首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

2.
The effect of various metals and regucalcin, a calcium-binding protein isolated from rat liver cytosol, on (Ca2+–Mg2+)-ATPase activity in the plasma membranes of rat liver was investigated. Of various metals (Zn2+, Cu2+, Ni2+, Mn2+, Co2+ and Al3+; 100 M as a final concentration), Mn2+ and Co2+ increased markedly (Ca2+–Mg2+)-ATPase activity, while other metals had no effect. When Ca2+ was not added into enzyme reaction mixture, Mn2+ and Co2+ (25–100 M) did not significantly increase the enzyme activity, indicating that heavy metals act on Ca2+-stimulated phosphorylation of the enzyme. Meanwhile, regucalcin (0.25–1.0 M) caused a remarkable elevation of (Ca2+–Mg2+)-ATPase activity. This increase was not inhibited by the presence of 100 M vanadate, although the effects of Mn2+ and Co2+ (100 M) were inhibited by vanadate. Also, the inhibition of the Mn2+ and Co2+ effects by vanadate was not seen in the presence of regucalcin. Moreover, regucalcin (0.5 M) increased significantly the enzyme activity in the absence of Ca2+. This effect of regulcalcin was not altered by increasing concentrations of Ca2+ added, indicating that the regucalcin effect does not depend on Ca2+. The present results suggest that regucalcin activates directly (Ca2+–Mg2+)-ATPase in liver plasma membranes, and that the activation is not involved in the Ca2+-dependent phosphorylation of the enzyme.  相似文献   

3.
The O2 dependence of net H+ efflux of maize coleoptiles has been investigated. Below 100 M O2, H+ efflux in young (1 cm long) coleoptiles is markedly decreased while old (7 cm long) coleoptiles show a decline only at 10 M O2. Old coleoptiles show the same decrease in net H+ efflux as young ones if treated with fusicoccin. The ratio of alteration of CO2 production to the change in net proton efflux is about 1:1 at 40–80 M O2 but not at 10 M O2. An influx can be observed at 10 M O2 in young as well as in old coleoptiles if the H+ concentration is held at values below pH 6.5. Lower O2 concentrations lead to an increase of net H+ efflux, which might be caused by leaching of organic acids resulting from anaerobic processes, but CO2 production is not significantly changed at these values. It is proposed that more than one system is responsible for proton translocation across the plasmalemma. One of the systems has a high sensitivity to reduced O2 concentration which is within the same range as the high Km of the alternative path.Abbreviation FC fusicoccin  相似文献   

4.
Summary The present study has been performed to test for the effect of intracellular calcium and of serotonin on the channel activity in patches from subconfluent MDCK-cells. In inside-out patches, inwardly rectifying potassium-selective channels are observed with open probabilities of 0.01±0.01, 0.24±0.03 and 0.39±0.07, at 100 nmol/liter, 1 mol/liter or 10 mol/liter calcium activity, respectively. The single-channel slope conductance is 34±2 pS, if the potential difference across the patch (V ) is zero, and approaches 59±1 pS, ifV is –50 mV, cell negative. In the cell-attached mode, little channel activity is observed prior to application of serotonin (open probability=0.03±0.03). If 1 mol/liter serotonin is added to the bath perfusate, the open probability increases rapidly to a peak value of 0.34±0.04 within 8 sec. In continued presence of the hormone, the open probability declines to approach 0.06±0.02 within 30 sec. At zero potential difference between pipette and reference in the bath (i.e., the potential difference across the patch is equal to the potential difference across the cell membrane), the single-channel conductance is 59±4 pS. In conclusion, inwardly rectifying potassium channels have been identified in the cell membrane of subconfluent MDCK-cells, which are activated to a similar extent by increase of intracellular calcium activity to 1 mol/liter and by extracellular application of 1 mol/liter serotonin.  相似文献   

5.
Summary A vanadate-sensitive H+-translocating ATPase isolated from red beet plasma membrane has been solubilized in active form and successfully reconstituted into artificial proteoliposomes. The H+-ATPase was solubilized in active form with deoxycholate, CHAPSO or octylglucoside in the presence of glycerol. Following detergent removal by gel filtration and reconstitution into proteoliposomes, ATP:Mg-dependent H+ transport could be measured as ionophore-reversible quenching of acridine orange fluorescence. Solubilization resulted in a three-to fourfold purification of the plasma membrane ATPase, with some additional enrichment of specific activity following reconstitution. H+ transport activity was inhibited half-maximally between 1 and 5 M vanadate (Na3VO4) and nearly abolished by 100 M vanadate. ATPase activity of native plasma membrane showed aK i for vanadate inhibition of 9.5 M, and was inhibited up to 80% by 15 to 20 M vanadate (Na3VO4). ATPase activity of the reconstituted vesicles showed aK i of 2.6 M for vanadate inhibition. The strong inhibition by low concentrations of vanadate indicates a plasma membrane rather than a mitochondrial or tonoplast origin for the reconstituted enzyme.  相似文献   

6.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+-induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+-induced increase in [Ca2+]i was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25–2.0 mM). The L-type Ca2+-channel blockers, verapamil and diltiazem, at low concentrations (1 M) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 M), and diltiazem (5 and 10 M) as well as with amiloride (5–20 M), nickel (1.25–5.0 mM), cyclopiazonic acid (25 and 50 M) and thapsigargin (10 and 20 M). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 M). These data suggest that in addition to the sarcolemmal Na+–Ca2+ exchanger, both sarcolemmal Na+–K+ATPase, as well as the sarcoplasmic reticulum Ca2+-pump play prominent roles in the low Na+-induced increase in [Ca2+]i. (Mol Cell Biochem 263: 151–162, 2004)  相似文献   

7.
Polymyxin B, a cyclic peptide antibiotic, inhibits Ca2+-ATPase, p-nitrophenyl phosphatase and phosphorylase kinase activities associated with rabbit skeletal muscle sarcoplasmic reticulum membranes; 50% inhibition is induced by 100 M, 130M and 550 M of polymyxin respectively. The fluorescence intensity of fluorescein isothiocyanate-labeled Ca2+-ATPase, decreases in the presence of polymyxin (50% of the total decrease at 70 M polymyxin). On the other hand, the polypeptide inhibits calmodulin-dependent endogenous phosphorylation of 60 kDa, 20 kDa and 14 kDa membrane proteins, while an increase of calmodulin-dependent phosphorylation is observed in 132 kDa and 86 kDa proteins.  相似文献   

8.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

9.
The microsomal fraction isolated from dog mesenteric nerve fibres was found to contain ATPase activity stimulated by micromolar concentrations of Ca ions. Such a high-affinity Ca2+-ATPase (hereafter referred to as HA Ca-ATPase) followed a Michaelis-Menten kinetics with Km for Ca ions of 0.4 M and Vmax=12.5±2.4 mol Pi.mg–1h–1. The examination of the subcellular origin of HA Ca-ATPase revealed that this enzyme is associated with axonal plasma membranes as documented by its co-purification with several plasma membrane marker enzymes and with tetrodotoxin-sensitive3H-saxitoxin binding. The addition of exogenous magnesium ions (Mg) resulted in a non-competitive inhibition of HA Ca-ATPase with Ki=0.5 mM. The reaction velocity of HA Ca-ATPase was also inhibited by other divalent ions with the order of potency Mg>Mn >ZnCo>Ni. In contrast to low affinity (high Km) Mg- and Ca-ATPase, the HA Ca-ATPase was insensitive to the inhibition by sodium azide (10 mM) and sodium fluoride (10 mM). Similarly, the specific activity of HA Ca-ATPase was unaffected by vanadate (100 M) and N-ethylmaleinimide (100 M). It is concluded that axonal plasma membranes of dog mesenteric nerves contain HA Ca-ATPase which seems to be unrelated to calcium-transporting Mg-dependent, Ca-stimulated ATPase.Abbreviations used BSA bovine serum albumin - HA Ca-ATPase high-affinity Ca2+-ATPase - K-pNPPase onabain-sensitive, K+-stimulated p-nitrophenyl phosphatase - NEM N-ethylmaleinimide - SIM 250 mM sucrose, 10 mM imidazole-HCl pH 7.4 - TRIS tris (hydroxymethyl) aminomethane  相似文献   

10.
Callus was initiated from immature leaf and stem segments of rose (Rosa hybrida cv. Landora) and subcultured every four weeks on a basal medium of half-strength Murashige & Skoog (1962) salts plus 30 g l-1 sucrose (1/2 MS) and supplemented with 2.2 M BA, 5.4 M NAA and 2.2–9.0 M 2,4-D. Embryogenic callus and subsequently somatic embryos were obtained from 8-week-old callus culture on 1/2 MS+2.2 M BA+0.05 M NAA+0.3 M GA3+200–800 mg l-1 L-proline. Long-term cultures were established and maintained for up to 16 months by repeated subculture of embryogenic callus on L-proline deficient medium. About 12% of cotyledonary stage embryos taken from cultures cold-stored at 8±1°C for 4 days germinated on 1/2 MS+2.2 M BA+0.3 M GA3+24.7 M adenine sulphate.Abbreviations BA benzyladenine - NAA -naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid  相似文献   

11.
The effects of the average light irradiance (I) on growth and nitrate uptake kinetics of the cyanobacterium Oscillatoria agardhii, in nitrate-limited chemostat cultures, were studied. Light was nonsaturating for I <9.4 Wm–2, for all growth rates () studied. However, was throughout limited by the availability of nitrate. Under light-saturating conditions the kinetics of nitrate-limited growth could be adequately described by both the Monod and Droop equations. Under light-non-saturating conditions the internal nitrogen content (Q) was a function of both and I, for which new formulas were derived. The high uptake capacity (V max) of nitrate-limited cells was independent of , but was significantly increased for cells growing at I <9.4 Wm–2. The half-saturation constant for nitrate uptake (K s u ) increased with increasing , but was independent of the prevailing light conditions. The effects of light during nitrate-limited growth were associated with the regulation in the nitrogen-containing pigments.The results reported herein have important consequences for the use of Q, K s u and V max values as indicators of nutrient-deficiency of natural populations.  相似文献   

12.
Summary The time course of binding of the fluorescent stilbene anion exchange inhibitor, DBDS (4,4-dibenzamido-2,2-stilbene disulfonate), to band 3 can be measured by the stopped-flow method. We have previously used the reaction time constant, DBDS, to obtain the kinetic constants for binding and, thus, to report on the conformational state of the band 3 binding site. To validate the method, we have now shown that the ID50 (0.3±0.1 m) for H2-DIDS (4,4-diisothiocyano-2,2-dihydrostilbene disulfonate) inhibition of DBDS is virtually the same as the ID50 (0.47±0.04 m) for H2-DIDS inhibition of red cell Cl flux, thus relating DBDS directly to band 3 anion exchange. The specific glucose transport inhibitor, cytochalasin B, causes significant changes in DBDS, which can be reversed with intracellular, but not extracellular,d-glucose. ID50 for cytochalasin B modulation of DBDS is 0.1±0.2 m in good agreement withK D =0.06±0.005 m for cytochalasin B binding to the glucose transport protein. These experiments suggest that the glucose transport protein is either adjacent to band 3, or linked to it through a mechanism, which can transmit conformational information. Ouabain (0.1 m), the specific inhibitor of red cell Na+,K+-ATPase, increases red cell Cl exchange flux in red cells by a factor of about two. This interaction indicates that the Na+,K+-ATPase, like the glucose transport protein, is either in contact with, or closely linked to, band 3. These results would be consistent with a transport proteincomplex, centered on band 3, and responsible for the entire transport process, not only the provision of metabolic energy, but also the actual carriage of the cations and anions themselves.  相似文献   

13.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

14.
The effect of vanadate on the phosphorylation of synaptosomal membrane proteins prepared from rat cerebral cortex was studied. Vanadate concentrations of 10–6, 10–5, and 10–4 M increased the endogenous phosphorylation activity by 25%, 37%, and 75%, respectively. Increasing the ATP concentration in the assay medium from 50 to 500 M did not influence the above effect. A commercial preparation of the purified protein kinase was stimulated 40% by 10–3 M vanadate. Calcium-calmodulin dependent activity was stimulated only 20% by 10–5 M vanadate. The effect was not enhanced by further increasing vanadate concentration. Addition of calcium ions (above 50 M) suppressed the vanadate effect, while an inhibition was observed at high Ca2+ concentration (2.5 mM). Below 50 M calcium ions stimulated phosphorylation activity in the absence of vanadate and did not affect the stimulatory action of vanadate. Cyclic AMP-dependent endogenous phosphorylation was also stimulated by vanadate. Activation by cAMP could not be observed at vanadate concentrations above 10–6 M. Possible mechanisms of the vanadate effect are discussed.  相似文献   

15.
Summary The fluorescence intensity of the dye 1,1-dipropyloxadicarbocyanine (DiOC3-(5)) has been measured in suspensions of Ehrlich ascites tumor cells in an attempt to monitor their membrane potential (V m ) under different ionic conditions, after treatment with cation ionophores and after hypotonic cell swelling. Calibration is performed with gramicidin in Na+-free K+/choline+ media, i.e., standard medium in which NaCl is replaced by KCl and cholineCl and where the sum of potassium and choline is kept constant at 155mm. Calibration by the valinomycin null point procedure described by Lariset al. (Laris, P.C., Pershadsingh, A., Johnstone, R.M., 1976,Biochim. Biophys. Acta 436:475–488) is shown to be valid only in the presence of the Cl-channel blocker indacrinone (MK196). Distribution of the lipophilic anion SCN as an indirect estimation of the membrane potential is found not to be applicable for the fast changes inV m reported in this paper. Incubation with DiOC3-(5) for 5 min is demenstrated to reduce the Cl permeability by 26±5% and the NO 3 permeability by 15±2%, while no significant effect of the probe could be demonstrated on the K+ permeability. Values forV m , corrected for the inhibitory effect of the dye on the anion conductance, are estimated at –61±1 mV in isotonic standard NaCl medium, –78±3 mV in isotonic Na+-free choline medium and –46±1 mV in isotonic NaNO3 medium. The cell membrane is depolarized by addition of the K+ channel inhibitor quinine and it is hyperpolarized when the cells are suspended in Na+-free choline medium, indicating thatV m is generated partly by potassium and partly by sodium diffusion. Ehrlich cells have previously been shown to be more permeable to nitrate than to chloride. Substituting NO 3 for all cellular and extracellular Cl leads to a depolarization of the membrane, demonstrating thatV m is also generated by the anions and that anions are above equilibrium. Taking the previously demonstrated single-file behavior of the K+ channels into consideration, the membrane conductances in Ehrlich cells are estimated at 10.4 S/cm2 for K+, 3.0 S/cm2 for Na+, 0.6 S/cm2 for Cl and 8.7 S/cm2 for NO 3 . Addition of the Ca2+-ionophore A23187 results in net loss of KCl and a hyperpolarization of the membrane, indicating that the K+ permeability exceeds the Cl permeability also after the addition of A23187. The K+ and Cl conductances in A23187-treated Ehrlich cells are estimated at 134 and 30 S/cm2, respectively. The membrane potential is depolarized in hypotonically swollen cells, confirming that the increase in the Cl permeability following hypotonic exposure exceeds the concommitant increase in the K+ permeability. In control experiments where the membrane potentialV m =E K =E Cl =E Na , it is demonstrated that cell volume changes has no significant effect on the fluorescence signal, apparently because of a large intracellular buffering capacity. The increase in the Cl conductances is 68-fold when cells are transferred to a medium with half the osmolarity of the standard medium, as estimated from the net Cl efflux and the change inV m . The concommitant increase in the K+ conductance, as estimated from the net K+ efflux, is only twofold.  相似文献   

16.
Intensity of 2 s delayed fluorescence (DF) as a function of steady-state actinic light intensity was investigated in pea chloroplasts in the presence of 10 M DCMU. The light saturation curve of DF was approximated by a sum of two hyperbolic components which differ by an order of magnitude in the half-saturating incident light intensity. The relative contribution of the amplitudes of the components was practically independent of cation (Na+ and Mg2+) concentration and a short-term heating of the chloroplasts at 45°C. The component saturating at low incident light intensity was selectively suppressed by 100 M DCMU or by 1 mol g-1 Chl oleic acid. DF intensity following excitation by a single saturating 15 s flash was equal to the intensity of the component saturating at a low incident light intensity. Upon flash excitation, the maximum steady-state DF level was found to be attained only after a series of saturating flashes. It is concluded that the two components of the DF light saturation curves are related to PS II centres heterogeneity in quantum yield of stabilization of the reduced primary quinone acceptor.Abbreviations DF Delayed fluorescence - L1- and L2-components DF components saturating at low and high incident light intensity, respectively - I incident light intensity - L DF intensity - P680 reaction centre chlorophyll of PS II - QA and QB primary and secondary quinone acceptors of PS II, respectively  相似文献   

17.
The effects of eight microelements (I, BO3 3–, MoO4 2–, Co2+, Cu2+, Mn2+, Fe2+, Zn2+) on the biosynthesis of camptothecin and the growth of suspension cultures of Camptotheca acuminata were studied. The increase of I to 25 M l–1, Cu2+ to 1 M l–1, Co2+ to 2 M l–1 and MoO4 2– to 10 M l–1 in Murashige and Skoog (MS) medium resulted in 1.66, 2.84, 2.53 and 2.04 times higher of camptothecin yield than that in standard MS medium respectively. Combined treatment of I (25 M l–1), Cu2+ (1 M l–1), Co2+ (2 M l–1) and MoO4 2– (10 M l–1) lead to improve cell dry weight, camptothecin content, and camptothecin yield to 30.56 g l–1, 0.0299%, and 9.15 mg l–1, respectively, which were 20.2, 208.9 and 273.8% increment respectively when compared with those of control.  相似文献   

18.
The effect of chemical modifiers of amino acid residues on the proton conductivity of H+-ATPase in inside out submitochondrial particles has been studied. Treatment of submitochondrial particles prepared in the presence of EDTA (ESMP) with the arginine modifiers, phenylglyoxal or butanedione, or the tyrosine modifier, tetranitromethane, caused inhibition of the ATPase activity. Phenylglyoxal and tetranitromethane also caused inhibition of the anaerobic release of respiratory H+ in ESMP as well as in particles deprived of F1 (USMP). Butanedione treatment caused, on the contrary, acceleration of anaerobic proton release in both particles. The inhibition of proton release caused by phenylglyoxal and tetranitromethane exhibited in USMP a sigmoidal titration curve. The same inhibitory pattern was observed with oligomycin and withN,N-dicyclohexylcarbodiimide. In ESMP, relaxation of H+ exhibited two first-order phases, both an expression of the H+ conductivity of the ATPase complex. The rapid phase results from transient enhancement of H+ conduction caused by respiratory H+ itself. Oligomycin,N,N-dicyclohexylcarbodiimide, and tetranitromethane inhibited both phases of H+ release, and butanedione accelerated both. Phenylglyoxal inhibited principally the slow phase of H+ conduction. In USMP, H+ release followed simple first-order kinetics. Oligomycin depressed H+ release, enhanced respiratory H+, and restored the biphasicity of H+ release. Phenylglyoxal and tetranitromethane inhibited H+ release in USMP without modifying its first-order kinetics. Butanedione treatment caused biphasicity of H+ release from USMP, introducing a very rapid phase of H+ release. Addition of soluble F1 to USMP also restored biphasicity of H+ release. A mechanism of proton conduction by F o is discussed based on involvement of tyrosine or other hydroxyl residues, in series with the DCCD-reactive acid residue. There are apparently two functionally different species of arginine or other basic residues: those modified by phenylglyoxal, which facilitate H+ conduction, and those modified by butanedione, which retard H+ diffusion.  相似文献   

19.
Summary The conductance of the Ca2+-activated K+ channel (g K(Ca)) of the human red cell membrane was studied as a function of membrane potential (V m ) and extracellular K+ concentration ([K+]ex). ATP-depleted cells, with fixed values of cellular K+ (145mm) and pH (7.1), and preloaded with 27 m ionized Ca were transferred, with open K+ channels, to buffer-free salt solutions with given K+ concentrations. Outward-current conductances were calculated from initial net effluxes of K+, correspondingV m , monitored by CCCP-mediated electrochemical equilibration of protons between a buffer-free extracellular and the heavily buffered cellular phases, and Nernst equilibrium potentials of K ions (E K) determined at the peak of hyperpolarization. Zero-current conductances were calculated from unidirectional effluxes of42K at (V m –E K)0, using a single-file flux ratio exponent of 2.7. Within a [K+]ex range of 5.5 to 60mm and at (V m –E K) 20 mV a basic conductance, which was independent of [K+]ex, was found. It had a small voltage dependence, varying linearly from 45 to 70 S/cm2 between 0 and –100 mV. As (V m –E K) decreased from 20 towards zero mVg K(Ca) increased hyperbolically from the basic value towards a zero-current value of 165 S/cm2. The zero-current conductance was not significantly dependent on [K+]ex (30 to 156mm) corresponding toV m (–50 mV to 0). A further increase ing K(Ca) symmetrically aroundE K is suggested as (V m –E K) becomes positive. Increasing the extracellular K+ concentration from zero and up to 3mm resulted in an increase ing K(Ca) from 50 to 70 S/cm2. Since the driving force (V m –E K) was larger than 20 mV within this range of [K+]ex this was probably a specific K+ activation ofg K(Ca). In conclusion: The Ca2+-activated K+ channel of the human red cell membrane is an inward rectifier showing the characteristic voltage dependence of this type of channel.  相似文献   

20.
Summary Exposure of porcine renal brush-border membrane vesicles to 1.2% cholate and subsequent detergent removal by dialysis reorients almost all N-ethylmaleimide (NEM)-sensitive ATPases from the vesicle inside to the outside. ATP addition to cholate-pretreated, but not to intact, vesicles causes H+ uptake as visualized by the pH indicator, acridine organge. The reoriented H+-pump is electrogenic because permeant extravesicular anions or intravesicular K+ plus valinomycin enhance H+ transport. ATP stimulates H+ uptake with an apparentK m of 93 m. Support of H+ uptake andP i liberation by ATP>GTPITP> UTP indicates a preference for ATP and utilization of other nucleotides at lower efficiency. ADP is a potent, competitive inhibitor of ATP-driven H+ uptake,(K i , 24 m). Mg2+ and Mn2– support ATP-driven H+ uptake, but Ca2+, Ba2+ and Zn2+ do not. Imm Zn2+ inhibits MgATP-driven H+ transport completely. NEM-sensitiveP i liberation is stimulated by Mg2+ and Mg2– and, unlike H+ uptake, also by Ca2+ suggesting Ca2+-dependent ATP hydrolysis unrelated to H+ transport. The inside-out oriented H+-pump is relatively insensitive toward oligomycin, azide, N,N-dicyclohexylcarbodiimide (DCCD) and vanadate, but efficiently inhibited by NEM (apparentK i , 0.77 m), and 4-chloro-7-nitro-benzoxa-1,3-diazole (NBD-Cl; apparentK i , 0.39 m). Taken together, the H+-ATPase of proximal tubular brush-border membranes exhibits characteristics very similar to those of vacuolar type (V-type) H+-ATPases. Hence,V-type H+-ATPases occur not only in intracellular organelles but also in specialized plasma membrane areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号