首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is a key factor in airway smooth muscle (ASM) tone. In vascular smooth muscle, specialized membrane microdomains (caveolae) expressing the scaffolding protein caveolin-1 are thought to facilitate cellular signal transduction. In human ASM cells, we tested the hypothesis that caveolae mediate Ca(2+) responses to agonist stimulation. Fluorescence immunocytochemistry with confocal microscopy, as well as Western blot analysis, was used to determine that agonist receptors (M(3) muscarinic, bradykinin, and histamine) and store-operated Ca(2+) entry (SOCE)-regulatory mechanisms colocalize with caveolin-1. Although caveolin-2 coexpressed with caveolin-1, caveolin-3 was absent. In fura 2-loaded ASM cells, [Ca(2+)](i) responses to 1 microM ACh, 10 microM histamine, and 10 nM bradykinin, as well as SOCE, were attenuated (each to a different extent) after disruption of caveolae by the cholesterol-chelating drug methyl-beta-cyclodextrin. Transfection of ASM cells with 50 nM caveolin-1 small interfering RNA significantly weakened caveolin-1 expression and blunted [Ca(2+)](i) responses to bradykinin and histamine, as well as SOCE, but the response to ACh was less intense. These results indicate that caveolae are present in ASM and that caveolin-1 contributes to regulation of [Ca(2+)](i) responses to agonist.  相似文献   

2.
Recent evidence supports a role of Toll-like receptor (TLR) signaling in the development of atherosclerotic lesions. It was confirmed that the presence of functional TLR4 promotes a proinflammatory phenotype and proliferation of vascular smooth muscle cells (VSMCs). Here we tested whether designed TLR4 small interfering RNAs (TLR4 siRNAs) is capable of inducing TLR4 deficient and simultaneously regulating the expression of matrix metalloproteinase-9 (MMP-9) in human aortic smooth muscle cells (HASMCs). Human aortic smooth muscle cells were obtained from Cascade Biologics (Portland, USA). The siRNAs used in this study were chemically synthesized by Ambion, diluted in RNase free water at concentration of 2 μg/ml. The TLR4 siRNAs were complexed with LipofectamineTM2000 in transfection buffer. After 30 min incubation at room temperature, the complexes were added to the cells. Subsequent to 5 h incubation, cells were treated with 10 ng/ml LPS for 24 h. RT–PCR analysis was used to detect mRNA expression of GAPDH, TLR4 and MMP-9; Western blot analysis was used to examine GAPDH, TLR4 and MMP-9 protein expression. It was shown that all three designed TLR4 siRNAs inhibited the expression of TLR4 in HASMCs as compared to nontargeting siRNA. Notably, TLR4 siRNA-1 exhibited the strongest inhibition effect. Transfection of HASMCs with TLR4 siRNA-1 resulted in down-regulation of LPS-induced expression of MMP-9. It was concluded that TLR4 siRNA-transfected HASMCs were capable for regulating the expression of MMP-9, providing support for the rational design of siRNAs as atherosclerotic therapy.  相似文献   

3.
4.
人气管平滑肌细胞培养   总被引:4,自引:0,他引:4  
支气管平滑肌细胞的收缩、舒张、增殖和凋亡与临床许多疾病的病理生理过程有关,如支气管哮喘、慢性阻塞性肺疾病等.目前国内研究这些疾病的细胞材料多采用豚鼠和大鼠等动物的支气管平滑肌细胞,这与人气管平滑肌细胞(airway smooth muscle cells,ASMCs)的生理病理特征有很大的差距.我们在多年的实验过程中建立了一套人ASMCs的培养方法,介绍如下.  相似文献   

5.
Asthmatic airways are characterized by an increase in smooth muscle mass, due mainly to hyperplasia. Many studies suggest that extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2, respectively), one group of the mitogen-activated protein (MAP) kinase superfamily, play a key role in the signal transduction pathway leading to cell proliferation. PGE(2) and forskolin inhibited mitogen-induced ERK activation. Inhibition of MAP kinase kinases 1 and 2 (MEK1 and MEK2, respectively), which are upstream from ERK, with the specific MEK inhibitor U-0126 blocked both cell proliferation and ERK activation. In addition, U-0126 inhibited mitogen-induced activation of p90 ribosomal S6 kinase and expression of c-Fos and cyclin D1, all of which are downstream from ERK in the signaling cascade that leads to cell proliferation. Antisense oligodeoxynucleotides directed to ERK1 and -2 mRNAs reduced ERK protein and cell proliferation. These results indicate that ERK is required for human airway smooth muscle cell proliferation. Thus targeting the control of ERK activation may provide a new therapeutic approach for hyperplasia seen in asthma.  相似文献   

6.
Cerebral amyloid angiopathy (CAA) is a major pathological feature of Alzheimer's disease and related disorders. Human cerebrovascular smooth muscle (HCSM) cells, which are intimately associated with CAA, have been used as an in vitro model system to investigate pathologic interactions with amyloid beta protein (A beta). Previously we have shown that pathogenic forms of A beta induce several pathologic responses in HCSM cells including fibril assembly at the cell surface, increase in the levels of A beta precursor, and apoptotic cell death. Here we show that pathogenic A beta stimulates the expression and activation of matrix metalloproteinase-2 (MMP-2). Furthermore, we demonstrate that the increase in MMP-2 activation is largely caused by increased expression of membrane type-1 (MT1)-MMP expression, the primary MMP-2 activator. Finally, treatment with MMP-2 inhibitors resulted in increased HCSM cell viability in the presence of pathogenic A beta. Our findings suggest that increased expression and activation of MMP-2 may contribute to HCSM cell death in response to pathogenic A beta. In addition, these activities may also contribute to loss of vessel wall integrity in CAA resulting in hemorrhagic stroke. Therefore, further understanding into the role of MMPs in HCSM cell degeneration may facilitate designing therapeutic strategies to treat CAA found in AD and related disorders.  相似文献   

7.
Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling. Features of airway remodeling include increased airway smooth muscle (ASM) mass. A disintegrin and metalloproteinase (ADAM)–33 has been identified as playing a role in the pathophysiology of asthma. ADAM-33 is expressed in ASM cells and is suggested to play a role in the function of these cells. However, the regulation of ADAM-33 is not fully understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Although VEGF was initially thought of as an endothelial-specific growth factor, recent reports have found that VEGF can promote proliferation of other cell types, including ASM cells. To investigate the precise mechanism of VEGF's effect on ASM cell proliferation, we tested the expression of ADAM-33, phospho-extracellularsignal-regulated kinase 1/2 (ERK1/2), and phospho-Akt in VEGF-stimulated ASM cells. We found that VEGF up-regulates ADAM-33 mRNA and protein levels in a dose- and time-dependent manner as well as phosphorylation of ERK1/2 and Akt. We also found that VEGF-induced ASM cell proliferation is inhibited by both ADAM-33 knockdown and a selective VEGF receptor 2 (VEGFR2) inhibitor (SU1498). Furthermore, VEGF-induced ADAM-33 expression and ASM cell proliferation were suppressed by inhibiting ERK1/2 activity, but not by inhibiting Akt activity. Collectively, our findings suggest that VEGF enhances ADAM-33 expression and ASM cell proliferation by activating the VEGFR2/ERK1/2 signaling pathway, which might be involved in the pathogenesis of airway remodeling. Further elucidation of the mechanisms underlying these observations might help develop therapeutic strategies for airway diseases associated with smooth muscle hyperplasia such as asthma.  相似文献   

8.
Altered extracellular matrix (ECM) deposition contributing to airway wall remodeling is an important feature of asthma and chronic obstructive pulmonary disease (COPD). The molecular mechanisms of this process are poorly understood. One of the key pathological features of these diseases is thickening of airway walls. This thickening is largely to the result of airway smooth muscle (ASM) cell hyperplasia and hypertrophy as well as increased deposition of ECM proteins such as collagens, elastin, laminin, and proteoglycans around the smooth muscle. Many growth factors and cytokines, including fibroblast growth factor (FGF)-1, FGF-2, and transforming growth factor (TGF)-α1, that are released from the airway wall have the potential to contribute to airway remodeling, revealed by enhanced ASM proliferation and increased ECM protein deposition. TGF-α1 and FGF-1 stimulate mRNA expression of collagen I and III in ASM cells, suggesting their role in the deposition of extracellular matrix proteins by ASM cells in the airways of patients with chronic lung diseases. Focus is now on the bidirectional relationship between ASM cells and the ECM. In addition to increased synthesis of ECM proteins, ASM cells can be involved in downregulation of matrix metalloproteinases (MMPs) and upregulation of tissue inhibitors of metalloproteinases (TIMPs), thus eventually contributing to the alteration in ECM. In turn, ECM proteins promote the survival, proliferation, cytokine synthesis, migration, and contraction of human airway smooth muscle cells. Thus, the intertwined relationship of ASM and ECM and their response to stimuli such as chronic inflammation in diseases such as asthma and COPD contribute to the remodeling seen in airways of patients with these diseases.  相似文献   

9.
Membrane-type matrix metalloproteinases-1 and -3 (MT1- and MT3-MMPs) are expressed by activated smooth muscle cells (SMCs) both in vitro and in vivo (19). To define their functions in SMCs, we transduced MT1- and MT3-MMP cDNAs into baboon SMCs by using adenoviral vectors. Overexpression of MT1-MMP increased the conversion of proMMP-2 to the intermediate and active forms. In contrast, in MT3-MMP-overexpressing cells, MMP-2 was activated partially. Immunoblot analyses revealed that MT1-MMP protein was present in the SMCs and accumulated in the presence of the synthetic MMP inhibitor, BB94, or tissue inhibitor of metalloproteinase-2 (TIMP-2). However, MT3-MMP protein was detectable only when BB94, but not TIMP-2, was present. Zymographic analyses showed that MT3-MMP had much stronger casein- and gelatin-degrading activities than did MT1-MMP. Furthermore, when MT3-MMP and MT1-MMP were coexpressed, MT1-MMP degradation was enhanced; this result supports the possibility that MT3-MMP can degrade MT1-MMP. SMCs overexpressing either MT1- or MT3-MMP exhibited altered morphology, without changing their proliferation. This alteration was prevented by BB94 addition. The cells, which underwent this change, showed reduced adhesion to both collagen and fibronectin and increased migration in a Boyden chamber. The present study demonstrates that MT1- and MT3-MMPs have different enzymatic activities but may nevertheless affect SMC function in the same way.  相似文献   

10.
Prostaglandin regulation of airway smooth muscle tone   总被引:13,自引:0,他引:13  
  相似文献   

11.
C-C chemokines such as CCL11, CCL5, and CCL3 are central mediators in the pathogenesis of asthma. They are mainly associated with the recruitment and the activation of specific inflammatory cells, such as eosinophils, lymphocytes, and neutrophils. It has recently been shown that they can also activate structural cells, such as airway smooth muscle and epithelial cells. The aims of this study were to examine the expression of the CCL3 receptor, CCR1, on human airway smooth muscle cells (ASMC) and to document the regulation of this receptor by cytokines involved in asthma pathogenesis. We first demonstrated that CCR1 mRNA is increased in the airways of asthmatic vs control subjects and showed for the first time that ASMC express CCR1 mRNA and protein, both in vitro and in vivo. Calcium mobilization by CCR1 ligands confirmed its functionality on ASMC. Stimulation of ASMC with TNF-alpha and, to a lesser extent, IFN-gamma resulted in an up-regulation of CCR1 expression, which was totally suppressed by both dexamethasone or mithramycin. Taken together, our data suggest that CCR1 might be involved in the pathogenesis of asthma, through the activation of ASMC by its ligands.  相似文献   

12.
Hypertrophy and hyperplasia lead to excess accumulation of smooth muscle in the airways of human asthmatic subjects. However, little is known about mechanisms that might counterbalance these processes, thereby limiting the quantity of smooth muscle in airways. Ligation of Fas on the surface of vascular smooth muscle cells and nonmuscle airway cells can lead to apoptotic cell death. We therefore tested the hypotheses that 1) human airway smooth muscle (HASM) expresses Fas, 2) Fas cross-linking induces apoptosis in these cells, and 3) tumor necrosis factor (TNF)-alpha potentiates Fas-mediated airway myocyte killing. Immunohistochemistry using CH-11 anti-Fas monoclonal IgM antibody revealed Fas expression in normal human bronchial smooth muscle in vivo. Flow cytometry using DX2 anti-Fas monoclonal IgG antibody revealed that passage 4 cultured HASM cells express surface Fas. Surface Fas decreased partially during prolonged serum deprivation of cultured HASM cells and was upregulated by TNF-alpha stimulation. Fas cross-linking with CH-11 antibody induced apoptosis in cultured HASM cells, and this effect was reduced by long-term serum deprivation and synergistically potentiated by concomitant TNF-alpha exposure. TNF-alpha did not induce substantial apoptosis in the absence of Fas cross-linking. These data represent the first demonstration that Fas is expressed on HASM and suggest a mechanism by which Fas-mediated apoptosis could act to oppose excess smooth muscle accumulation during airway remodeling in asthma.  相似文献   

13.
Spatial and temporal traction response in human airway smooth muscle cells   总被引:4,自引:0,他引:4  
Tractions that cells exert on theirsubstrates are essential in cell spreading, migration, and contraction.These tractions can be determined by plating the cells on a flexiblegel and measuring the deformation of the gel by using fluorescent beadsembedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we usethe recently developed method of Fourier transform traction cytometry(FTTC). The ICM and FTTC methods are applied to human airway smoothmuscle cells during stimulation with the contractile agonist histamineor the relaxing agonist isoproterenol. The overall intensity of thecell contraction (the median traction magnitude, the energy transferredfrom the cell to the gel, and the net contractile moment) increasedafter activation with histamine, and decreased after treatment withisoproterenol. Cells exhibited regional differences in the time courseof traction during the treatment. Both temporal evolution and magnitudeof traction increase induced by histamine varied markedly amongdifferent cell protrusions, whereas the nuclear region showed thesmallest response. These results suggest that intracellular mediatorsof cell adhesion and contraction respond to contractile stimuli withdifferent rates and intensities in different regions of the cell.

  相似文献   

14.
Altered contractility of airway smooth muscle (SM) is one of the main causes of allergic asthma, in which the predominance of Th2 over Th1 cytokines plays a central role. In the present study, we examine the effects of Th2 cytokines on airway SM contraction. Treatment with a low concentration of IL-4 (0.2 ng/ml) for 6 h augmented, whereas higher concentrations (2-20 ng/ml) inhibited, agonist-induced contractions of collagen gels containing bovine tracheal SM cells. Another Th2 cytokine (IL-13) showed an augmentation of gel contraction in the concentration range of 20-200 ng/ml. IL-4 and IL-13 increased mRNA expression and protein secretion of matrix metalloproteinase (MMP)-1, but these cytokines did not affect Ca(2+)-mobilizing properties and phosphorylation levels of myosin L chain in bovine tracheal SM cells. These changes were sensitive to wortmannin, an inhibitor of PI3K, but not to leflunomide, an inhibitor of STAT6. Scanning electron microscope observation revealed that collagen fibers twining around SM cells were completely dissolved in 20 ng/ml IL-4-treated gels and reorganized into basket-like structure in 20 ng/ml IL-13-treated gels. Exogenous application of high and low concentrations of MMP-1 also induced the inhibition and augmentation of gel contraction, respectively. Furthermore, nonselective MMP inhibitor galardin suppressed the effects of IL-4 and IL-13 on gel contraction, and MMP-1-targeted small-interfering RNA reversed the inhibitory effects of IL-4 on gel contraction to the augmentation. This indicates that Th2 cytokines modulate airway contraction without affecting cellular contractility but by secreting MMP-1 from the SM cells via PI3K activation and changing cell-to-matrix interactions.  相似文献   

15.
16.
We investigated the chemotactic action of PDGF and urokinase on human airway smooth muscle (HASM) cells in culture. Cells were put in collagen-coated transwells with 8-micro m perforations, incubated for 4 h with test compounds, then fixed, stained, and counted as migrated nuclei by microscopy. Cells from all culture conditions showed some basal migration (migration in the absence of stimuli during the assay), but cells preincubated for 24 h in 10% FBS or 20 ng/ml PDGF showed higher basal migration than cells quiesced in 1% FBS. PDGF(BB), PDGF(AA), and PDGF(AB) were all chemotactic when added during the assay. PDGF chemotaxis was blocked by the phosphatidyl 3'-kinase inhibitor LY-294002, the MEK inhibitor U-0126, PGE(2), formoterol, pertussis toxin, and the Rho kinase inhibitor Y-27632. Urokinase alone had no stimulatory effect on migration of quiescent cells but caused a dose-dependent potentiation of chemotaxis toward PDGF. Urokinase also potentiated the elevated basal migration of cells pretreated in 10% FBS or PDGF. This potentiating effect of urokinase appears to be novel. We conclude that PDGF and similar cytokines may be important factors in airway remodeling by redistribution of smooth muscle cells during inflammation and that urokinase may be important in potentiating the response.  相似文献   

17.
18.
Autonomic nerves in most mammalian species mediate both contractions and relaxations of airway smooth muscle. Cholinergic-parasympathetic nerves mediate contractions, whereas adrenergic-sympathetic and/or noncholinergic parasympathetic nerves mediate relaxations. Sympathetic-adrenergic innervation of human airway smooth muscle is sparse or nonexistent based on histological analyses and plays little or no role in regulating airway caliber. Rather, in humans and in many other species, postganglionic noncholinergic parasympathetic nerves provide the only relaxant innervation of airway smooth muscle. These noncholinergic nerves are anatomically and physiologically distinct from the postganglionic cholinergic parasympathetic nerves and differentially regulated by reflexes. Although bronchopulmonary vagal afferent nerves provide the primary afferent input regulating airway autonomic nerve activity, extrapulmonary afferent nerves, both vagal and nonvagal, can also reflexively regulate autonomic tone in airway smooth muscle. Reflexes result in either an enhanced activity in one or more of the autonomic efferent pathways, or a withdrawal of baseline cholinergic tone. These parallel excitatory and inhibitory afferent and efferent pathways add complexity to autonomic control of airway caliber. Dysfunction or dysregulation of these afferent and efferent nerves likely contributes to the pathogenesis of obstructive airways diseases and may account for the pulmonary symptoms associated with extrapulmonary disorders, including gastroesophageal reflux disease, cardiovascular disease, and rhinosinusitis.  相似文献   

19.
The pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) increases expression of CD38 (a membrane-associated bifunctional enzyme regulating cyclic ADP ribose), and enhances agonist-induced intracellular Ca2 + ([Ca2 +]i) responses in human airway smooth muscle (ASM). We previously demonstrated that caveolae and their constituent protein caveolin-1 are important for ASM [Ca2 +]i regulation, which is further enhanced by TNFα. Whether caveolae and CD38 are functionally linked in mediating TNFα effects is unknown. In this regard, whether the related cavin proteins (cavin-1 and -3) that maintain structure and function of caveolae play a role is also not known. In the present study, we hypothesized that TNFα effects on CD38 expression and function in human ASM involve caveolae. Caveolar fractions from isolated human ASM cells expressed CD38 and its expression was upregulated by exposure to 20 ng/ml TNFα (48 h). ASM cells expressed cavin-1 and cavin-3, which were also upregulated by TNFα. Knockdown of caveolin-1, cavin-1 or cavin-3 (using siRNA) all significantly reduced CD38 expression and ADP-ribosyl cyclase activity in the presence or absence of TNFα. Furthermore, caveolin-1, cavin-1 and cavin-3 siRNAs reduced [Ca2 +]i responses to histamine under control conditions, and blunted the enhanced [Ca2 +]i responses in TNFα-exposed cells. These data demonstrate that CD38 is expressed within caveolae and its function is linked to the caveolar regulatory proteins caveolin-1, cavin-1 and -3. The link between caveolae and CD38 is further enhanced during airway inflammation demonstrating the important role of caveolae in regulation of [Ca2 +]i and contractility in the airway.  相似文献   

20.
The prostanoid receptors on human airway smooth muscle cells (HASMC) that augment the release by IL-1beta of granulocyte colony-stimulating factor (G-CSF) have been characterized and the signaling pathway elucidated. PCR of HASM cDNA identified products corresponding to EP(2), EP(3), and EP(4) receptor subtypes. These findings were corroborated at the protein level by immunocytochemistry. IL-1beta promoted the elaboration of G-CSF, which was augmented by PGE(2). Cicaprost (IP receptor agonist) was approximately equiactive with PGE(2), whereas PGD(2), PGF(2alpha), and U-46619 (TP receptor agonist) were over 10-fold less potent. Neither SQ 29,548 nor BW A868C (TP and DP(1) receptor antagonists, respectively) attenuated the enhancement of G-CSF release evoking any of the prostanoids studied. With respect to PGE(2), the EP receptor agonists 16,16-dimethyl PGE(2) (nonselective), misoprostol (EP(2)/EP(3) selective), 17-phenyl-omega-trinor PGE(2) (EP(1) selective), ONO-AE1-259, and butaprost (both EP(2) selective) were full agonists at enhancing G-CSF release. AH 6809 (10 microM) and L-161,982 (2 microM), which can be used in HASMC as selective EP(2) and EP(4) receptor antagonists, respectively, failed to displace to the right the PGE(2) concentration-response curve that described the augmented G-CSF release. In contrast, AH 6809 and L-161,982 in combination competitively antagonized PGE(2)-induced G-CSF release. Augmentation of G-CSF release by PGE(2) was mimicked by 8-BrcAMP and abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA). These data demonstrate that PGE(2) facilitates G-CSF secretion from HASMC through a PKA-dependent mechanism by acting through EP(2) and EP(4) prostanoid receptors and that effective antagonism is realized only when both subtypes are blocked concurrently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号