首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 106 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected the bottom rot disease severity.  相似文献   

2.
Gao G  Yin D  Chen S  Xia F  Yang J  Li Q  Wang W 《PloS one》2012,7(2):e31806
Fungi and fungal community play important roles in the soil ecosystem, and the diversity of fungal community could act as natural antagonists of various plant pathogens. Biological control is a promising method to protect plants as chemical pesticides may cause environment pollution. Pseudomonas fluorescens 2P24 had strong inhibitory on Rastonia solanacearum, Fusarium oxysporum and Rhizoctonia solani, etc., and was isolated from the wheat rhizosphere take-all decline soils in Shandong province, China. However, its potential effect on soil fungal community was still unknown. In this study, the gfp-labeled P. fluorescens 2P24 was inoculated into cucumber rhizosphere, and the survival of 2P24 was monitored weekly. The amount decreased from 10(8) to 10(5) CFU/g dry soils. The effect of 2P24 on soil fungal community in cucumber rhizosphere was investigated using T-RFLP and DGGE. In T-RFLP analysis, principle component analysis showed that the soil fungal community was greatly influenced at first, digested with restriction enzyme Hinf I and Taq I. However, there was little difference as digested by different enzymes. DGGE results demonstrated that the soil fungal community was greatly shocked at the beginning, but it recovered slowly with the decline of P. fluorescens 2P24. Four weeks later, there was little difference between the treatment and control. Generally speaking, the effect of P. fluorescens 2P24 on soil fungal community in cucumber rhizosphere was just transient.  相似文献   

3.
The aim of this study was to assess the biocontrol efficacy against Rhizoctonia solani of three bacterial antagonists introduced into naturally Rhizoctonia-infested lettuce fields and to analyse their impact on the indigenous plant-associated bacteria and fungi. Lettuce seedlings were inoculated with bacterial suspensions of two endophytic strains, Serratia plymuthica 3Re4-18 and Pseudomonas trivialis 3Re2-7, and with the rhizobacterium Pseudomonas fluorescens L13-6-12 7 days before and 5 days after planting in the field. Similar statistically significant biocontrol effects were observed for all applied bacterial antagonists compared with the uninoculated control. Single-strand conformation polymorphism analysis of 16S rRNA gene or ITS1 fragments revealed a highly diverse rhizosphere and a less diverse endophytic microbial community for lettuce. Representatives of several bacterial (Alpha-, Beta- and Gammaproteobacteria, Firmicutes, Bacteriodetes), fungal (Ascomycetes, Basidiomycetes) and protist (Oomycetes) groups were present inside or on lettuce plants. Surprisingly, given that lettuce is a vegetable that is eaten raw, species of genera such as Flavobacterium, Burkholderia, Staphylococcus, Cladosporium and Aspergillus, which contain potentially human pathogenic strains, were identified. Analysis of the indigenous bacterial and endophytic fungal populations revealed only negligible, short-term effects resulting from the bacterial treatments, and that they were more influenced by field site, plant growth stage and microenvironment.  相似文献   

4.
The survival and colonization patterns of Pseudomonas putida PRD16 and Enterobacter cowanii PRF116 in the rhizosphere of greenhouse-grown tomato plants and the effects of their inoculation on the indigenous bacterial community were followed by selective plating, molecular fingerprinting, and confocal laser scanning microscopy (CLSM) over 3 weeks. Both strains, which showed in vitro antagonistic activity against Ralstonia solanacearum, were previously tagged with gfp. Seed and root inoculation were compared. Although plate counts decreased for both gfp-tagged antagonists, PRD16 showed a better survival in the rhizosphere of tomato roots independent of the inoculation method. Analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and CLSM confirmed the decrease in the relative abundance of the inoculant strains. Pronounced differences in the Pseudomonas community patterns for plants inoculated with PRD16 compared to the control were detected 3 weeks after root inoculation, indicating a longer-lasting effect. Analysis by CLSM showed rather heterogeneous colonization patterns for both inoculant strains. In comparison with seed inoculation, root inoculation led to a much better colonization as evidenced by all three methods. The colonization patterns observed by CLSM provide important information on the sampling strategy required for monitoring inoculant strains in the rhizosphere.  相似文献   

5.
Large Pseudomonas phages isolated from barley rhizosphere   总被引:1,自引:0,他引:1  
Abstract: Five bacteriophages infecting common fluorescent pseudomonads ( Pseudomonas fluorescens and Pseudomonas putida ) were isolated from barley rhizosphere soil. Morphological and molecular characteristics of the phages are described together with selected phage-host interactions. All phages belonged to the Myoviridae family with isometrical heads on contractile tails; 4 of them were unusually large and had complex protein and DNA profiles. The large phages had estimated genome sizes of 200 kb or more. Restriction enzyme analyses and DNA-DNA hybridizations showed that all isolates represented different phage species. None of the isolates were observed to establish lysogeny with the main host strain, P. putida MM1. The large phages multiplied slowly on their hosts, producing very small plaques; one-step growth experiments with one of the large phages (Psp 4) hence demonstrated a long latent period (2.5 h) and a very small burst size (10 particles). One of the large phages (Psp 3) was abundant in the rhizosphere (approx. 104 pfu g−1 soil) and had a particularly broad host range which extended to both fluorescent ( Pseudomonas aeruginosa, P. fluorescens, P. putida and Pseudomonas chlororaphis ) and non-fluorescent (Pseudomonas stutzeri) Pseudomonas spp. occurring in soil. The ecological importance of the large Pseudomonas phages must be further studied, but their slow multiplication rates suggested a possible mechanism of balanced phage-host co-existence in the rhizosphere.  相似文献   

6.
The soil-borne pathogen Rhizoctonia solani is responsible for crop losses on a wide range of important crops worldwide. The lack of effective control strategies and the increasing demand for organically grown food has stimulated research on biological control. The aim of the present study was to evaluate the rhizosphere competence of the commercially available inoculant Bacillus amyloliquefaciens FZB42 on lettuce growth and health together with its impact on the indigenous rhizosphere bacterial community in field and pot experiments. Results of both experiments demonstrated that FZB42 is able to effectively colonize the rhizosphere (7.45 to 6.61 Log 10 CFU g−1 root dry mass) within the growth period of lettuce in the field. The disease severity (DS) of bottom rot on lettuce was significantly reduced from severe symptoms with DS category 5 to slight symptom expression with DS category 3 on average through treatment of young plants with FZB42 before and after planting. The 16S rRNA gene based fingerprinting method terminal restriction fragment length polymorphism (T-RFLP) showed that the treatment with FZB42 did not have a major impact on the indigenous rhizosphere bacterial community. However, the bacterial community showed a clear temporal shift. The results also indicated that the pathogen R. solani AG1-IB affects the rhizosphere microbial community after inoculation. Thus, we revealed that the inoculant FZB42 could establish itself successfully in the rhizosphere without showing any durable effect on the rhizosphere bacterial community.  相似文献   

7.
In a field release experiment, rifampicin resistant mutants of two antagonistic plant-associated bacteria were used for seed tuber inoculation of transgenic T4 lysozyme expressing potatoes, transgenic control potatoes and non-transgenic parental potatoes. The T4 lysozyme tolerant Pseudomonas putida QC14-3-8 was originally isolated from the tuber surface (geocaulosphere) of T4 lysozyme producing plants and showed in vitro antibacterial activity to the bacterial pathogen Erwinia carotovora ssp. atroseptica. The T4 lysozyme sensitive Serratia grimesii L16-3-3 was originally isolated from the rhizosphere of parental potatoes and showed in vitro antagonism toward the plant pathogenic fungus Verticillium dahliae. The establishment of the inoculated bacteria in the rhizosphere and geocaulosphere of the different plant lines was monitored over one growing season to assess the effect of T4 lysozyme produced by transgenic potato plants on the survival of both inoculants. Both introduced isolates were able to colonize the rhizo- and geocaulosphere of transgenic plants and non-transgenic parental plants, and established in the rhizosphere at levels of ca. log(10) 5 colony forming units g(-1) fresh weight of root. During flowering of plants, significantly more colony counts of the T4 lysozyme tolerant P. putida were recovered from transgenic T4 lysozyme plants than from the transgenic control and the parental line. At this time, the highest level of T4 lysozyme (% of total soluble protein) was detected. Effects of the inoculants on the indigenous microbial community were monitored by analysis of PCR-amplified fragments of the 16S rRNA genes of the whole bacterial community after separation by denaturing gradient gel electrophoresis (DGGE). At any sampling time, the DGGE pattern of rhizosphere and geocaulosphere communities did not show differences between the inoculated and non-inoculated potatoes. Neither of the introduced strains became a dominant member of the bacterial community. This work was the first approach to assess the establishment of plant growth promoting rhizobacteria and potential biocontrol agents on transgenic plants.  相似文献   

8.
Pinellia ternata , a traditional Chinese herb that has been used in China for over 1000 years, is susceptible to a soft rot disease, which may cause major loss of yield. The use of bacteria as potential antagonists against Pectobacterium carotovorum SXR1, the causal agent of the disease on P. ternata , was evaluated. Altogether, 1107 candidate bacteria were isolated from the rhizosphere and surface-sterilized plants of P. ternata . In Petri dish tests, 55 isolates inhibited the growth of strain SXR1, and 21 of these reduced the disease development on P. ternata slices by over 50%. Four selected antagonists significantly reduced the disease incidence on tissue culture seedlings, and also prevented the disease on the transplants. Agonist P-Y2-2 yielded a good prevention level of 81.9%. The four antagonists rapidly colonized the tissue culture seedlings and transplants, whereas greater populations of the antagonists (107–109 CFU g−1 fresh tissues) were observed in the seedlings and in the preinoculated transplants than in those inoculated during transplanting. The use of pathogen-free tissue culture seedlings pre-inoculated with antagonist may provide a strategy for production of P. ternata plantlets resistant to soft rot disease. This is the first report on the efficacy of biocontrol agents against pathogens on P. ternata .  相似文献   

9.
Aims:  The major objective of this study was to determine the effects of low levels of Escherichia coli O157:H7 contamination on plant by monitoring the survival of the pathogen on the rhizosphere and leaf surfaces of lettuce during the growth process.
Methods and Results:  Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7 in the rhizosphere and leaf surfaces after planting. Real-time PCR assays were designed to amplify the stx 1, stx 2 and the eae genes of E. coli O157:H7. The detection limit for E. coli O157:H7 quantification by real-time PCR was 2·4 × 103 CFU g−1 of starting DNA in rhizosphere and phyllosphere samples and about 102 CFU g−1 by plate count. The time for pathogens to reach detection limits on the leaf surface by plate counts was 7 days after planting in comparison with 21 days in the rhizosphere. However, real-time PCR continued to detect stx 1, stx 2 and the eae genes throughout the experimental period.
Conclusion:  Escherichia coli O157:H7 survived throughout the growth period as was determined by real-time PCR and by subsequent enrichment and immunomagnetic separation of edible part of plants.
Significance and impact of the Study:  The potential presence of human pathogens in vegetables grown in soils contaminated with E. coli O157:H7 is a serious problem to our national food supply as the pathogen may survive on the leaf surface as they come in contact with contaminated soil during germination.  相似文献   

10.
Effects of the biocontrol strain, Pseudomonas fluorescens DR54, on growth and disease development by Rhizoctonia solani causing damping-off in sugar beet were studied in soil microcosms and in pot experiments with natural, clay-type soil. In pot experiments with P. fluorescens DR54-treated seeds, significantly fewer Rhizoctonia-challenged seedlings showed damping-off symptoms than when not inoculated with the biocontrol agent. In the rhizosphere of P. fluorescens DR54 inoculated seeds, the bacterial inoculant was present in high numbers as shown by dilution plating and immunoblotting. By the ELISA antibody technique and direct microscopy of the fungal pathogen grown in soil microcosms, it was shown that the presence of P. fluorescens DR54 on the inoculated seeds had a strong inhibitory effect on development of both mycelium biomass and sclerotia formation by R. solani. In the field experiment, plant emergence was increased by treatment with P. fluorescens DR54 and the inoculant was found to be the dominating rhizosphere colonizing pseudomonad immediately after seedling emergence.  相似文献   

11.
Two species of Pseudomonas (i.e. P. chlororaphis or P. putida) derived from a maize rhizosphere were studied for their impact on the structure of the microbial community in the rhizosphere of young maize seedlings after inoculation. The culturable bacteria and total microbial communities were analyzed based on profiles of whole-cell fatty acid methyl esters (MIDI-FAME). The introduction of Pseudomonas species resulted in the shift from the Gram-positive dominated culturable community in the rhizosphere of uninoculated maize to more Gram-negative populations in the rhizospheres of the inoculated plants. For the total rhizosphere communities, 43, 47 and 42 FAMEs were detected in the uninoculated maize and the samples inoculated with P. chlororaphis or P. putida, respectively. In contrast to the culturable communities, low concentrations of marker FAMEs for Gram-positives (i15:0, a15:0, i16:0) were found in the profiles of the total rhizosphere communities. The maize inoculations resulted in an enrichment of some Gram-negative isolates; however, Gram-positive bacteria, Cytophaga/Flavobacterium and saprophytic fungi were found in the uninoculated rhizosphere.  相似文献   

12.
Photosynthetic assimilation of CO2 is a primary source of carbon in soil and root exudates and can influence the community dynamics of rhizosphere organisms. Thus, if carbon partitioning is affected in transgenic crops, rhizosphere microbial communities may also be affected. In this study, the temporal effects of gene transformation on carbon partitioning in rice and rhizosphere microbial communities were investigated under greenhouse conditions using the 13C pulse-chase labeling method and phospholipid fatty acid (PLFA) analysis. The 13C contents in leaves of transgenic (Bt) and nontransgenic (Ck) rice were significantly different at the seedling, booting and heading stages. There were no detectable differences in 13C distribution in rice roots and rhizosphere microorganisms at any point during rice development. Although a significantly lower amount of Gram-positive bacterial PLFAs and a higher amount of Gram-negative bacterial PLFAs were observed in Bt rice rhizosphere as compared with Ck at all plant development stages, there were no significant differences in the amount of individual 13C-PLFA between Bt and Ck rhizospheres at any growing stage. These findings indicate that the insertion of cry1Ab and marker genes into rice had no persistent or adverse effect on the photosynthate distribution in rice or the microbial community composition in its rhizosphere.  相似文献   

13.
Despite their importance for rhizosphere functioning, rhizobacterial Pseudomonas spp. have been mainly studied in a cultivation-based manner. In this study a cultivation-independent method was used to determine to what extent the factors plant species, sampling site and year-to-year variation influence Pseudomonas community structure in bulk soil and in the rhizosphere of two Verticillium dahliae host plants, oilseed rape and strawberry. Community DNA was extracted from bulk and rhizosphere soil samples of flowering plants collected at three different sites in Germany in two consecutive years. Pseudomonas community structure and diversity were assessed using a polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) system to fingerprint Pseudomonas-specific 16S rRNA gene fragments amplified from community DNA. Dominant and differentiating DGGE bands were excised from the gels, cloned and sequenced. The factors sampling site, plant species and year-to-year variation were shown to significantly influence the community structure of Pseudomonas in rhizosphere soils. The composition of Pseudomonas 16S rRNA gene fragments in the rhizosphere differed from that in the adjacent bulk soil and the rhizosphere effect tended to be plant-specific. The clone sequences of most dominant bands analysed belonged to the Pseudomonas fluorescens lineage and showed closest similarity to culturable Pseudomonas known for displaying antifungal properties. This report provides a better understanding of how different factors drive Pseudomonas community structure and diversity in bulk and rhizosphere soils.  相似文献   

14.
A method was developed for the detection of Pseudomonas putida B MM12 released into the rhizosphere of non-sterile barley, using a Random Amplified Polymorphic DNA (RAPD)-generated probe for hybridization with RAPD products generated from DNA extracted from the rhizosphere. The detection procedure involves extraction of rhizosphere bacteria by sonication, extraction of DNA by boiling, RAPD and Southern hybridization with RAPD products and the selected probe. The level of detection of MM12 was at least 1·9×104 cells g−1 barley root. MM12 was detected in rhizosphere when it constituted as little as 0·5% of the culturable population.  相似文献   

15.
The genotypic diversity of antibiotic-producing Pseudomonas spp. provides an enormous resource for identifying strains that are highly rhizosphere competent and superior for biological control of plant diseases. In this study, a simple and rapid method was developed to determine the presence and genotypic diversity of 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas strains in rhizosphere samples. Denaturing gradient gel electrophoresis (DGGE) of 350-bp fragments of phlD, a key gene involved in DAPG biosynthesis, allowed discrimination between genotypically different phlD(+) reference strains and indigenous isolates. DGGE analysis of the phlD fragments provided a level of discrimination between phlD(+) genotypes that was higher than the level obtained by currently used techniques and enabled detection of specific phlD(+) genotypes directly in rhizosphere samples with a detection limit of approximately 5 x 10(3) CFU/g of root. DGGE also allowed simultaneous detection of multiple phlD(+) genotypes present in mixtures in rhizosphere samples. DGGE analysis of 184 indigenous phlD(+) isolates obtained from the rhizospheres of wheat, sugar beet, and potato plants resulted in the identification of seven phlD(+) genotypes, five of which were not described previously based on sequence and phylogenetic analyses. Subsequent bioassays demonstrated that eight genotypically different phlD(+) genotypes differed substantially in the ability to colonize the rhizosphere of sugar beet seedlings. Collectively, these results demonstrated that DGGE analysis of the phlD gene allows identification of new genotypic groups of specific antibiotic-producing Pseudomonas with different abilities to colonize the rhizosphere of sugar beet seedlings.  相似文献   

16.
AIM: To screen for novel antagonistic Pseudomonas strains producing both phenazines and biosurfactants that are as effective as Pseudomonas aeruginosa PNA1 in the biocontrol of cocoyam root rot caused by Pythium myriotylum. MATERIAL AND RESULTS: Forty pseudomonads were isolated from the rhizosphere of healthy white and red cocoyam plants appearing in natural, heavily infested fields in Cameroon. In vitro tests demonstrated that Py. myriotylum antagonists could be retrieved from the red cocoyam rhizosphere. Except for one isolate, all antagonistic isolates produced phenazines. Results from whole-cell protein profiling showed that the antagonistic isolates are different from other isolated pseudomonads, while BOX-PCR revealed high genomic similarity among them. 16S rDNA sequencing of two representative strains within this group of antagonists confirmed their relatively low similarity with validly described Pseudomonas species. These antagonists are thus provisionally labelled as unidentified Pseudomonas strains. Among the antagonists, Pseudomonas CMR5c and CMR12a were selected because of their combined production of phenazines and biosurfactants. For strain CMR5c also, production of pyrrolnitrin and pyoluteorin was demonstrated. Both CMR5c and CMR12a showed excellent in vivo biocontrol activity against Py. myriotylum to a similar level as Ps. aeruginosa PNA1. CONCLUSION: Pseudomonas CMR5c and CMR12a were identified as novel and promising biocontrol agents of Py. myriotylum on cocoyam, producing an arsenal of antagonistic metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY: Present study reports the identification of two newly isolated fluorescent Pseudomonas strains that can replace the opportunistic human pathogen Ps. aeruginosa PNA1 in the biocontrol of cocoyam root rot and could be taken into account for the suppression of many plant pathogens.  相似文献   

17.
基于高通量测序的杨树人工林根际土壤真菌群落结构   总被引:2,自引:0,他引:2  
研究不同根序细根根际土壤微生物群落组成结构对深入了解根系-微生物互作关系具有重要意义.本研究采用Illumina MiSeq测序平台,对杨树人工林非根际土壤和不同根序细根根际土壤的真菌群落结构进行分析.物种注释结果显示: 杨树1~2级根(R1)、3级根(R2)和4~5级(R3)根际及非根际土壤(NR)中分别包含128、124、130和101个真菌属,表明杨树根际存在对真菌群落构建的选择性机制.不同根序根际土壤中相对丰度>1%的真菌属有7个,木霉属在1~2级根根际土壤中丰度较高,毛孢子菌属和曲霉属分别是3级根和4~5级根根际土壤中丰度最高的真菌属.α多样性指数表明: 根际土壤真菌的多样性在不同根序间存在显著差异,低级根显著高于高级根(P<0.05).β多样性指数表明: 真菌群落随着序级的升高差异性不断上升,相似性不断降低.不同根序细根根际真菌群落的趋异化组成和结构与细根功能具有密切关系.  相似文献   

18.
The increase in atmospheric carbon dioxide (CO2) levels is predicted to stimulate plant carbon (C) fixation, potentially influencing the size, structure and function of micro- and mesofaunal communities inhabiting the rhizosphere. To assess the effects of increased atmospheric CO2 on bacterial, fungal and nematode communities in the rhizosphere, Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown in three dune soils under controlled soil temperature and moisture conditions, while subjecting the aboveground compartment to defined atmospheric conditions differing in CO2 concentrations (350 and 700 μL L−1). Real-time polymerase chain reaction (PCR) and PCR-denaturing gradient gel electrophoresis methods were used to examine effects on the size and structure of rhizosphere communities. Multivariate analysis of community profiles showed that bacteria were most affected by elevated CO2, and fungi and nematodes to a lesser extent. The influence of elevated CO2 was plant dependent, with the mycorrhizal plant ( F. rubra ) exerting a greater influence on bacterial and fungal communities. Biomarker data indicated that arbuscular mycorrhizal fungi (AMF) may play an important role in the observed soil community responses. Effects of elevated CO2 were also soil dependent, with greater influence observed in the more organic-rich soils, which also supported higher levels of AMF colonization. These results indicate that responses of soil-borne communities to elevated CO2 are different for bacteria, fungi and nematodes and dependent on the plant type and soil nutrient availability.  相似文献   

19.
Abstract A gradostat (multistage chemostat) was used as a model of the rhizosphere. Investigations of the influence of NH4Cl and O2 gradients on a diazotrophic rhizosphere bacterium in pure culture and in mixed culture with non-diazotrophic strains were carried out. The diazotrophic isolate was able to grow on N2 and NH4Cl simultaneously. The diazotrophic isolate could successfully compete with the non-diazotrophic isolates in the presence and absence of NH4Cl in most experiments. Only minor amounts of nitrogen were transferred to the non-fixing organisms. A concept of transfer of nitrogen to non-fixing organisms is proposed.  相似文献   

20.
The Pseudomonas community structure and antagonistic potential in the rhizospheres of strawberry and oilseed rape (host plants of the fungal phytopathogen Verticillium dahliae) were assessed. The use of a new PCR-DGGE system, designed to target Pseudomonas-specific gacA gene fragments in environmental DNA, circumvented common biases of 16S rRNA gene-based DGGE analyses and proved to be a reliable tool to unravel the diversity of uncultured Pseudomonas in bulk and rhizosphere soils. Pseudomonas-specific gacA fingerprints of total-community (TC) rhizosphere DNA were surprisingly diverse, plant-specific and differed markedly from those of the corresponding bulk soils. By combining multiple culture-dependent and independent surveys, a group of Pseudomonas isolates antagonistic towards V. dahliae was shown to be genotypically conserved, to carry the phlD biosynthetic locus (involved in the biosynthesis of 2,4-diacetylphloroglucinol - 2,4-DAPG), and to correspond to a dominant and highly frequent Pseudomonas population in the rhizosphere of field-grown strawberries planted at three sites in Germany which have different land use histories. This population belongs to the Pseudomonas fluorescens phylogenetic lineage and showed closest relatedness to P. fluorescens strain F113 (97% gacA gene sequence identity in 492-bp sequences), a biocontrol agent and 2,4-DAPG producer. Partial gacA gene sequences derived from isolates, clones of the strawberry rhizosphere and DGGE bands retrieved in this study represent previously undescribed Pseudomonas gacA gene clusters as revealed by phylogenetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号