首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Results of morphological studies of degenerated fibers indicated that the first somatosensory area of the cortex was connected by the descending cortico-thalamic fibers with the posterior ventral nucleus of the thalamus. The second somatosensory area was simultaneously connected with the caudal portion of the posterior ventral nucleus and with the nuclei of the posterior group of the thalamus. The mentioned cortico-thalamic connections were distributed by the somatotopic principle.  相似文献   

2.
Projections of the central cerebellar nuclei to the intralaminar thalamic nuclei were studied in cats with the use of light and electron microscopy. Almost all intralaminar nuclei were shown to obtain cerebello-thalamic projections. The entire complex of the central cerebellar nuclei serves as a source of such projections; yet, involvement of different nuclei is dissimilar. Destruction of the central and, especially, caudal regions of the fastigial nucleus evoked in the intralaminar thalamic nuclei degenerative changes in the nerve fibers (from swelling and development of varicosities up to total fragmentation). Pathological phenomena could be noticed in the most caudal regions of the above thalamic nuclear group, including the medial dorsal nucleus. Projections of the cerebellar interpositus nucleus were directed toward nearly the same regions of the intralaminar nuclei; degeneration was more intensive (covered thecentrum medianum) when posterior regions of the interpositus nucleus were destroyed. Destruction of the lateral cerebellar nucleus evoked a similar pattern of pathological changes, but degeneration was also observed in some structures of the ventral and anterior nuclear groups of the thalamus. Electron microscopic examination showed that degeneration of dark and light types developed in the fiber preterminals and terminals. It can be concluded that the central cerebellar nuclei project not only to the ventral complex of the thalamic nuclei, but also to the anterior, medial, and intralaminar nuclear groups (rostral and caudal portions).  相似文献   

3.
The laminar projections from the cerebral cortex to the mediodorsal thalamic nucleus and adjacent thalamic nuclei were studied by means of the horseradish peroxidase (HRP) retrograde axonal transport method. A possible correlation was found between the connectivity arising from layer V of the cerebral cortex, and the rich-acetylcholinesterase (AChE) regions within the subcortical structures under study. This suggests the possibility that layer V of the cerebral cortex in Alzheimer's disease is initially affected and subsequently those rich-AChE subcortical regions with which it is connected.  相似文献   

4.
5.
Experiments in adult cats surviving five days, four months and one year after neurosurgical section of the optical tract, half of the midbrain tegmentum, show the stability of cytoarchitectonic organization of LGB and ventro-basal nuclear complex of the thalamus due to ultrastructural plastic rearrangement of the studied neural centers and alterations in the sensory system as a whole.  相似文献   

6.
Responses of 92 neurons of the reticular (R) and 105 neurons of the ventral anterior (VA) thalamic nuclei to stimulation of the ventrobasal complex (VB) and the lateral (GL) and medial (GM) geniculate bodies were investigated in cats immobilized with D-tobocurarine. Altogether 72.2% of R neurons and 76.2% of VA neurons responded to stimulation of VB whereas only 15.0% of R neurons and 27.1% of VA neurons responded to stimulation of GM and 10.2% of R neurons and 19.6% of VA neurons responded to stimulation of GL. The response of the R and VA neurons to stimulation of the relay nuclei as a rule was expressed as excitation. A primary inhibitory response was observed for only two R and three VA neurons. Two types of excitable neurons were distinguished: The first respond to afferent stimulation by a discharge consisting of 5–15 spikes with a frequency of 250–300/sec; the second respond by single action potentials. Neurons of the first type closely resemble inhibitory interneurons in the character of the response. Antidromic responses were recorded from 2.2% of R neurons and 7.8% of VA neurons during stimulation of the relay nuclei. Among the R and VA neurons there are some which respond to stimulation not only of one, but of two or even three relay nuclei. If stimulation of one relay nucleus is accompanied by a response of a R or VA neuron, preceding stimulation of another nucleus leads to inhibition of the response to the testing stimulus if the interval between conditioning and testing stimuli is less than 30–50 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 597–605, November–December, 1976.  相似文献   

7.
Primuline fluorochrome retrograde transport technique was used to investigate sources of thalamocortical projections to a single rat somatosensory cortex column connected with the projection of the C3 vibrissa. Labeled cells were identified in eight different thalamic nuclei: two specific, five nonspecific, and one association nucleus. Labeled neurons differed in the degree of stain accumulated as well as cell numbers and density of distribution from one nucleus to another, indicative of the different arborization patterns of their axons within the cortex. Highest numbers of heavily stained cells as well as highest density of distribution were observed in the ventral thalamic nucleus. The convergence seen between different thalamocortical inputs on to a single somatosensory cortex column explains the functional differences observed between neurons belonging to the same column and makes the formation of functionally distinct neuronal groupings appear possible on this structural basis.Neurocybernetics Research Institute, Rostov-on-Don. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 168–174, March–April, 1989.  相似文献   

8.
Responses of 252 neurons of the mediodorsal nucleus (MD) and 329 cells of the pulvinar-posterolateral complex (Pulv-LP) of the thalamus to single and combined stimulation of peripheral receptor systems (visual, auditory, and somatosensory) were investigated in acute experiments on cats anesthetized with a mixture of pentobarbital and chloralose. Three types of responses of these thalamic units to peripheral stimulation were distinguished: quickening of spontaneous activity (Pulv-LP 32.0, MD 20.6%), inhibition (Pulv-LP 21.0, MD 24.2%), and mixed (Pulv-8.8, LP MD 4.0%). No response was found in 37.4% of Pulv-LP neurons and 51.2% of MD neurons. Besides definite similarity in the organization of the two structures, Pulv-LP and MD also had differences. Responses of the neurons to stimulation of peripheral receptors were divided into three groups on the basis of the duration of their latent period: short (under 20 msec), average (21–40 msec), and long (over 41 msec) latent periods. The second group was the largest.Donetsk Medical Institute. Kemerovo Medical Institute. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 469–477, September–October, 1978.  相似文献   

9.
10.
Thalamic neuronal projections to the parietal association cortex were investigated in cats applying techniques of retrograde axonal transport of two fluorescent dyes (primuline and fast blue). The dorsal thalamic pulvinar (PL) as well as the dorsal and caudal lateral posterior nucleus (LP) were found to project mainly to the central suprasylvian gyrus (CSSG), while the ventral PL and the ventrorostral LP send out projections to rostral sites of the same gyrus (RSSG). Neurons with dual labeling were found in the PL, LP, suprageniculate, anteroventral, and ventrolateral thalamic nuclei following a single injection of two different markers into the RSSG and CSSG, as well as the centrolateral, paracentral, and centromedial nuclei. Topical organization of sources of cortical projections within the PL-LP complex can apparently provide a high level of discrimination of visual signals by individual cortical units. At the same time, the RSSG and CSSG appear to function in harmony to a considerable extent during integration of information of differing cortical origin; this could point to a lack of differentiation on the part of the RSSG and CSSG, corresponding to feline cortical areas 5 and 7 approximately.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 135–142, March–April, 1991.  相似文献   

11.
Liu Q  Han D  Wang S  Zou ZY 《生理学报》2005,57(5):573-586
本文旨在探讨电刺激右侧尾壳核(caudate putamen nucleus,CPu)对双侧丘脑外侧背核(1aterodorsal thalamic nucleus,LD)单个神经元放电和海马(hippocampus,HPC)电图瞬时时间编码形式的调制性影响。用21只雄性Sprague-Dawley大鼠(150-250g),重复急性强直电刺激(60Hz,2S,0.4-0.6mA)右侧尾壳核(acute tanizafion of the right caudate putamen nucleus,ATRC)诱发大鼠癫痫模型,4通道同步记录双侧LD神经元单位放电和双侧HPC深部电图。结果如下:重复施加ATRC可以诱导大鼠出现(1)双侧LD-HPC癫痫电网络间的功能性环状联系。起始点为对侧LD神经元原发性单位后放电,随后出现同侧LD神经元原发性单位后放电,然后呈现同侧HPC电图原发性后放电,最终引起对侧HPC电图脱同步化效应;(2)双侧LD神经元放电脉冲间隔(interspike intervals,ISIs)散点分布形式与刺激前呈现镜像对称特征。对侧LD神经元原发性后放电的ISI点分布基于底层而且持续时间较长,具有更加明显的突触可塑性特征;(3)随着ATRC串次的增加,对侧LD神经元原发性单位后放电间的爆发式放电时程逐渐延长,可以募集增强海弓电图同步化电活动;显现对侧LD神经元单个放电脉冲与HPC电图γ电振荡(20-25Hz)间的锁相(phase-lock)和锁时(time-lock)关系。结果提示:ATRC可以募集形成具有联系的双侧LD神经元放电和HPC电图特征性的神经信息编码形式,以对侧更加明显。这些跨越大脑半球、涉及多结构的功能性神经信息网络的建立很可能是癫痫发生、发展和扩布的重要信息编码机制。  相似文献   

12.
The thalamic reticular nucleus (TRN) projects inhibitory signals to the thalamus, thereby controlling thalamocortical connections. Few studies have examined the development of TRN projections to the anterior thalamic nuclei with regard to axon course and the axon terminal distributions. In the present study, we used parvalbumin (PV) immunostaining to investigate inhibitory projections from the TRN to the thalamus in postnatal (P) 2- to 5-week-old rats (P14–35). The distribution of PV-positive (+) nerve fibers and nerve terminals markedly differed among the anterior thalamic nuclei at P14. Small, beaded nerve terminals were more distributed throughout the anterodorsal nucleus (AD) than in the anteroventral nucleus (AV) and anteromedial nucleus (AM). PV+ fibers traveling from the TRN to the AD were observed in the AV and AM. Nodular nerve terminals, spindle or en passant terminals, were identified on the axons passing through the AV and AM. At P21, axon bundles traveling without nodular terminals were observed, and nerve terminals were distributed throughout the AV and AM similar to the AD. At P28 and P35, the nerve terminals were evenly distributed throughout each nucleus. In addition, DiI tracer injections into the retrosplenial cortex revealed retrogradely-labeled projection neurons in the 3 nuclei at P14. At P14, the AD received abundant projections from the TRN and then projected to the retrosplenial cortex. The AV and AM seem to receive projections with distinct nodular nerve terminals from the TRN and project to the retrosplenial cortex. The projections from TRN to the AV and AM with nodular nerve terminals at P14 are probably developmental-period specific. In comparison, the TRN projections to the AD at P14 might be related to the development of spatial navigation as part of the head orientation system.Key words: Thalamic reticular nucleus, parvalbumin, axon terminal, development, anterior thalamic nucleus, rat  相似文献   

13.
14.
15.
16.
17.
18.
19.
The character and particular features of interaction between visual, auditory, and electrodermal afferent impulses on neurons of the pulvinar, posterolateral, and mediodorsal thalamic nuclei were studied in acute experiments on cats anesthetized with a mixture of pentobarbital and chloralose. Interaction discovered on cells of both groups of structures was of two types. In the first (the one most frequently found) only inhibition was observed or inhibition followed by facilitation of the response to testing stimulation; in the second type only facilitation or facilitation followed by inhibition of unit activity was found. Overall ability for interaction to take place on neurons of the mediodorsal nucleus was weaker than on cells of the pulvinar-posterolateral complex (P<0.05). Interaction was strongest on trisensory cells; it was also observed on monosensory cells or on cells which did not respond to isolated stimulation.Donetsk Medical Institute. Kemerovo Medical Institute. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 478–485, September–October, 1978.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号