首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mRNA species which exist in the HeLa cell polyribisomes in a form devoid of A sequences longer than 8 nucleotides constitute the poly(A)-free class of mRNA. The rapidly labelled component of this mRNA class shares no measurable sequence homology with poly(A)-containing RNA. If poly(A)-free mRNA larger than 12 S labelled for 2 h in vivo is hybridized with total cellular DNA, it hybridizes primarily with single-copy DNA. When a large excess of steady poly(A)-containing RNA is added before hybridization of labelled poly(A)-free RNA, no inhibition of hybridization occurs. This indicates the existence of a class of poly(A)-free mRNA with no poly(A)-containing counterpart. Some mRNA species can exist solely as poly(A)-containing mRNAs. These mRNAs in HeLa cells are found almost exclusively in the mRNA species present only a few times per cell (scarce sequences). Some mRNA species can exist in two forms, poly(A)containing and lacking, as evidenced by the translation data in vitro of Kaufmann et al. [Proc. Natl Acad. Sci. U.S.A. 74, 4801--4805 (1977)]. In addition, if cDNA to total poly(A)-containing mRNA is fractionated into abundant and scarce classes, 47% of the scarce class cDNA can be readily hybridized with poly(A)-free mRNA. 10% of the abundant cDNA to poly(A)-containing mRNA will hybridize with poly(A)-free sequences very rapidly while the other 90% hybridize 160 times more slowly, indicating two very different frequency distributions. The cytoplasmic metabolism of these three distinct mRNA classes is discussed.  相似文献   

2.
3.
Properties and Location of Poly(A) in Rous Sarcoma Virus RNA   总被引:40,自引:26,他引:14       下载免费PDF全文
The poly(A) sequence of 30 to 40S Rous sarcoma virus RNA, prepared by digestion of the RNA with RNase T(1), showed a rather homogenous electrophoretic distribution in formamide-polyacrylamide gels. Its size was estimated to be about 200 AMP residues. The poly(A) appears to be located at or near the 3' end of the 30 to 40S RNA because: (i) it contained one adenosine per 180 AMP residues, and because (ii) incubation of 30 to 40S RNA with bacterial RNase H in the presence of poly(dT) removed its poly(A) without significantly affecting its hydrodynamic or electrophoretic properties in denaturing solvents. The viral 60 to 70S RNA complex was found to consist of 30 to 40S subunits both with (65%) and without (approximately 30%) poly(A). The heteropolymeric sequences of these two species of 30 to 40S subunits have the same RNase T(1)-resistant oligonucleotide composition. Some, perhaps all, RNase T(1)-resistant oligonucleotides of 30 to 40S Rous sarcoma virus RNA appear to have a unique location relative to the poly(A) sequence, because the complexity of poly(A)-tagged fragments of 30 to 40S RNA decreased with decreasing size of the fragment. Two RNase T(1)-resistant oligonucleotides which distinguish sarcoma virus Prague B RNA from that of a transformation-defective deletion mutant of the same virus appear to be associated with an 11S poly(A)-tagged fragment of Prague B RNA. Thus RNA sequences concerned with cell transformation seem to be located within 5 to 10% of the 3' terminus of Prague B RNA.  相似文献   

4.
Poly(A)-associated RNA in plants   总被引:9,自引:0,他引:9  
The RNA associated with poly(A) sequences from Euglena gracilis and Vicia faba has been isolated by binding to millipore filters and characterized by sedimentation velocity centrifugation and electrophoretic mobility. Poly(A)-associated RNA as isolated in solution was highly aggregated. When denatured, it sedimented as a broad peak with a mean value of 16-18 S. This RNA was shown to be covalently linked to poly(A) sequences which are 150-250 nucleotides long. Our size estimates for plant poly(A) and poly(A)-associated RNA are similar to those obtained for animal cells.  相似文献   

5.
6.
Poly(A)-containing RNAs from cytoplasm and nuclei of adult Xenopus liver cells are compared. After denaturation of the RNA by dimethysulfoxide the average molecule of nuclear poly(A)-containing RNA has a sedimentation value of 28 S whereas the cytoplasmic poly(A)-containing RNA sediments slightly ahead of 18 S. To compare the complexity of cytoplasmic and nuclear poly(A)-containing RNA, complementary DNA (cDNA) transcribed on either cytoplasmic or nuclear RNA is hybridized to the RNA used as a template. The hybridization kinetics suggest a higher complexity of the nuclear RNA compared to the cytoplasmic fraction. Direct evidence of a higher complexity of nuclear poly(A)-containing RNA is shown by the fact that 30% of the nuclear cDNA fails to hybridize with cytoplasmic poly(A)-containing RNA. An attempt to isolate a specific probe for this nucleus-restricted poly(A)-containing RNA reveals that more than 10(4) different nuclear RNA sequences adjacent to the poly(A) do not get into the cytoplasm. We conclude that a poly(A) on a nuclear RNA does not ensure the transport of the adjacent sequence to the cytoplasm.  相似文献   

7.
The putative 15 S precursor of globin mRNA contains a poly (A) sequence   总被引:2,自引:0,他引:2  
[3H] Uridine or [3H] adenosine pulse-labelled nuclear RNA was isolated from chicken immature red blood cells and separated on denaturing formamide sucrose gradients. RNA of each gradient fraction was hybridized with unlabelled globin DNA complementary to mRNA (cDNA) and subsequently digested by RNAase A and RNAase T1. The experiments revealed two RNA species with globin coding sequences sedimenting 9 S and approx. 15 S, the latter probably representing a precursor of 9 S globin mRNA. A poly (A) sequence was demonstrated in this RNA by two different approaches. Nuclear RNA pulse-labelled with [3H] uridine was fractionated by chromatography on poly (U)-Sepharose. Part of the 15 S precursor was found in the poly(A)-containing RNA. In the second approach 15 S RNA pulse-labelled with [3H]adenosine was hybridized with globin cDNA, incubated with RNAase A and RNAase T1 and subjected to chromatography on hydroxyapatite. The hybrids were isolated and after separation of the strands degraded with DNAase I, RNAase A and RNAase T1. By this procedure poly(A) sequences of approximately 100 nucleotides could be isolated from the 15 S RNA with globin coding sequences. The poly(A) sequence was completely degraded by RNAase T2.  相似文献   

8.
The reaction product of the ribosomal poly(A) polymerase [ATP(UTP):RNA nucleotidyltransferase] is analyzed. Two systems are used in vitro: (a) isolated polyribosomes with endogenous enzyme and RNA primer and (b) purified enzyme with total polyribosomal RNA as primer. In the polyribosome system about 50% of the [3H]AMP label is in poly(A)-containing mRNA. This RNA displays a heterogeneous size ditribution in the range of 8--30 S with a maximum at about 14 S. Upon denaturation the maximum is shifted towards the 10-S zone. The poly(A) polymerase catalyzes the addition of 12--18 adenylate residues to pre-existing mRNA poly(A) sequences of 40--160 residues. The [3H]AMP incorporated into poly(A)-lacking RNA is mainly in a fraction with an electrophoretic mobility corresponding to 4-S RNA. In the purified enzyme system, specificity towards poly(A)-containing mRNA is lost to a considerable extent. Only 10% of the [3H]AMP label is retained by oligo(dT)-cellulose. The bulk of the product is in 18-S rRNA and heterogeneous small molecular weight RNA. We conclude that the ribosome-associated poly(A) polymerase is most likely the enzyme responsible for the cytoplasmic polyadenylation of poly(A)-containing mRNA in vivo.  相似文献   

9.
[3H]Uridine or [3H]adenosine pulse-labelled nuclear RNA was isolated from chicken immature red blood cells and separated on denaturing formamide sucrose gradients. RNA of each gradient fraction was hybridized with unlabelled globin DNA complementary to mRNA (cDNA) and subsequently digested by RNAase A and RNAase T1. The experiments revealed two RNA species with globin coding sequences sedimenting at 9 S and approx. 15 S, the latter probably representing a precursor of 9 S globin mRNA.A poly(A) sequence was demonstrated in this RNA by two different approaches. Nuclear RNA pulse-labelled with [3H]uridine was fractionated by chromatography on poly(U)-Sepharose. Part of the 15 S precursor was found in the poly(A)-containing RNA. In the second approach 15 S RNA pulse-labelled with [3H]adenosine was hybridized with globin cDNA, incubated with RNAase A and RNAase T1 and subjected to chromatography on hydroxyapatite. The hybrids were isolated and after separation of the strands degraded with DNAase I, RNAase A and RNAase T1. By this procedure poly(A) sequences of approximately 100 nucleotides could be isolated from the 15 S RNA with globin coding sequences. The poly(A) sequence was completely degraded by RNAase T2.  相似文献   

10.
Poly(A)-containing vesicular stomatitis virus mRNA species synthesized in vesicular stomatitis virus-infected cells have been separated into four bands by electrophoresis on formamide-polyacrylamide gels. Two-dimensional fingerprints of ribonuclease T-1 and ribonuclease A digests of the RNA from each band show that they contain unique oligonucleotide sequences as well as 60 to 125 nucleotides of poly(A). The fingerprints were used to determine the nucleotide sequence complexities of RNA from three of the bands. Two contain nucleotide sequences which account completely for their molecular weights (0.70 times 10-6 and 0.55 times 10-6) determined by gel electrophoresis and sedimentation rate, and, therefore, these are radiochemically pure RNA species. The most rapidly migrating band must contain two ro three different RNA species since it has a molecular weight of 0.28 times 10-6, determined by physical methods, and a nucleotide sequence complexity two to three times that expected for a pure RNA species of this size. These data are in complete accord with translational studies (accompanying paper) which show that each of the two pure RNA species codes for a distinct viral protein, whereas the third codes for two viral proteins. From the molecular weight and sequence complexity determinations on mRNA from the bands, we conclude that most of the vesicular stomatitis virus genome is transcribed into discrete mRNA species.  相似文献   

11.
To describe further the metabolism of messenger ribonucleic acid (mRNA) in mouse kidney, we examined newly synthesized mRNA deficient in poly(adenylate) [poly(A)]. Approximately 50% of renal polysomal mRNA that labeled selectively in the presence of the pyrimidine analogue 5-fluoroorotic acid lacks or is deficient in poly(A) as defined by its ability to bind to poly(A) affinity columns. Nearly one-half of this poly(A)-deficient mRNA is associated uniquely with a cellular membrane fraction detected by sedimentation of renal cytoplasm in sucrose density gradients containing EDTA and nonionic detergents. Poly(A+) mRNA and poly(A)-deficient mRNA [poly(A-) mRNA] have similar modal sedimentation coefficients (20-22 S) and similar cytoplasmic distribution. Although 95% of newly synthesized poly(A+) mRNA is released in 10 mM EDTA as 20-90 S ribonucleoproteins from polysomes greater than 80 S, only 55% of poly(A)-deficient mRNA is released under the same conditions. Poly(A)-deficient mRNA recovered from greater than 80 S ribonucleoproteins resistant to EDTA treatment lacks ribosomal RNA, is similar in size to poly(A+) mRNA, and is associated with membranous structures, since 70% of poly(A)-deficient mRNA in EDTA-resistant ribonucleoproteins is released into the 20-80 S region by solubilizing membranes with 1% Triton X-100. These membrane-associated renal poly(A-) mRNAs could have unique coding or regulatory functions.  相似文献   

12.
K A Maguire  S T Jacob 《Biochemistry》1986,25(7):1515-1519
Previous studies in this laboratory suggested that in adult liver, either the gene for the tumor-type poly(A) polymerase is poorly transcribed or the mRNA for this enzyme is largely not expressed. To test these possibilities, total RNA from rat liver and Morris hepatoma 3924A RNA were isolated by using a guanidine thiocyanate method; poly(A+) RNA and poly(A-) RNA were separated by oligo(dT)-cellulose chromatography and used for translation in a rabbit reticulocyte lysate system. After in vitro translation, the products were immunoprecipitated with either purified anti-tumor poly(A) polymerase antibodies or control immunoglobulins. When the polypeptides translated from poly(A+) or poly(A-) hepatoma RNA were precipitated with immune sera, a unique [35S]methionine-labeled 35-kilodalton (kDa) protein was observed. This band was not apparent when control serum was used for the immunoprecipitation. The radiolabeled 35-kDa polypeptide was not evident when the products were incubated with highly purified tumor nuclear poly(A) polymerase prior to immunoprecipitation. Prior incubation of the translation products with bovine serum albumin instead of poly(A) polymerase had no effect on the immunoprecipitation. This 35-kDa protein was not apparent when liver poly(A+) RNA was used to direct translation. These data demonstrate that (a) the tumor enzyme is not synthesized as a precursor, (b) tumor mRNA, but not normal liver mRNA, contains detectable sequences coding for tumor-type poly(A) polymerase, and (c) poly(A) polymerase mRNA also exists as a poly(A-) population.  相似文献   

13.
Fragments of Drosophila melanogaster DNA that intensively hybridize with simple sequences poly[(dG-dT).(dC-dA)], poly[(dA).(dT)] and poly[(dG-dA).(dC-dT)] were cloned. The first two types of simple sequences are organized in these clones as separated stretches of moderate length, repeated many times within 12-15 kb. Each cluster contains only one type of the simple sequences and originates from a unique in the genome. In contrast, poly[(dG-dA).(dC-dT)] occurs in the genome as several isolated motifs.  相似文献   

14.
15.
Liquid hybridization of progressively smaller fragments (35S, 27S, 15.5S, 12.5S, and 8S) of poly(A)-selected avian myeloblastosis virus RNA with excess DNA from leukemic chicken myeloblasts revealed that all sizes of RNA contained sequences complementary to both slowly and rapidly hybridizing cellular DNA sequences. Apparently, the RNA sequences which hybridize rapidly with excesses of cellular DNA are not restricted to any one region of the avian myeloblastosis virus 35S RNA. Instead, they appear to be randomly distributed over the entire 35S avian myeloblastosis virus RNA molecule with some positioned within 200 nucleotides of the poly(A) tract at the 3' end of the RNA.  相似文献   

16.
17.
Three fractions of poly(A)-containing RNA were separated from total rat liver RNA using poly(U)-Sepharose 4B affinity chromatography. The poly(A)-containing RNA fractions were released by thermal elution. Fraction 1, eluted under the mildest conditions, and had poly(A) tracts of approx. 200 AMP units in length which appeared to be associated with poly(U) sequences of 20-50 UMP in length. Fraction 1 appeared to be present mainly in the nucleus and, its size distribution was similar to that of fractions 2 and 3. Fractions 2 and 3 eluted at higher temperatures and were associated mainly with polysomal and microsomal fractions. Poly(U) sequences were absent in fractions 2 and 3 while their poly(A) sequences had a size distribution characteristic of those reported in the mRNA of other organisms.  相似文献   

18.
The homogeneity of DNA complementary to the 35S RNA subunit of avian myeloblastosis virus (AMV) has been demonstrated by single or multistep hybridization. For multistep hybridizations, 35S AMV RNA was preselected for its ability to hybridize either to unfractionated leukemic DNA or to leukemic DNA enriched for unique or for reiterated sequences. These experiments indicate that the viral genome is complementary to DNA sequences with a low reiteration frequency. Competition experiments confirm the absence of fast-hybridizing sequences in viral DNA. Computer analyses of the data reveal that there are two to four copies of viral DNA in infected cells.  相似文献   

19.
Estimates of the weight average molecular weight of mouse myeloma cell cytoplasmic poly(A)(+)RNA obtained by polyacrylamide-gel electrophoresis and by sucrose gradient sedimentation differ by a factor of two. This difference is not due to degradation of the RNA molecules during sedimentation nor to acid poly(A) double helix formation during electrophoresis. The difference is probably due, at least in part, to the presence of poly(A) sequences in the RNA molecules.  相似文献   

20.
Total RNA was extracted from exponentially growing and resting cultures of Tetrahymena thermophila. Poly(A)-containing RNA was separated by oligo(dT) affinity chromatography. The following characteristics of both preparations were studied: the changes in sedimentation profiles of newly made RNAs as a function of time, the length of the poly(A) segment, and the capacity of polyadenylated mRNA to code for proteins in vitro. The time-dependent sedimentation profiles of both kinds of RNA changed strikingly with the modes of growth: poly(A)+ RNA from heterodisperse in log phase into uniformly and slowly sedimenting in stationary phase, and total RNA from typical ribosomal into heterodisperse with a maximum in the pre-rRNA region. As revealed by the temperature regime developed by Ihle et al. [1] about 80% of all poly(A) RNA molecules carried a poly(A) stretch of less than 50 nucleotides. There was a tendency of the class 0–20 nucleotides to become more frequent in the stationary phase. The polyadenylated mRNAs were translated in the reticulocyte in vitro system. At least one protein of about 26 000 D was translated only in presence of mRNA of growing cells and not with that from resting cells. Another of 3 500 D was found only with mRNA from resting cultures. Three other proteins were translated with different rates according to the culture growth rate. The results demonstrate that the RNA isolated from different phases of culture growth have different dynamic as well as coding properties related to rate of cell multiplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号