首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C Bogedain  H Wolf  S Modrow  G Stuber    W Jilg 《Journal of virology》1995,69(8):4872-4879
We identified the immediate-early transactivator Zta of Epstein-Barr virus as a target for specific cytotoxic T lymphocytes (CTL). Cells pulsed with overlapping synthetic peptides representing the entire amino acid sequence of Zta proved to be efficient for the in vitro stimulation of Zta-specific CTL in several donors. With peptide-pulsed target cells, we found that CTL from several donors recognize a peptide comprising 15 amino acids. The immune response against this peptide exerted by CTL lines from different donors was found to be restricted by two different molecules of the major histocompatibility complex: HLA-B8 and HLA-Cw6. The latter molecule could for the first time be identified as a restricting element for a CTL response. The epitope of the HLA-B8-restricted CTL could be mapped to an octameric sequence between amino acid positions 190 and 197 of the Zta protein, whereas the minimal epitope of HLA-Cw6-restricted CTL consists of 11 to 15 residues between positions 187 and 201. Thus, the HLA-B8 and HLA-Cw6 epitopes widely overlap but are not completely identical. In vitro stimulation of blood lymphocytes from a panel of HLA-B8-positive or HLA-Cw6-positive virus carriers, using autologous cells pulsed with the Zta peptides comprising the HLA-B8 or HLA-Cw6 epitope, respectively, revealed in both cases that most of these donors developed a Zta-specific cytotoxic activity. These data, as well as the high spread of the major histocompatibility complex molecules HLA-B8 and HLA-Cw6 in most populations, suggest that an efficient CTL response directed against gene products of the immediate-early group of the lytic cycle exists in vivo in a considerable portion of virus carriers. A CTL response against proteins expressed immediately after the switch into the lytic cycle could eliminate lytically activated cells at an early stage and would thus efficiently prevent the production and release of progeny virions.  相似文献   

2.
Hemi-exon shuffling and site-directed mutagenesis have been used to determine which amino acid differences between HLA-A2.1 and HLA-A2.2 alter the CTL-defined epitopes on these two molecules. Two genes were constructed that encode novel molecules in which the effect of amino acid differences at residues 9, 43, and 95, or at residue 156 could be separately evaluated. Using both human and murine CTL that were specific for either HLA-A2.1 or HLA-A2.2, four types of epitopes were identified: 1) epitopes that were insensitive to substitutions at either residues 9, 43, and 95, or residue 156 but were lost when all four positions were changed; 2) epitopes that were dependent on the residues 9, 43, 95, but not residue 156; 3) epitopes that were dependent on residue 156, but not amino acid residues 9, 43, and 95; and 4) epitopes that were dependent on residues 9, 43, and 95, as well as amino acid residue 156. Overall, there was a roughly equal distribution of clones recognizing each of these types of epitopes. Additional molecules were constructed by hemi-exon shuffling between the HLA-A2.2 and HLA-A2.3 genes, and by site-directed mutagenesis, to analyze the epitopes recognized by two HLA-A2.2/A2.1 cross-reactive murine CTL that do not recognize HLA-A2.3. Although the epitopes recognized by these CTL were unaffected by changes occurring at residues 9, 43, and 95, or at residues 149, 152, and 156 alone, simultaneous changes in both of these regions acted in concert to destroy the epitopes. Both of the CTL recognized epitopes that were lost when substitutions were made at residues 9, 43, 95, 149, and 152. The epitope recognized by one of the CTL was also destroyed by the substitution of residues 9, 43, 95, 152, and 156. Overall, these results indicate that residues 9, 43, and 95, as well as residues in the alpha-helical region of the molecule, are all capable of contributing to the definition of the epitopes recognized by HLA-A2.1- and HLA-A2.2-specific CTL. They further indicate that some epitopes can be mapped to a particular region of the molecule, whereas other epitopes are formed through a complex interaction of residues in distant regions of the molecule.  相似文献   

3.
Cytotoxic T-lymphocyte (CTL) clones specific for the influenza A/PR/8/34 virus hemagglutinin (HA) were isolated by priming CBA mice with a recombinant vaccinia virus expressing the HA molecule. The epitopes recognized by two of these clones, which were CD8+, Kk restricted, and HA subtype specific, were defined by using a combination of recombinant vaccinia viruses expressing HA fragments and synthetic peptides. One epitope is in the HA1 subunit at residues 259 to 266 (numbering from the initiator methionine), amino acid sequence FEANGNLI, and the other epitope is in the HA2 subunit at residues 10 to 18 (numbering from the amino terminus of the HA2 subunit), sequence IEGGWTGMI. These two peptides are good candidates for naturally processed HA epitopes presented during influenza infection, as they are the same length (eight and nine residues) as other naturally processed viral peptides presented to CTL. A comparison of the sequences of these two new epitopes with those of the three previously published Kk-restricted T-cell epitopes showed some homology among all of the epitopes, suggesting a binding motif. In particular, an isoleucine residue at the carboxy-terminal end is present in all of the epitopes. On the basis of this homology, we predicted that the Kk-restricted epitope in influenza virus nucleoprotein, previously defined as residues 50 to 63, was contained within residues 50 to 57, sequence SDYEGRLI. This shorter peptide was found to sensitize target cells at a 200-fold lower concentration than did nucleoprotein residues 50 to 63 when tested with a CTL clone, confirming the alignment of Kk-restricted epitopes.  相似文献   

4.
HLA-A2.1-associated peptides, extracted from human melanoma cells, were used to study epitopes for melanoma-specific HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) by epitope reconstitution, active peptide sequence characterization and synthetic peptide verification. CTL were generated from tumor-involved nodes by in vitro stimulation, initially with autologous melanoma cells and subsequently with allogeneic HLA-A2.1 positive melanoma cells. The CTLs could lyse autologous and aUogeneic HLA-A2. 1 positive melanomas, but not HLA-A2.1 negative melanomas or HLA-A2.1 positive non-melanomas. The lysis of melanomas could be inhibited by anti-CD3, anti-HLA class I and anti-HLA-A2.1 monoclonal antibodies. HLA-A2.1 molecules were purified from detergent-solubilized human melanoma cells by immunoaffinity column chromatography and further fractionated by reversed phase high performance liquid chromatography. The fractions were assessed for their ability to reconstitute melanoma-specific epitopes with HLA-A2.1 positive antigen-processing mutant T2 cells. Three reconstitution peaks were observed in lactate dehydrogenase release assay. Mass spectrometry and ion-exchange high performance liquid chromatography analysis were used to identify peptide epitopes. Peptides with a mass-to-charge ratio of 948 usually consist of nine amino acid residues. The data from reconstitution experiments confirmed that the synthetic peptides contained epitopes and that the peptides associated with HLA-A2.1 and recognized by melanoma-specific CTL were present in these different melanoma cells. These peptides could be potentially exploited in novel peptide-based antitumor vaccines in immunotherapy for CTL.  相似文献   

5.
A trans-acting regulatory gene product p40tax (Tax) of human T-cell leukemia virus type I (HTLV-I) is one of the main target antigens recognized by cytotoxic T lymphocytes (CTL) specific for HTLV-I. A CTL epitope within the Tax protein was identified in this report. HTLV-I-specific CD8+ CTL lines established from two HTLV-I carriers with HTLV-I-associated myelopathy or Sj?gren syndrome were previously demonstrated to kill predominantly the target cells expressing HTLV-I Tax. The CTL from two patients showed significant levels of cytotoxicity to autologous target cells pulsed with a synthetic peptide of 24 amino acids corresponding to the amino-terminal sequences of the Tax protein. Allogeneic target cells were also sensitized for CTL by this peptide when the target cells have HLA-A2. Tax-specific cytotoxicity, detected as cytolysis of the target cells infected with vaccinia virus-HTLV-I recombinant expressing Tax protein, was almost completely inhibited by competitor cells pulsed with the synthetic peptide. This indicates that a major CTL epitope is present in this peptide. Further analysis using shorter peptides revealed that the core sequence of the CTL epitope was LLFGYPVYV at positions 11 through 19. This sequence can be aligned with the HLA-A2-specific motifs reported recently.  相似文献   

6.
A potential target for a cancer vaccine would be receptors, such as Tie-2 which are over expressed on tumour endothelium. Using computer aided motif predictions for possible HLA class I epitopes, we have identified peptides from Tie-2 that should bind with a range of affinities to HLA-A*0201. No direct correlation between predicted values and actual binding affinities was observed. Although, the programs did produce a number of false positives, two epitopes were predicted that bound with relatively high affinity when compared with an influenza peptide. We have previously identified a Tie-2 epitope and shown that it was only immunogenic when we substituted preferred amino acids at key anchor residues to increase binding affinity. In this study we used a similar approach to generate modified epitopes. When HLA-A2 transgenic mice were immunised with peptides, CTL killing of the target cells was only achieved when the wild type epitope was presented at moderate levels. Moreover, the efficiency of immunisation was increased when we linked CD4 epitopes to CD8 epitopes. Caution should therefore be employed in the use of both reverse immunology and anchor modification of CTL epitopes in the identification of CTL epitopes for cancer vaccines.This article is a symposium paper from the “Robert Baldwin Symposium: 50 years of Cancer Immunotherapy”, held in Nottingham, Great Britain, on 30th June 2005.  相似文献   

7.
In order to broaden the possibility for anti-HER-2/neu (HER-2) immune targeting, it is important to identify HLA-A24 restricted peptide epitopes derived from HER-2, since HLA-A24 is one of the most common alleles in Japanese and Asian people. In the present study, we have screened HER-2-derived, HLA-A24 binding peptides for cytotoxic T lymphocyte (CTL) epitopes. A panel of HER-2-derived peptides with HLA-A24 binding motifs and the corresponding analogs designed to enhance HLA-A24 binding affinity were selected. Identification of HER-2-reactive and HLA-A24 restricted CTL epitopes were performed by a reverse immunology approach. To induce HER-2-reactive and HLA-A24 restricted CTLs, PBMCs from healthy donors were repeatedly stimulated with monocytes-derived, mature DCs pulsed with HER-2 peptide. Subsequent peptide-induced T cells were tested for the specificity by enzyme linked immunospot, cytotoxicity and tetramer assays. CTL clones were then obtained from the CTL lines by limiting dilution. Of the peptides containing HLA-A24 binding motifs, 16 peptides (nine mers) including wild type peptides (IC50<1,000 nM) and substituted analog peptides (IC50<50 nM) were selected for the present study. Our studies show that an analog peptide, HER-2(905AA), derived from HER-2(905) could efficiently induce HER-2-reactive and HLA-A24 restricted CTLs. The reactivity of the HER-2(905AA)-induced CTL (CTL905AA) was confirmed by different CTL assays. The CTL905AA clones also were able to lyse HER-2(+), HLA-A24(+) tumor cells and cytotoxicity could be significantly reduced in cold target inhibition assays using cold targets pulsed with the HER-2(905) wild type peptide as well as the inducing HER-2(905AA) analog peptide. A newly identified HER-2(905) peptide epitope is naturally processed and presented as a CTL epitope on HER-2 overexpressing tumor cells, and an MHC anchor-substituted analog, HER-2(905AA), can efficiently induce HER-2-specific, HLA-A24 restricted CTLs.  相似文献   

8.
Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in CTL epitopes. Also for influenza A viruses a number of amino acid substitutions in the nucleoprotein (NP) have been associated with escape from CTL. However, other previously identified influenza A virus CTL epitopes are highly conserved, including the immunodominant HLA-A*0201-restricted epitope from the matrix protein, M1(58-66). We hypothesized that functional constraints were responsible for the conserved nature of influenza A virus CTL epitopes, limiting escape from CTL. To assess the impact of amino acid substitutions in conserved epitopes on viral fitness and recognition by specific CTL, we performed a mutational analysis of CTL epitopes. Both alanine replacements and more conservative substitutions were introduced at various positions of different influenza A virus CTL epitopes. Alanine replacements for each of the nine amino acids of the M1(58-66) epitope were tolerated to various extents, except for the anchor residue at the second position. Substitution of anchor residues in other influenza A virus CTL epitopes also affected viral fitness. Viable mutant viruses were used in CTL recognition experiments. The results are discussed in the light of the possibility of influenza viruses to escape from specific CTL. It was speculated that functional constraints limit variation in certain epitopes, especially at anchor residues, explaining the conserved nature of these epitopes.  相似文献   

9.
It has been hypothesized that sequence variation within CTL epitopes leading to immune escape plays a role in the progression of HIV-1 infection. Only very limited data exist that address the influence of biologic characteristics of CTL epitopes on the emergence of immune escape variants and the efficiency of suppression HIV-1 by CTL. In this report, we studied the effects of HIV-1 CTL epitope sequence variation on HIV-1 replication. The highly conserved HLA-B14-restricted CTL epitope DRFYKTLRAE in HIV-1 p24 was examined, which had been defined as the immunodominant CTL epitope in a long-term nonprogressing individual. We generated a set of viral mutants on an HX10 background differing by a single conservative or nonconservative amino acid substitution at each of the P1 to P9 amino acid residues of the epitope. All of the nonconservative amino acid substitutions abolished viral infectivity and only 5 of 10 conservative changes yielded replication-competent virus. Recognition of these epitope sequence variants by CTL was tested using synthetic peptides. All mutations that abrogated CTL recognition strongly impaired viral replication, and all replication-competent viral variants were recognized by CTL, although some variants with a lower efficiency. Our data indicate that this CTL epitope is located within a viral sequence essential for viral replication. Targeting CTL epitopes within functionally important regions of the HIV-1 genome could limit the chance of immune evasion.  相似文献   

10.
The effects on CTL recognition of individual amino acid substitutions within epitopes I, II, and III of SV40 tumor Ag (T Ag) were examined. Epitope I spans amino acids 207 to 215, and epitope II/III is within residues 223 to 231 of SV40 T Ag. An amino acid substitution at position 207 (Ala----Val) or 214 (Lys----Glu) of SV40 T Ag expressed in transformed cells resulted in loss of epitope I, recognized by CTL clone Y-1. The amino acid substitution at residue 214 in the corresponding synthetic peptide, LT207-215(214-Lys----Glu), also led to loss of recognition by CTL clone Y-1. The recognition, by CTL clone Y-1, of peptides LT207-215 and LT207-217 with an Ala----Val substitution at position 207 was severely affected. Peptides LT205-215 and LT205-219 with the Ala----Val substitution at residue 207 were, however, recognized by CTL clone Y-1, suggesting that residues 205 and 206 may be involved in presentation of site I. Alteration of residue 224 (Lys----Glu) in the native T Ag resulted in loss of recognition by both CTL clones Y-2 and Y-3. However, a peptide corresponding to epitope II/III with an identical amino acid substitution at residue 224 provided a target for CTL clone Y-3 but not clone Y-2. A change of Lys----Gln at residue 224 in both the native protein and a synthetic peptide caused loss of recognition by CTL clone Y-2 but not CTL clone Y-3. Further, an amino acid substitution of Lys----Arg at position 224 of the native T Ag decreased recognition of epitope II/III by CTL clones Y-2 and Y-3 but had no effect on recognition of a synthetic peptide bearing the same substitution. These results indicate that the mutagenesis approach, resulting in identical amino acid substitutions in the native protein and in the synthetic peptides, may provide insight into the role of individual residues in the processing, presentation, and recognition of CTL recognition epitopes.  相似文献   

11.
12.
A human alloimmune cytotoxic T lymphocyte (CTL) clone (4E4) was generated against the HLA-A2 molecule. Lysis of 51Cr-labeled HLA-A2 target cells was blocked by monoclonal antibodies (mAb), including mAb PA2.1 (anti-HLA-A2), mAb BB7.2 (anti-HLA-A2), mAb 4B (anti-HLA-A2-plus-A28), mAb MA2.1 (anti-HLA-A2-plus-B17), and mAb W6/32 (anti-HLA-A,B,C), which are directed against different serologic epitopes on the HLA-A2 molecule. However, HLA-A2 mutant lines lacking the serologic epitope recognized by mAb BB7.2 (anti-HLA-A2) were efficiently lysed by CTL 4E4. Thus, although mAb may block cytolysis, the HLA-A2 epitope recognized the 4E4 CTL clone is distinct from the HLA-A2-specific epitope recognized by serologic reagents. Moreover, analysis of HLA-A2 population variants revealed that only the predominant HLA-A2.1 subtype molecule was recognized by CTL 4E4. No cross-reactivity on other, biochemically related HLA-A2 population subtypes was observed, including HLA-A2.2 cells (Hill, CVE, ZYL, M7), HLA-A2.3 cells (TENJ, DK1), or HLA-A2.4 cells (CLA, KNE). This CTL clone appears to recognize a single epitope and, like monoclonal antibody counterparts, can be used to discriminate among immunogenic cellular and serologic epitopes on closely related HLA-A2 molecules. On the basis of the known sequence changes in mutant and subtype HLA-A2 molecules, it appears that the sequence spanning residues 147 to 157 may be critical for cellular recognition of this Class I MHC molecule.  相似文献   

13.
14.
The M2 protein of respiratory syncytial virus (RSV) is a protective antigen in H-2d, but not H-2b or H-2k mice. None of the other RSV proteins, excluding the surface glycoproteins that induce neutralizing antibodies, is protective in mice bearing these haplotypes. Thus, the M2 protein stands alone as a nonglycoprotein-protective antigen of RSV. The M2 protein is a target for murine Kd-restricted cytotoxic T lymphocytes (CTLs), and the resistance induced by infection with a vaccinia virus-RSV M2 (vac-M2) recombinant is mediated by CD8+ CTLs. Since the nonameric consensus sequence for H-2 Kd-restricted T-cell epitopes and the amino acid sequence of the M2 protein of subgroup A and B strains of RSV are known, the present study sought to identify the specific epitope(s) on the M2 protein recognized by CD8+ CTLs. This was done by examining the ability of four predicted Kd-specific motif peptides present in the M2 amino acid sequence of an RSV subgroup A strain to sensitize target cells for lysis by pulmonary or splenic CTLs obtained from mice infected with RSV or vac-M2. The following observations were made. First, two of the four peptides sensitized target cells for lysis by pulmonary or splenic CTLs induced by infection with either vac-M2 or RSV. Second, one of the two peptides, namely the 82-90 (M2) peptide, sensitized targets at a very low peptide concentration (10(-10) to 10(-12) M). Third, cold-target competition experiments revealed that the predominant CTL population induced by infection with vac-M2 or RSV recognized the 82-90 (M2) peptide, and this CTL population appeared to recognize the 71-79 (M2) peptide in a cross-reactive manner. Fourth, CTL recognition of targets sensitized with either the 71-79 (M2) or the 82-90 (M2) peptide was Kd restricted. Fifth, CTLs induced by infection with RSV subgroup A or B strains recognized the two M2 peptides. The findings suggest that the M2 protein of RSV contains an immunodominant Kd-restricted CTL epitope consisting of amino acid residues 82 to 90 (SYIGSINNI), which are shared by subgroup A and B RSVs.  相似文献   

15.
HLA-A2.1 and HLA-A2.3, which differ from one another at residues 149, 152, and 156, can be distinguished by the mAb CR11-351 and many allogeneic and xenogeneic CTL. Site-directed mutagenesis was used to incorporate several different amino acid substitutions at each of these positions in HLA-A2.1 to evaluate their relative importance to serologic and CTL-defined epitopes. Recognition by mAb CR11-351 was completely lost when Thr but not Pro was substituted for Ala149. A model to explain this result based on the 3-dimensional structure of HLA-A2.1 is presented. In screening eight other mAb, only the substitutions of Pro for Val152 or Gly for Leu156 led to the loss of mAb binding. Because other non-conservative substitutions at these same positions had no effect, these results suggest that the loss of serologic epitopes is in many cases due to a more indirect effect on molecular conformation. Specificity analysis using 28 HLA-A2.1-specific alloreactive and xenoreactive CTL clones showed 19 distinct patterns of recognition. The epitopes recognized by alloreactive CTL clones demonstrated a pronounced effect by all substitutions at residue 152, including the very conservation substitution of Ala for Val. Overall, the most disruptive substitution at amino acid residue 152 was Pro, followed by Glu, Gln, and then Ala. In contrast, substitutions at 156 had little or no effect on allogeneic CTL recognition, and most clones tolerated either Gly, Ser, or Trp at this position. Similar results were seen using a panel of murine HLA-A2.1-specific CTL clones, except that substitutions at position 156 had a greater effect. The most disruptive substitution was Trp, followed by Ser and then Gly. In addition, when assessed on the entire panel of CTL, the effects of Glu and Gln substitutions at position 152 demonstrated that the introduction of a charge difference is no more disruptive than a comparable change in side chain structure that does not alter charge. Taken together, these results indicate that the effect of amino acid replacements at positions 152 and 156 on CTL-defined epitopes depends strongly on the nature of the substitution. Thus, considerable caution must be exercised in evaluating the significance of particular positions on the basis of single mutations. Nonetheless, the more extensive analysis conducted here indicates that there are differences among residues in the class I Ag "binding pocket," with residue 152 playing a relatively more important role in formation of allogeneic CTL-defined epitopes than residue 156.  相似文献   

16.
Characterization of optimal CTL epitopes in Gag can provide crucial information for evaluation of candidate vaccines in populations at the epicenter of the HIV-1 epidemic. We screened 38 individuals with recent subtype C HIV-1 infection using overlapping consensus C Gag peptides and hypothesized that unique HLA-restricting alleles in the southern African population would determine novel epitope identity. Seventy-four percent of individuals recognized at least one Gag peptide pool. Ten epitopic regions were identified across p17, p24, and p2p7p1p6, and greater than two-thirds of targeted regions were directed at: TGTEELRSLYNTVATLY (p17, 35%); GPKEPFRDYVDRFFKTLRAEQATQDV (p24, 19%); and RGGKLDKWEKIRLRPGGKKHYMLKHL (p17, 15%). After alignment of these epitopic regions with consensus M and a consensus subtype C sequence from the cohort, it was evident that the regions targeted were highly conserved. Fine epitope mapping revealed that five of nine identified optimal Gag epitopes were novel: HLVWASREL, LVWASRELERF, LYNTVATLY, PFRDYVDRFF, and TLRAEQATQD, and were restricted by unique HLA-Cw*08, HLA-A*30/B*57, HLA-A*29/B*44, and HLA-Cw*03 alleles, respectively. Notably, three of the mapped epitopes were restricted by more than one HLA allele. Although these epitopes were novel and restricted by unique HLA, they overlapped or were embedded within previously described CTL epitopes from subtype B HIV-1 infection. These data emphasize the promiscuous nature of epitope binding and support our hypothesis that HLA diversity between populations can shape fine epitope identity, but may not represent a constraint for universal recognition of Gag in highly conserved domains.  相似文献   

17.

Background

The virus-specific cytotoxic T lymphocyte (CTL) induction is an important target for the development of a broadly protective human influenza vaccine, since most CTL epitopes are found on internal viral proteins and relatively conserved. In this study, the possibility of developing a strain/subtype-independent human influenza vaccine was explored by taking a bioinformatics approach to establish an immunogenic HLA-A24 restricted CTL epitope screening system in HLA-transgenic mice.

Methodology/Principal Findings

HLA-A24 restricted CTL epitope peptides derived from internal proteins of the H5N1 highly pathogenic avian influenza A virus were predicted by CTL epitope peptide prediction programs. Of 35 predicted peptides, six peptides exhibited remarkable cytotoxic activity in vivo. More than half of the mice which were subcutaneously vaccinated with the three most immunogenic and highly conserved epitopes among three different influenza A virus subtypes (H1N1, H3N2 and H5N1) survived lethal influenza virus challenge during both effector and memory CTL phases. Furthermore, mice that were intranasally vaccinated with these peptides remained free of clinical signs after lethal virus challenge during the effector phase.

Conclusions/Significance

This CTL epitope peptide selection system can be used as an effective tool for the development of a cross-protective human influenza vaccine. Furthermore this vaccine strategy can be applicable to the development of all intracellular pathogens vaccines to induce epitope-specific CTL that effectively eliminate infected cells.  相似文献   

18.
Recognition by CD8(+) T lymphocytes (CTL) of epitopes that are derived from conserved gene products, such as Gag and Pol, is well documented and conceptually supports the development of epitope-based vaccines for use against diverse HIV-1 subtypes. However, many CTL epitopes from highly conserved regions within the HIV-1 genome are highly variable, when assessed by comparison of amino acid sequences. The TCR is somewhat promiscuous with respect to peptide binding, and, as such, CTL can often recognize related epitopes. In these studies, we evaluated CTL recognition of five sets of variant HIV-1 epitopes restricted to HLA-A*0201 and HLA-A*1101 using HLA transgenic mice. We found that numerous different amino acid substitutions can be introduced into epitopes without abrogating their recognition by CTL. Based on our findings, we constructed an algorithm to predict those CTL epitopes capable of inducing responses in the HLA transgenic mice to the greatest numbers of variant epitopes. Similarity of CTL specificity for variant epitopes was demonstrated for humans using PBMC from HIV-1-infected individuals and CTL lines produced in vitro using PBMC from HIV-1-uninfected donors. We believe the ability to predict CTL epitope immunogenicity and recognition patterns of variant epitopes can be useful for designing vaccines against multiple subtypes and circulating recombinant forms of HIV-1.  相似文献   

19.
In order to identify the target epitopes recognized by specific CTL in the NEF protein of HIV-1, 33 peptides derived from the HIV-BRU sequence were tested with NEF-specific CTL generated from HIV-seropositive donors. Six different epitopes were identified and several points were remarkable: 1) They were all located in two regions of the central part of the NEF protein corresponding to residues 73 to 94 and 113 to 147, respectively. 2) The CTL issued from a single donor could recognize several peptides of the NEF protein. 3) Some of these peptides could be recognized in association with at least two or three different HLA class I molecules. 4) Two different overlapping epitopes were present in a relatively short sequence of 15 amino acids. These results suggest that multiple epitopes corresponding to different HLA restrictions could coexist in a relatively small region of the NEF protein. The implications of these results in vaccine strategies using synthetic peptides bearing CTL epitopes are discussed.  相似文献   

20.
T A Banks  S Nair    B T Rouse 《Journal of virology》1993,67(1):613-616
The identification of herpes simplex virus type 1 (HSV-1) proteins and the minimal epitopes within these proteins which serve as targets for cytotoxic T lymphocytes (CTL) remains an important goal for the development of effective vaccine strategies. In this report, an H-2Kd allele-specific peptide-binding motif was used to locate putative CTL epitopes in the HSV-1 immediate-early protein ICP27, a protein previously identified as a major CTL target in the BALB/c mouse. Peptides 1 (amino acids 322 to 332) and 2 (amino acids 448 to 456) synthesized to represent two separate predicted CTL epitopes in ICP27 were able to sensitize target cells in vitro for recognition by HSV-1-specific CTL. Moreover, using a recently developed system to generate primary CTL responses in vitro, both peptides induced primary CTL which reacted with target cells expressing HSV-1. This system allowed us to verify the activity of two CTL epitopes in the ICP27 protein and holds promise as a rapid way of identifying immunogenic peptides from any protein molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号