation microscopy (CMDM), a new methodology to measure the planar mechanical properties of cell monolayers by locally applying strain and measuring their resistance to deformation. We employ this new method to characterize epithelial multicellular mechanics at early and late stages of EMT, finding the epithelial monolayers to be relatively compliant, ductile, and mechanically homogeneous. By comparison, the transformed mesenchymal monolayers, while much stiffer, were also more brittle, mechanically heterogeneous, displayed more viscoelastic creep, and showed sharp yield points at significantly lower strains. Here, CMDM measurements identify specific biophysical functional states of EMT and offer insight into how cell aggregates fragment under mechanical stress. This mechanical fingerprinting of multicellular assemblies using new quantitative metrics may also offer new diagnostic applications in healthcare to characterize multicellular mechanical changes in disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号