首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Kinetics of Catalase Inactivation Induced by Ultrasonic Cavitation   总被引:1,自引:0,他引:1  
Kinetic patterns of sonication-induced inactivation of bovine liver catalase (CAT) were studied in buffer solutions (pH 4.0–11.0) within the temperature range from 36 to 55o. Solutions of CAT were exposed to LF (20.8 kHz) ultrasound (specific power, 48–62 W/cm2). The kinetics of CAT inactivation was characterized by effective first-order rate constants (s–1) of total inactivation (k in), thermal inactivation (*k in), and ultrasonic inactivation (k in(us)). In all cases, the following inequality was valid: k in > *k in. The value of k in(us) increased with the ultrasound power (range, 48–62 W/cm2) and exhibited a strong dependence on the pH of the medium. On increasing initial concentration of CAT (0.4–4.0 nM), k in(us) decreased. The three rate constants were minimum within the range pH 6.5–8.0; their values increased considerably at pH < 6.0 and pH > 9.0. At 36–55o, the temperature dependence of k in(us) was characterized by an activation energy (E act) of 19.7 kcal/mol, whereas the value of E act for CAT thermoinactivation was equal to 44.2 kcal/mol. Bovine and human serum albumins (BSA and HSA, respectively) inhibited sonication-induced CAT inactivation; complete prevention was observed at concentrations above 2.5 g/ml. Dimethyl formamide (DMFA), a scavenger of hydroxyl radicals (O ), prevented sonication-induced CAT inactivation at 10% (k in and *k in increased with the content of DMFA at concentrations in excess of 3%). The results obtained indicate that free radicals generated in the field of ultrasonic cavitation play a decisive role in the inactivation of CAT, which takes place when its solutions are exposed to low-frequency ultrasound. However, the efficiency of CAT inactivation by the radicals is determined by (1) the degree of association between the enzyme molecules in the reaction medium and (2) the composition thereof.  相似文献   

2.
The kinetics of inactivation of catalases from bovine liver (CAT), the fungus Penicillium piceum (CAT1), and the methylotrophic yeast Pichia pastoris (CAT2) was studied in phosphate buffer (pH 5.5 or 7.4) at 45 and 50 degrees C or under the conditions of exposure to low-frequency ultrasound (LFUS; 27 kHz, 60 W/cm2). The processes were characterized by effective first-order rate constants (s(-1)): kin (total inactivation), k*in in (thermal inactivation), and k*in (us) (ultrasonic inactivation). The values of kin and k*in increased in the following order: CAT1 < CAT < CAT2. CD spectra of the enzyme solutions were recorded in the course of inactivation by high temperatures (45 and 50 degrees C) and LFUS, and the ratios of secondary structures were calculated. Processes of thermal and ultrasonic inactivation of catalases were associated with a decrease in the content of alpha helices and an increase in that of antiparallel beta structures and irregular regions (CAT1 < CAT < CAT2). We conclude that the enzymes exhibit the following rank order of resistance: CAT1 > CAT >CAT2. Judging from the characteristics of CAT1, it appears to be an optimum component for antioxidant enzyme complexes.  相似文献   

3.
Kinetics of inactivation of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in 0.1 M phosphate buffer (pH 7.4) within temperature range from 36 to 50 degrees C was studied comparatively under conditions of exposure of enzyme solution to low-frequency (LF, 27 kHz, 60 W/cm2) or high-frequency (HF, 880 kHz, 1.0 W/cm2) ultrasound (USD). Inactivation of G6PDH was characterized by effective first-order rate constants: (k(in)) total (summarized) inactivation; (k(in)*) thermal inactivation; and (k(in)(usd)) ultrasonic inactivation. Dilution of enzyme solution from 20 to 3 nM was accompanied by a significant increase in the values of the three rate constants. The following inequality was valid in all cases: k(in) > k(in)*. The rate constants increased upon increasing the temperature. The Arrhenius plots of the temperature dependencies of k(in) and k(in) (usd) have a salient point at 44 degrees C. The activation energy (Eact) of the total inactivation of G6PDH was higher than Eact for the process of ultrasonic inactivation of this enzyme. The two values were found to depend on USD frequency: Eact in case of inactivation with low-frequency ultrasound (LF-USD) was higher than in case of inactivation with high-frequency ultrasound (HF-USD). The rate of the ultrasonic induced inactivation of this enzyme substantially decreased in the presence of low concentrations of traps of radicals HO. (dimethylformamide, ethanol, and mannitol). This fact supports the conclusion that free radicals are involved in the mechanism of the G6PDH inactivation in solutions exposed to LF-USD and HF-USD. Ethanol was an effective protector of G6PDH inactivation in enzyme solutions exposed to USD.  相似文献   

4.
Seven structurally diverse flavonoids have been shown to decrease glucose-6-phosphate dehydrogenase (G6PDH) inactivation in 0.1 M phosphate buffer (pH 7.4), induced by exposure to a high temperature (44 degrees C), or by a low-frequency ultrasound (27 kHz, 60 Wt/cm2). The activity of the compounds was assessed by their ability to change effective first-order rate constants characterizing the total (thermal and ultrasonic), thermal, and ultrasonic inactivation of 2.5 nM G6PDH (k(in), k(in)* [Russian characters: see text] kin(us), respectively). The value dependences of these constants on flavonoid concentrations (0.01-50 microM) were obtained. Rank order of potency exhibited by the compounds in protecting G6PDH appeared as follows: hesperidin > morin > silibin > naringin = quercetin > kampferol > astragalin. The data obtained confirm the crucial role of free radicals formed in the field of ultrasonic cavitation (HO* and O2*-) in G6PDH inactivation in solutions.  相似文献   

5.
Inactivation of urease (25 nM) in aqueous solutions (pH 5.0-6.0) treated with low-frequency ultrasound (LFUS; 27 kHz, 60 Wt/cm2, 36-56 degrees C) or high-frequency ultrasound (HFUS; 2.64 MHz, 1 Wt/cm2, 36 or 56 degrees C) has been characterized quantitatively, using first-order rate constants: kin, aggregate inactivation; kin*, thermal inactivation; and kin* (US), ultrasonic inactivation. Within the range from 1 nM to 10 microM, propyl gallate (PG) decreases approximately threefold the rate of LFUS-induced inactivation of urease (56 degrees C), whereas resorcinol poly-2-disulfide prevents this process at 1 nM or higher concentrations. PG completely inhibits HFUS-induced inactivation of urease at 1 nM (36 degrees C) or 10 nM (56 degrees C). At 0.2-10 microM, human serum albumin (HSA) increases the resistance of urease (at 56 degrees C) treated with HFUS to temperature- and cavitation-induced inactivation. Complexes of gallic acid polydisulfide (GAPDS) with HSA (GAPDS-HSA), formed by conjugation of 1.0 nM PGDS with 0.33 nM HSA, prevent HFUS-induced urease inactivation (56 degrees C).  相似文献   

6.
Kinetics of inactivation of horseradish peroxidase (HP) induced by low-frequency ultrasonic (US) treatment (27 kHz) with the specific power of 60 W/cm2 were studied in phosphate (pH 7.4) and acetate (pH 5.2) buffers within the temperature range of 36.0 to 50.0°C and characterized by effective first-order rate constants of US inactivation k in (us) in min–1. Values of k in (us) depend on the specific ultrasonic power within the range of 20-60 W/cm2, on the concentration of HP, and on pH and temperature of the solutions. The activation energy of US inactivation of HP is 9.4 kcal/mole. Scavengers of HO· radicals, mannitol and dimethylformamide, significantly inhibit the US inactivation of HP at 36.0°C, whereas micromolar concentrations of polydisulfide of gallic acid (poly(DSG)) and of poly(2-aminodisulfide-4-nitrophenol) (poly(ADSNP)) virtually completely suppress the US inactivation of peroxidase at the ultrasonic power of 60 W/cm2 on the sonication of the enzyme solutions for more than 1 h at pH 5.2. Various complexes of poly(DSG) with human serum albumin effectively protect HP against the US inactivation in phosphate buffer (pH 7.4). The findings unambiguously confirm a free radical mechanism of the US inactivation of HP in aqueous solutions. Polydisulfides of substituted phenols are very effective protectors of peroxidase against inactivation caused by US cavitation.  相似文献   

7.
Seven structurally diverse flavonoids have been shown to decrease glucose-6-phosphate dehydrogenase (G6PDH) inactivation in 0.1 M phosphate buffer (pH 7.4), induced by exposure to a high temperature (44°C), or by a low-frequency ultrasound (27 kHz, 60 Wt/cm2). The activity of the compounds was assessed by their ability to change effective first-order rate constants characterizing the total (thermal and ultrasonic), thermal, and ultrasonic inactivation of 2.5 nM G6PDH (k in, k*in, and k in(us), respectively). The value dependences of these constants on flavonoid concentrations (0.01–50 μM) were obtained. Rank order of potency exhibited by the compounds in protecting G6PDH appeared as follows: hesperidin > morin > silibin > naringin = quercetin > kampferol ? astragalin. The data obtained confirm the crucial role of free radicals formed in the field of ultrasonic cavitation (HO· and O 2 ·? in G6PDH inactivation in solutions.  相似文献   

8.
The inactivation kinetics of a human thyroid peroxidase protein fraction upon sonication (ultrasound frequency 27 kHz, power 60 W/cm2) of the enzyme solution in 15 mM phosphate buffer, pH 7.5, was studied. To quantitatively characterize the dependence of the slowest stage of the human thyroid peroxidase inactivation on temperature (36.0-50.4) degrees C, an effective constant of ultrasound inactivation rate Kin(US) was used. From the temperature dependence of Kin(US) at temperatures below 43 degrees C, the activation energy was estimated to be 8.11 kcal/mol. It was shown that the rate of human thyroid peroxidase inactivation strongly depends on the concentration of total protein in solution: the kin(US) value decreases more than sixfold in the protein concentration range from 0.2 to 0.8 mg/ml. It was also shown that poly(2-aminodisulfide-4-nitrophenol), its complexes with human serum albumin as well as the complexes human serum albumin--poly(gallic acid disulfide) substantially inhibit the ultrasound-induced inactivation of the enzyme and can be its effective stabilizers in the ultrasound cavitation field. This confirms the suggestion that active free radicals HO., O2.- and HO2. play a key role in the inactivation of human thyroid peroxidase. A general scheme of the inactivation of human thyroid peroxidase is proposed, which represents a chain of successive and parallel reversible and irreversible elementary steps.  相似文献   

9.

The kinetics of inactivation of catalases from bovine liver (CAT), the fungus Penicillium piceum (CAT1), and the methylotrophic yeast Pichia pastoris (CAT2) was studied in phosphate buffer (pH 5.5 or 7.4) at 45 and 50°C or under the conditions of exposure to low-frequency ultrasound (LFUS; 27 kHz, 60 W/cm2). The processes were characterized by effective first-order rate constants (s?1): k in (total inactivation), k *in (thermal inactivation), and k *in (us) (ultrasonic inactivation). The values of k in and k *in increased in the following order: CAT1 < CAT < CAT2. Circular dichroic spectra of the enzyme solutions were recorded in the course of inactivation by high temperatures (45 and 50°C ) and LFUS, and the contents of secondary structures were calculated. Processes of thermal and ultrasonic inactivation of catalases were associated with a decrease in the content of α helices and an increase in that of antiparallel β structures and irregular regions (CAT1 < CAT < CAT2). We conclude that the enzymes exhibit the following rank order of resistance: CAT1 > CAT > CAT2. Judging from the characteristics of CAT1, it appears to be an optimum component for antioxidant enzyme complexes.

  相似文献   

10.
The inactivation kinetics of glucoso-6-phosphate dehydrogenase (GPDH) and its complexes with glucoso-6-phosphate and NADP+ was characterized in aqueous solutions at 36-47 degrees C under treatment with low frequency (27 kHz, 60 W/cm2) and high frequency ultrasound (880 kHz, 1 W/cm2). To this end, we measured three effective first-order inactivation rate constants: thermal k(in)* , total (thermal and ultrasonic) kin, and ultrasonic kin (US). The values of the constants were found to be higher for the free enzyme than for its complexes GP-DH-GP and GPDH-NADP+ at all temperatures, which confirms the enzyme stabilization by its substrate and cofactor under both thermal and ultrasonic inactivation. Effective values of the activation energies (Ea) were determined and the preexponential factors of the rate constants and thermodynamic activation parameters of inactivation processes (deltaH*, deltaS*, and deltaG*) were calculated from the temperature dependences of the inactivation rate constants of GPDH and its complexes. The sonication of aqueous solutions of free GPDH and its complexes was accompanied by a reduction of Ea and deltaH* values in comparison with the corresponding values for thermal inactivation. The Ea, deltaH*, and deltaS* inactivation values for GPDH are lower than the corresponding values for its complexes. A linear dependence between the growth of the deltaH* and deltaS* values was observed for all the inactivation processes for free GPDH and its complexes.  相似文献   

11.
Inactivation of urease (25 nM) in aqueous solutions (pH 5.0–6.0) treated with low-frequency ultrasound (LFUS; 27 kHz, 60 W/cm2, 36–56°C) or high-frequency ultrasound (HFUS; 2.64 MHz, 1 W/cm2, 36 or 56°C) has been characterized quantitatively, using first-order rate constants: k in, total inactivation; k in *, thermal inactivation; and k in(us), ultrasonic inactivation. Within the range from 1 nM to 10 M, propyl gallate (PG) decreases by approximately threefold the rate of LFUS-induced inactivation of urease (56°C), whereas resorcinol poly-2-disulfide stops this process at 1 nM or higher concentrations. PG completely inhibits HFUS-induced inactivation of urease at 1 nM (36°C) or 10 nM (56°C). At 0.2–1.0 M, human serum albumin (HSA) increases the resistance of urease treated with HFUS to temperature- and cavitation-induced inactivation. Complexes of gallic acid polydisulfide (GAPDS) with HSA (GAPDS–HSA), formed by conjugation of 1.0 nM GAPDS with 0.33 nM HSA, prevent HFUS-induced urease inactivation (56°C).  相似文献   

12.
We compared the kinetics of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) inactivation in 0.1 M phosphate buffer (pH 7.4) at 36–50° under conditions of exposure to low-frequency (LF, 27 kHz, 60 W/cm2) or high-frequency (HF, 880 kHz, 1.0 W/cm2) ultrasound (USD). The inactivation of G6PDH was characterized by effective first-order rate constants: k in, total inactivation; k in *, thermal inactivation; and k in(usd), ultrasonic inactivation. Dilution of the enzyme solution from 20 to 3 nM was accompanied by a significant increase in the values of the three rate constants. The following inequality was valid in all cases: k in > k in *. The rate constants increased with temperature. The Arrhenius plots of the temperature dependences of k in and k in(usd) had an break point at 44°C. The activation energy ( act) of the total inactivation of G6PDH was higher than act for the process of ultrasonic inactivation of this enzyme. The two values were found to depend on USD frequency: act was higher in the case of inactivation with low-frequency ultrasound (LF-USD) than high-frequency ultrasound (HF-USD). The rate of the ultrasonic inactivation of this enzyme substantially decreased in the presence of low concentrations of HO. radical scavengers (dimethylformamide, ethanol, and mannitol). This fact supports the conclusion that free radicals are involved in the mechanism of G6PDH inactivation in solutions exposed to LF-USD and HF-USD. Ethanol was an effective protector of G6PDH inactivation in solutions exposed to USD.  相似文献   

13.
Heat inactivation of the acetonic powder of Micrococcus lysodeicticus cells suspended in phosphate buffer pH 6.2 was quantitatively characterized in the temperature range from 34 to 52 degrees. The total value of the rate constant for heat inactivation of the cells equals 2.88 X 10(8) exp(-18360/RT) sec-1. The activation parameters of the process at 34 degrees are the following: delta H* = 17.7 kcal/mole; delta S* = 21.8 E. U.; delta F* = 24.4 kcal/mole. The effect of ethylene glycol, mannitol, dextran, polyvinyl alcohol (PVA) and polyethylene glycols with different molecular weights on the lysis rate and cell stability was studied. Polyvinyl alcohol was found to be the most effective stabilizer. At concentrations of about 10(-5) it enhances the thermostability of the cells threefold.  相似文献   

14.
The inactivation of Aspergillus niger glucose oxidase (GO) was studied in 0.02 M phosphate-citrate buffer (PCB) at various pH, temperatures of 37–59°C, and sonication with low frequency (27 kHz, LF-US) and high frequency (2.64 MHz, HF-US) ultrasound. The GO inactivation was characterized by the effective first-order inactivation rate constantsk in, k*in andk in(us), reflecting the total, thermal, and ultrasonic inactivation components. The constants strongly depended on the pH and temperature of solution, GO concentration, and the presence of acceptors of the free radicals HO·—DMF, DMSO, ethanol, butanol, octanol, and mannitol, confirming that the active radicals formed in the ultrasonic cavitation field played an important role in the GO inactivation. The activation energy in the loss of GO catalytic activity considerably decreased when the enzyme solution was treated with LF-US or HF-US. The dissociative scheme of GO inactivation is discussed. Mannitol can be used for protection of GO from inactivation with LF-US or HF-US in the food industry and immunobiotechnology.  相似文献   

15.
Inactivation of soybean urease in aqueous solution at pH 5.4, 36°C, and high-frequency sonication (2.64 MHz, 1.0 W/cm2) is substantially reduced in the presence of seven structurally different flavonoids. A comparative kinetic study of the effect of these flavonoids on the effective first-order rate constants that characterize the total (thermal and ultrasonic) inactivation k i , thermal inactivation k*i, and ultrasonic inactivation k i (US) of 25 nM enzyme solution was carried out. The dependences of the three inactivation rate constants of the urease on the concentrations of flavonoids within the range from 10?11 to 10?4 M were obtained. The following order of the efficiency of the flavonoids used in respect of the urease protection from ultrasonic inactivation was found: astragalin > silybin > naringin > hesperidin > quercetin > kaempferol > morin. The results confirm a significant role in the inactivation of the urease of HO. and HO 2 . free radicals, which are formed in the ultrasonic cavitation field.  相似文献   

16.
2',7'-Dichlorodihydrofluorescein (DCFH2) is one of the most widely used probes for detecting intracellular oxidative stress, but requires a catalyst to be oxidized by hydrogen peroxide or superoxide and reacts nonspecifically with oxidizing radicals. Thiyl radicals are produced when many radicals are "repaired" by thiols, but are oxidizing agents and thus potentially capable of oxidizing DCFH2. The aim of this study was to investigate the reactivity of thiol-derived radicals toward DCFH2 and its oxidized, fluorescent form 2',7'-dichlorofluorescein (DCF). Thiyl radicals derived from oxidation of glutathione (GSH) or cysteine (CysSH) oxidized DCFH2 with rate constants at pH 7.4 of approximately 4 or approximately 2x10(7) M(-1) s(-1), respectively. Both the rates of oxidation and the yields of DCF were pH-dependent. Glutathione-derived radicals interacted with DCF, resulting in the formation of DCFH* absorbing at 390 nm and loss of fluorescence; in contrast, cysteine-derived radicals did not cause any depletion of DCF fluorescence. We postulate that the observed apparent difference in reactivity between GS* and CysS* toward DCF is related to the formation of carbon-centered, reducing radicals from base-catalyzed isomerization of GS*. DCF formation from interaction of DCFH2 with GS* was inhibited by oxygen in a concentration-dependent manner over the physiological range. These data indicate that in applying DCFH2 to measure oxidizing radicals in biological systems, we have to consider not only the initial competition between thiols and DCFH2 for the oxidizing radicals, but also subsequent reactions of thiol-derived radicals, together with variables--including pH and oxygen concentration--which control thiyl radical chemistry.  相似文献   

17.
The thermal stability of glucose oxidase was studied at temperatures between 50 and 70 degrees C by kinetic and spectroscopic (circular dichroism) methods. The stability of glucose oxidase was shown to depend on the medium pH, protein concentration, and the presence of protectors in the solution. At low protein concentrations (< 15 micrograms/ml) and pH > 5.5, the rate constants kin (s-1) for thermal inactivation of glucose oxidase were high. Circular dichroic spectra suggested an essential role of beta structures in stabilizing the protein globule. At a concentration of 15 micrograms protein/ml, the activation energy Ea of thermal inactivation of glucose oxidase in aqueous solution was estimated at 79.1 kcal/mol. Other thermodynamic activation parameters estimated at 60 degrees C had the following values: delta H = 78.4 kcal/mol, delta G = 25.5 kcal/mol, and delta S = 161.9 entropy units. The thermal inactivation of glucose oxidase was inhibited by KCl, polyethylene glycols, and polyols. Among polyols, the best was sorbitol, which stabilized glucose oxidase without affecting its activity. Ethanol, phenol, and citrate exerted destabilizing effects.  相似文献   

18.
Peroxynitrite (ONOO(-)) can serve either as a peroxide substrate or as an inactivator of prostaglandin endoperoxide H synthase-1 (PGHS-1). Herein, the mechanism of PGHS-1 inactivation by ONOO(-) and the modulatory role that nitric oxide (*NO) plays in this process were studied. PGHS-1 reacted with ONOO(-) with a second-order rate constant of 1.7 x 10(7) M(-1) s(-1) at pH 7.0 and 8 degrees C. In the absence of substrates, the enzyme was dose-dependently inactivated by ONOO(-) in parallel with 3-nitrotyrosine formation. However, when PGHS-1 was incubated with ONOO(-) in the presence of substrates, the direct reaction with ONOO(-) was less relevant and ONOO(-)-derived radicals became involved in enzyme inactivation. Bicarbonate at physiologically relevant concentrations enhanced PGHS-1 inactivation and nitration by ONOO(-), further supporting a free radical mechanism. Importantly, *NO (0.4-1.5 microM min(-1)) was able to spare the peroxidase activity of PGHS-1 but it enhanced ONOO(-)-mediated inactivation of cyclooxygenase. The observed differential effects of *NO on ONOO(-)-mediated PGHS-1 inactivation emphasize a novel aspect of the complex modulatory role that *NO plays during inflammatory processes. We conclude that ONOO(-)-derived radicals inactivate both peroxidase and cyclooxygenase activities of PGHS-1 during enzyme turnover. Finally, our results reconcile the proposed alternative effects of ONOO(-) on PGHS-1 (activation versus inactivation).  相似文献   

19.
Inactivation of glucose 6-phosphate dehydrogenase (G6PDH) complexed with its substrate, glucose 6-phosphate (GP), and/or cofactor, NADP+, has been studied within the range 20-40 degrees C in three media: (a) 0.04 M NaOH-glycine buffer (pH 9.1); (b) Aerosol OT (AOT) reversed micelles in octane; and (c) Triton X-100 micelles in octane supplemented with 10% hexanol. The enzyme inactivation was characterized quantitatively by first order rate constants, kin (s-1). In the case of G6PDH-NADP+ complexes, the values of kin were independent of the initial concentrations of G6PDH, either in aqueous medium or AOT micelles. The values of kin for the complex G6PDH-GP were inversely related to the initial concentration of the enzyme, in both aqueous and micellar media. When inactivation of both complexes were studied in AOT micelles, minimum values of kin corresponded to the degree of hydration W0 = 16.7; at W0 > 16.7 and W0 < 16.7, kin increased. Within the range 20-40 degrees C, the values of kin measured for both complexes in aqueous medium were significantly lower than those measured in AOT micelles. Temperature dependences of kin were characterized by inflections in Arrhenius plots, which corresponded, depending on the medium, to certain temperatures from 33.6 degrees C to 40 degrees C. In all media studied, NADP+ complexes of the enzyme exhibited higher stability than their GP counterparts. The parameters of G6PDH and G6PDH-NADP+ melting, measured by differential scanning microcalorimetry (maximum temperature and half-width of the transition, enthalpy of denaturation, and van't Hoff enthalpy), provided unequivocal evidence of the higher stability of the complex as compared to that of the enzyme. In addition, this approach demonstrated that G6PDH undergoes destabilization in AOT micelles.  相似文献   

20.
The temperature dependence of membrane interactions between PR8 influenza virus and virus receptor (GD1a)-containing liposomes was studied. For quantitation, the octadecylrhodamine B chloride (R18) membrane marker was incorporated into liposomes at quenched concentrations. Upon interaction with target membranes, the marker gets diluted, and dequenching can be measured in a fluorescence spectrophotometer. Rate constants were calculated from the dequenching curves under low pH conditions, which allow for fusion, and at neutral pH, where no specific fusion occurs. Activation energies were determined from Arrhenius plots. The results were compared with the temperature dependence of other viral activities like infectivity, hemolysis, and fusion with erythrocytes. For the slow reaction at pH 7.4, where only non-specific lipid transfer takes place, the activation energy was about 24 kcal/mole between 15 degrees C and 45 degrees C. For the fast, hemagglutinin (HA)-specific fusion reaction (pH 5.3), a very low activation energy (approximately 7 kcal/mole) was found between 25 degrees C and 37 degrees C, whereas below 25 degrees C it was much higher (approximately 34 kcal/mole). The temperature range with low activation energy coincides with the one for optimal infectivity, hemolysis, and fusion with erythrocytes. Furthermore, it is the same range in which the conformational change of HA takes place, which in the absence of a partner membrane leads to an irreversible inactivation of the fusion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号