首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
It was recently shown that oligolamellar vesicles of 3:1 mixtures of dioleoylphosphatidylethanolamine (DOPE) and the photopolymerizable lipid 1,2-bis[10-(2',4'-hexadienoyloxy)decanoyl]-sn-glycero-3-phosphocho line (SorbPC) are destabilized by polymerization of the SorbPC [Lamparski, H., Liman, U., Frankel, D.A., Barry, J.A., Ramaswami, V., Brown, M.F., & O'Brien, D.F. (1992) Biochemistry 31, 685-694]. The current work describes the polymorphic phase behavior of these mixtures in extended bilayers, as studied by 31P NMR spectroscopy and X-ray diffraction. In the NMR experiments, samples with varying degrees of polymerization were slowly raised in temperature, with spectra acquired every 2.5-10 degrees C. In the unpolymerized mixiture, and in those photopolymerized samples where the monomeric SorbPC was decreased by 33% and 51%, an isotropic signal grew progressively until no signal from the lamellar liquid-crystalline (L alpha) phase remained. In the highly polymerized sample with a 90% loss of monomeric SorbPC, less than 20% of the lipids underwent this transition. In none of the samples was an inverted hexagonal phase (HII) observed, under conditions of slow heating to almost 100 degrees C. The X-ray diffraction studies indicated that samples which exhibit the isotropic NMR signal corresponded to a structure exhibiting no well-defined crystalline order, which upon thermal cycling became an inverted cubic phase belonging to either the Pn3m or Pn3 space groups. The temperature of the transition to the cubic precursor decreased as the extent of polymerization increased, demonstrating that photopolymerization of these lipid bilayers can significantly alter the composition and thermotropic phase behavior of the mixture.  相似文献   

2.
We have determined the mixing properties and lamellar organization of bacterial membrane mimetics composed of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and -phosphatidylglycerol (POPG) at various molar ratios applying differential scanning calorimetry, small and wide-angle X-ray scattering, as well as optical phase contrast microscopy. Combining the experimental thermodynamic data with a simulation of the liquidus and solidus lines, we were able to construct a phase diagram. Using this approach, we find that the lipids mix in all phases non-ideally in the thermodynamic sense. As expected, pure POPE assembles into multilamellar and pure POPG into unilamellar vesicles, respectively, which are stable within the studied temperature range. In contrast, mixtures of the two components form oligolamellar vesicles consisting of about three to five bilayers. The layers within these oligolamellar liposomes are positionally correlated within the gel phase, but become uncorrelated within the fluid phase exhibiting freely fluctuating bilayers, while the vesicles as a whole remain intact and do not break up into unilamellar forms. X-ray, as well as DSC data, respectively, reveal a miscibility gap due to a lateral phase segregation at POPG concentrations above about 70 mol%, similar to previously reported data on mixtures composed of disaturated PEs and PGs. Hence, the existence of a region of immiscibility is a general feature of PE/PG mixtures and the mixing properties are dominated by PE/PG headgroup interactions, but are largely independent of the composition of the hydrocarbon chains. This is in accordance with a recent theoretical prediction.  相似文献   

3.
We have determined the mixing properties and lamellar organization of bacterial membrane mimetics composed of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and -phosphatidylglycerol (POPG) at various molar ratios applying differential scanning calorimetry, small and wide-angle X-ray scattering, as well as optical phase contrast microscopy. Combining the experimental thermodynamic data with a simulation of the liquidus and solidus lines, we were able to construct a phase diagram. Using this approach, we find that the lipids mix in all phases non-ideally in the thermodynamic sense. As expected, pure POPE assembles into multilamellar and pure POPG into unilamellar vesicles, respectively, which are stable within the studied temperature range. In contrast, mixtures of the two components form oligolamellar vesicles consisting of about three to five bilayers. The layers within these oligolamellar liposomes are positionally correlated within the gel phase, but become uncorrelated within the fluid phase exhibiting freely fluctuating bilayers, while the vesicles as a whole remain intact and do not break up into unilamellar forms. X-ray, as well as DSC data, respectively, reveal a miscibility gap due to a lateral phase segregation at POPG concentrations above about 70 mol%, similar to previously reported data on mixtures composed of disaturated PEs and PGs. Hence, the existence of a region of immiscibility is a general feature of PE/PG mixtures and the mixing properties are dominated by PE/PG headgroup interactions, but are largely independent of the composition of the hydrocarbon chains. This is in accordance with a recent theoretical prediction.  相似文献   

4.
Membrane fusion and inverted phases   总被引:11,自引:0,他引:11  
We have found a correlation between liposome fusion kinetics and lipid phase behavior for several inverted phase forming lipids. N-Methylated dioleoylphosphatidylethanolamine (DOPE-Me), or mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), will form an inverted hexagonal phase (HII) at high temperatures (above TH), a lamellar phase (L alpha) at low temperatures, and an isotropic/inverted cubic phase at intermediate temperatures, which is defined by the appearance of narrow isotropic 31P NMR resonances. The phase behavior has been verified by using high-sensitivity DSC, 31P NMR, freeze-fracture electron microscopy, and X-ray diffraction. The temperature range over which the narrow isotropic resonances occur is defined as delta TI, and the range ends at TH. Extruded liposomes (approximately 0.2 microns in diameter) composed of these lipids show fusion and leakage kinetics which are strongly correlated with the temperatures of these phase transitions. At temperatures below delta TI, where the lipid phase is L alpha, there is little or no fusion, i.e., mixing of aqueous contents, or leakage. However, as the temperature reaches delta TI, there is a rapid increase in both fusion and leakage rates. At temperatures above TH, the liposomes show aggregation-dependent lysis, as the rapid formation of HII phase precursors disrupts the membranes. We show that the correspondence between the fusion and leakage kinetics and the observed phase behavior is easily rationalized in terms of a recent kinetic theory of L alpha/inverted phase transitions. In particular, it is likely that membrane fusion and the L alpha/inverted cubic phase transition proceed via a common set of intermembrane intermediates.  相似文献   

5.
The mechanism of pH-triggered destabilization of liposomes composed of a polyethyleneglycol-orthoester-distearoylglycerol lipid (POD) and phosphatidyl ethanolamine (PE) has been studied using an ANTS/DPX leakage and a lipid-mixing assay. We developed a kinetic model that relates POD hydrolysis to liposome collapse. This minimum-surface-shielding model describes the kinetics of the pH-triggered release of POD/PE liposomes. In the model, when acid-catalyzed hydrolysis lowers the mole percentage of POD on the liposome surface to a critical level, intervesicular lipid mixing is initiated, resulting in a burst of contents release. Two phases of content leakage are observed: a lag phase and a burst phase. During the lag phase, less than 20% of liposomal contents are released and the leakage begins to accelerate when approaching to the transition point. During the burst phase, the leakage rate is dependent on interbilayer contact. The burst phase occurs when the surface density of the PEG lipid is 2.3 +/- 0.6 mol%, regardless of the pH. Vesicles containing 4 mol% of a pH-insensitive PEG-lipid conjugate and 10% POD did not leak contents or collapse at any pH. These data are consistent with the stalk theory to describe the lamellar-to-inverted hexagonal phase transition and set a lower bound of approximately 16 PE lipids on the external monolayer as the contact site required for lipid mixing between two bilayers.  相似文献   

6.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the H(II) phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in H(II) phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and H(II) phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the H(II) phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

7.
Destabilization of liposomes composed of phosphatidylethanolamine (PE) and purified glycophorin of human erythrocytes was studied with the release of an entrapped fluorescent dye, calcein. Proteolytic cleavage of liposomes by trypsin induced a rapid increase of turbidity and the leakage of calcein from the liposomes. Kinetic experiments indicated that the destabilization was a second order reaction, i.e. it required liposome collision. Using N-(7-nitro-2,1,3-benzoxadiazol-4-yl) PE as a fluorescent probe for the formation of hexagonal phase of PE, tryptic digestion of the liposomes resulted in a higher tendency of the PE bilayer to transform into the hexagonal phase. We propose that hexagonal (or inverted micellar) structures are involved in the trypsin induced liposome destabilization.  相似文献   

8.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (HII phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the HII phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in HII phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and HII phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the HII phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

9.
H Ellens  J Bentz  F C Szoka 《Biochemistry》1986,25(2):285-294
We have examined whether there is a relationship between the lamellar-hexagonal phase transition temperature, TH, and the initial kinetics of H+- and Ca2+-induced destabilization of phosphatidylethanolamine (PE) liposomes. The liposomes were composed of dioleoylphosphatidylethanolamine, egg phosphatidylethanolamine (EPE), or phosphatidylethanolamine prepared from egg phosphatidylcholine by transesterification (TPE). These lipids have well-spaced lamellar-hexagonal phase transition temperatures (approximately 12, approximately 45, and approximately 57 degrees C) in a temperature range that allows us to measure the initial kinetics of bilayer destabilization, both below and above TH. The liposomes were prepared at pH 9.5. The TH of EPE and TPE was measured by using differential scanning calorimetry, and it was found that the TH was essentially the same at low pH or at high pH in the presence of 20 mM Ca2+. At temperatures well below TH, either at pH 4.5 or at pH 9.5 in the presence of Ca2+, the liposomes aggregate, leak, and undergo lipid mixing and mixing of contents. We show that liposome/liposome contact is involved in the destabilization of the PE liposomes. The temperature dependence of leakage, lipid mixing, and mixing of contents shows that there is a massive enhancement in the rate of leakage when the temperature approaches the TH of the particular PE and that lipid mixing appears to be enhanced. However, the fusion (mixing of aqueous contents) is diminished or even abolished at temperatures above TH. At and above the TH, a new mechanism of liposome destabilization arises, evidently dependent upon the ability of the PE molecules to adapt new morphological structures at these temperatures. We propose that this destabilization demarks the first step in the pathway to the eventual formation of the HII phase. Thus, the polymorphism accessible to PE is a powerful agent for membrane destabilization, but additional factors are required for fusion.  相似文献   

10.
The capture volumes (internal aqueous spaces) of liposomes prepared from a series of saturated phosphatidylcholines (PC) and saturated phosphatidylethanolamines (PE) had previously been found to be a function of lipid structure. PE vesicles have larger internal aqueous spaces than PC vesicles and for lipids with the same head group, capture volume increases with lengthening of the fatty acyl chains. Capture volume is determined by vesicle size, number of lamellae, and interlamellar distance. In this study, liposomes were formed from a saturated PC or PE and their morphology studied in the gel state using the technique of negative staining transmission electron microscopy. The measured interlamellar distances were quite similar among these various lipids while the number of lamellae was found to decrease as the fatty acyl chain length increased. In general PEs form fewer lamellae than PCs and in particular mono- and di-methylated dipalmitoyl-PE form only unilamellar vesicles. The number of lamellae then appears to bear a relationship to the size of the capture volume in that liposomes with largercapture volumes have fewer lamellae.  相似文献   

11.
The leakage of Na+ from sonicated liposomes, composed of rod outer segment lipids, retinal lipids and a 4 : 1 phosphatidylcholine/phosphatidylserine mixture, has been studied. Both retinal and rod outer segment lipid liposomes lose Na+ faster than Ca2+ which indicates that the observed leakage occurs from closed liposomal structures.Liposomes from rod outer segment lipids are extremely leaky, losing sodium about 10 times as fast as retinal lipid liposomes and twice as fast as the phosphatidylcholine/phosphatidylserine liposomes.This high permeability of rod outer segment lipid liposomes, as compared to retinal lipid liposomes, is probably due to both the higher degree of unsaturation of the fatty acid chains and their lower cholesterol content. In the rod outer segment lipid extract 48% of the fatty acid chains consists of docosahexaenoic acid (C22:6) against only 24% in retinal lipid extract. Rod outer segment lipids contain 4.0% cholesterol against 12.3% in retinal lipids.The sodium leakage from rod outer segment lipid liposomes is little affected by the presence of 5 mM calcium in the external dialysis medium, but with the two other types of liposomes significant decreases in permeability of about 20% are observed.The results are discussed in connection with the role of cations in visual excitation.  相似文献   

12.
(a) The physical properties and photopolymerization of diacetylene-containing phosphatidylcholines with acyl chains of different length and in liposome form have been studied. (b) The structure of these liposomes and their stability during polymerization have been examined using electron microscopy and glucose trapping. (c) Photopolymerization of the diacetylene groupings has been followed by monitoring the conversion of monomer and the formation of coloured polymer and the optimum conditions for polymerization have been established. (d) Changes induced by irradiation on the phase transition behaviour of these lipids were determined by differential scanning calorimetry. Polymerization decreases both the transition temperature and the enthalpy of the main endothermic transition. (e) The permeability of liposomes to glycerol is changed as a result of the polymerization process.  相似文献   

13.
We have investigated the behavior of two populations of doxorubicin (DXR)-containing phospholipid vesicles with regard to various physical and pharmacological parameters. DXR-containing liposomes were prepared by ultrasonic irradiation, the lipid composition being phosphatidylglycerol (or phosphatidylserine), phosphatidylcholine and cholesterol. The vesicles were fractionated into oligolamellar vesicles (OLV) and small unilamellar vesicles (SUV) by preparative differential ultracentrifugation (150,000 x g for 1 h). Unentrapped DXR was removed by gel exclusion chromatography. OLV and SUV liposomes differed in size (mean diameters, 247 +/- 113 nm and 61 +/- 16 nm, respectively) and number of lamellae (two for OLV, one for SUV). Drug entrapment per unit of lipid was three to 5-fold higher in OLV than in SUV. In both liposome populations more than 95% of the entrapped drug was membrane-associated. Physical studies on these two vesicle populations revealed higher motional restriction and greater susceptibility to iodide-mediated fluorescence collisional quenching of DXR in the small vesicles. OLV showed superior stability in the presence of plasma as determined by the fraction of DXR retained by the vesicles. It was also found that the tissue distribution of DXR in SUV follows a pattern different from that of DXR in OLV and resembling that of soluble DXR. In accordance with these differences in patterns of tissue distribution, animal studies demonstrated that DXR in OLV is significantly less toxic than DXR in SUV and more effective in a tumor model with predominant involvement of the liver. These results indicate that vesicle size and/or number of lamellae play an important role in optimizing liposome-mediated delivery of DXR, and that oligolamellar liposomes are distinctively superior to small unilamellar liposomes when fluid phase formulations (Tm less than 37 degrees C) with bilayer-associated DXR are considered.  相似文献   

14.
By employing diphenylhexatriene steady-state fluorescence anisotropy, pyrenedecanoic acid excimer formation, and high sensitivity scanning calorimetry we have demonstrated that the liposomes containing phosphatidylethanolamine (PE) and various mole fractions of ganglioside GD1a had a gel-liquid crystalline phase transition between 15 and 25 degrees C. Calorimetric measurements indicated that these phase transitions were broad and centered between 17 and 21 degrees C. The enthalpy change of the transition was linearly dependent on the ganglioside concentration up to 10.0 mol% and plateaued between 11.4-16.2 mol%. The high enthalpy change (37 kcal/mol of GD1a added into the PE bilayer) indicates the existence of PE-GD1a complex structure in the liposomal membrane. It is proposed that semi-fluid domains containing six PE and one ganglioside molecule are present in the PE-GD1a membranes at temperatures above gel-liquid crystalline phase transition. The Sendai virus induced leakage of PE-GD1a liposomes has been investigated by using an entrapped, self-quenching fluorescent dye, calcein. The leakage rate was dependent on the mole fraction of ganglioside GD1a and was maximal at 6.3 mol%. Arrhenius plots of the leakage rates showed breaks in the 20-25 degrees C temperature range, which correspond to the gel-liquid crystalline phase transition of the target liposomes. These data suggest that the rate of Sendai virus-induced leakage can be regulated via fluidity modulation by changing the PE to GD1a ratio at constant temperatures.  相似文献   

15.
Tamba Y  Yamazaki M 《Biochemistry》2005,44(48):15823-15833
It is thought that magainin 2, an antimicrobial peptide, acts by binding to lipid membranes. Recent studies using a suspension of large unilamellar vesicles (LUVs) indicate that magainin 2 causes gradual leakage from LUVs containing negatively charged lipids. However, the details of the characteristics of the membrane permeability and the mechanism of pore formation remain unclear. In this report, we investigated the interaction of magainin 2 with single giant unilamellar vesicles (GUVs) composed of a dioleoylphosphatidylcholine and dioleoylphosphatidylglycerol mixture (50% DOPG/50% DOPC GUVs) containing the fluorescent dye, calcein, by phase contrast, fluorescence microscopy using the single GUV method. Low concentrations (3-10 microM) of magainin 2 caused the rapid leakage of calcein from single GUVs but did not disrupt the liposomes or change the membrane structure, showing directly that magainin 2 forms membrane pores through which calcein leaked. The rapid leakage of calcein from a GUV started stochastically, and once it began, the complete leakage occurred rapidly (6-60 s). The fraction of completely leaked GUV, P(L), increased with time and also with an increase in magainin 2 concentration. Shape changes in these GUVs occurred prior to the pore formation and also at lower concentrations of magainin 2, which could not induce the pore formation. Their analysis indicates that binding of magainin 2 to the external monolayer of the GUV increases its membrane area, thereby raising its surface pressure. The addition of lysophosphatidylcholine into the external monolayer of GUVs increased P(L). On the basis of these results, we propose the two-state transition model for the pore formation.  相似文献   

16.
The structure and dynamics of two different pH-sensitive liposome systems were investigated by means of cryo-transmission electron microscopy and different photophysical techniques. Both systems consisted of dioleoylphosphatidylethanolamine (DOPE) and contained either oleic acid (OA) or a novel acid-labile polyethylene glycol-conjugated lipid (DHCho-MPEG5000) as stabiliser. Proton induced leakage, lipid mixing and structural changes were studied in the absence and presence of EPC liposomes, as well as in the presence of liposomes designed to model the endosome membrane. Neither DHCho-MPEG5000- nor OA-stabilised liposomes showed any tendency for fusion with pure EPC liposomes or endosome-like liposomes composed of EPC/DOPE/SM/Cho (40/20/6/34 mol.%). Our investigations showed, however, that incorporation of lipids from the pH-sensitive liposomes into the endosome membrane may lead to increased permeability and formation of non-lamellar structures. Taken together the results suggest that the observed ability of DOPE-containing liposomes to mediate cytoplasmic delivery of hydrophilic molecules cannot be explained by a mechanism based on a direct, and non-leaky, fusion between the liposome and endosome membranes. A mechanism involving destabilisation of the endosome membrane due to incorporation of DOPE, seems more plausible.  相似文献   

17.
Dual-color fluorescence-burst analysis was used to study melittin-induced leakage of macromolecules from liposomes of various lipid compositions. To perform dual-color fluorescence-burst analysis, fluorescently labeled size-marker molecules were encapsulated into liposomes, labeled with a second lipid-attached fluorophore. By correlating the fluorescence bursts, resulting from the liposomes diffusing through the detection volume of a dual-color confocal microscope, the distribution of size-marker molecules over the liposomes was determined. It was found that melittin causes leakage via two different mechanisms: 1), For liposomes composed of neutral bilayer-forming lipids, low melittin concentrations induced pore formation with the pore size depending on the melittin concentration. 2), For liposomes containing anionic and/or nonbilayer forming lipids, melittin induced fusion or aggregation of liposomes accompanied by a-specific leakage. Experiments with liposomes prepared from Escherichia coli lipid extracts and intact cells of Lactococcus lactis indicate that both mechanisms are physiologically relevant.  相似文献   

18.
J Bentz  H Ellens  F C Szoka 《Biochemistry》1987,26(8):2105-2116
We have measured the temperature of the L alpha-HII phase transition, TH, for several types of phosphatidylethanolamine (PE), their binary mixtures, and several PE/cholesteryl hemisuccinate (CHEMS) mixtures. We have shown for liposomes composed of pure PE and in mixtures with CHEMS that there is an aggregation-mediated destabilization which is greatly enhanced at and above TH. We now ask the question: How well can a dioleoylphosphatidylethanolamine/CHEMS liposome, for example, destabilize TPE (transesterified from egg phosphatidylcholine)/CHEMS liposome and vice versa? We use Ca2+ and H+ to induce aggregation and to provide different values of TH: the TH of the PE/CHEMS mixture is much lower at low pH than with Ca2+. We find that if the temperature is above the TH of one lipid mixture, e.g., A, and below the TH of the other lipid mixture, e.g., B, then the destabilization sequence [measured by the fluorescent 1-aminonaphthalene-3,6,8-trisulfonic acid/p-xylylenebis(pyridinium bromide) leakage assay] is AA greater than AB much greater than BB. That is, the bilayer of the lipid A (which on its own would end up in the HII phase) destabilizes itself better than it destabilizes the bilayer of lipid B (which on its own would remain in the L alpha phase). The BB contact is the least unstable. From these experiments, we conclude that the enhanced destabilization of membranes provided by the polymorphism accessible to these lipids above TH is effective even if only one of the apposed outer monolayers is HII phase competent. The surprising result is that if the temperature is above the TH of both lipid mixtures, then the destabilization sequence is AB greater than AA, BB. That is, the mixed bilayers are destabilized more by contact than either of the pure pairs. We believe that this is due to specific differences in the kinetics of aggregation or close approach of the membranes. Similar results were obtained with pure PE liposomes induced to aggregate by Ca2+ at pH 9.5. We also found that the kinetics of low-pH-induced leakage from PE/CHEMS liposomes were initially faster when the CHEMS on both sides of the bilayer is fully protonated. However, in a citrate buffer, which cannot cross intact membranes, the leakage was eventually faster. Flip-flop of the protonated CHEMS to the inner monolayer can explain this observation.  相似文献   

19.
Wu CM  Chen HL  Liou W  Lin TL  Jeng US 《Biomacromolecules》2004,5(6):2324-2328
Liposome consisting of a single zwitterionic lipid as the potential vector for gene therapy has been reported recently; however, whether polyanionic DNA can bind directly with zwitterionic lipid without the aid of multivalent salt still remains unresolved. In this study, we reveal the aggregation of zwitterionic oligolamellar liposomes composed of 1,2-di(cis-9-octadecenoyl)-sn-glycero-3-phosphocholine induced by DNA without the presence of multivalent salt. Our results demonstrate that only a small fraction (<10%) of DNA can bind electrostatically with a portion of the liposomes. Such a low degree of binding, however, induces significant aggregation of these oligolamellar liposomes, yielding large multilamellar particles in which the number of hydrophilic/hydrophobic layer stacking becomes sufficiently large to yield multiple diffraction peaks in the small-angle X-ray scattering profile. Addition of monovalent salt such as NaCl tends to disrupt the multilamellar structure.  相似文献   

20.
The interaction of the low molecular weight group of surfactant-associated proteins, SP 5-18, with the major phospholipids of pulmonary surfactant was studied by fluorescence measurements of liposomal permeability and fusion, morphological studies, and surface activity measurements. The ability of SP 5-18 to increase the permeability of large unilamellar lipid vesicles was enhanced by the presence of negatively charged phospholipid. The permeability of these vesicles increased as the protein concentration was raised and the pH was lowered. SP 5-18 also induced leakage from liposomes made both from a synthetic surfactant lipid mixture and from lipids separated from SP 5-18 during its purification from canine sources. When SP 5-18 was added to egg phosphatidylglycerol liposomes, the population of liposomes which became permeable leaked all encapsulated contents, while the remaining liposomes did not leak at all. The extent of leakage was higher in the presence of 3 mM calcium. SP 5-18 also induced lipid mixing between two populations of egg phosphatidylglycerol liposomes in the presence of 3 mM calcium, as monitored by resonance energy transfer between two different fluorescent lipid probes, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine and N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine. Negative-staining electron microscopy showed that the addition of SP 5-18 and 3 mM calcium produced vesicles twice the size of control egg phosphatidylglycerol liposomes. In addition, surface balance measurements revealed that the adsorption of liposomal lipids to an air/water interface was enhanced by the presence of SP 5-18, negatively charged phospholipids, and 3 mM calcium. These observations suggest a similar lipid dependence for the interactions observed in the fluorescence and adsorption experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号