首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional structure of the complex between calmodulin (CaM) and a peptide corresponding to the N-terminal portion of the CaM-binding domain of the plasma membrane calcium pump, the peptide C20W, has been solved by heteronuclear three-dimensional nuclear magnetic resonance (NMR) spectroscopy. The structure calculation is based on a total of 1808 intramolecular NOEs and 49 intermolecular NOEs between the peptide C20W and calmodulin from heteronuclear-filtered NOESY spectra and a half-filtered experiment, respectively. Chemical shift differences between free Ca(2+)-saturated CaM and its complex with C20W as well as the structure calculation reveal that C20W binds solely to the C-terminal half of CaM. In addition, comparison of the methyl resonances of the nine assigned methionine residues of free Ca(2+)-saturated CaM with those of the CaM/C20W complex revealed a significant difference between the N-terminal and the C-terminal domain; i.e., resonances in the N-terminal domain of the complex were much more similar to those reported for free CaM in contrast to those in the C-terminal half which were significantly different not only from the resonances of free CaM but also from those reported for the CaM/M13 complex. As a consequence, the global structure of the CaM/C20W complex is unusual, i.e., different from other peptide calmodulin complexes, since we find no indication for a collapsed structure. The fine modulation in the peptide protein interface shows a number of differences to the CaM/M13 complex studied by Ikura et al. [Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B., and Bax, A. (1992) Science 256, 632-638]. The unusual binding mode to only the C-terminal half of CaM is in agreement with the biochemical observation that the calcium pump can be activated by the C-terminal half of CaM alone [Guerini, D., Krebs, J., and Carafoli, E. (1984) J. Biol. Chem. 259, 15172-15177].  相似文献   

2.
The interaction between calmodulin (CaM) and peptide M13, its target binding sequence from skeletal muscle myosin light chain kinase, involves predominantly two sets of interactions, between the N-terminal target residues and the C-domain of calmodulin, and between the C-terminal target residues and the N-domain of calmodulin (Ikura M et al., 1992, Science 256:632-638). Using short synthetic peptides based on the two halves of the target sequence, the interactions with calmodulin and its separate C-domain have been studied by fluorescence and CD spectroscopy, calcium binding, and kinetic techniques. Peptide WF10 (residues 1-10 of M13) binds to CaM with Kd approximately 1 microM; peptide FW10 (residues 9-18 of M13, with Phe-17-->Trp substitution) binds to CaM with Kd approximately 100 microM. The effect of peptide WF10 on calcium binding to calmodulin produces a biphasic saturation curve, with marked enhancement of affinity for the binding of two calcium ions to the C-domain, forming a stable half-saturated complex, Ca2-CaM-peptide, and confirming the functional importance of the interaction of this sequence with the C-domain. Stopped-flow studies show that the EGTA-induced dissociation of WF10 from Ca4-CaM proceeds by a reversible relaxation mechanism from a kinetic intermediate state, also involving half-saturation of CaM, and the same mechanism is evident for the full target peptide. Interaction of the N-terminal target residues with the C-domain is energetically the most important component, but interaction of calmodulin with the whole target sequence is necessary to induce the full cooperative interaction of the two contiguous elements of the target sequence with both N- and C-domains of calmodulin. Thus, the interaction of calmodulin with the M13 sequence can be dissected on both a structural and kinetic basis into partial reactions involving intermediates comprising distinct regions of the target sequence. We propose a general mechanism for the calcium regulation of calmodulin-dependent enzyme activation, involving an intermediate complex formed by interaction of the calmodulin C-domain and the corresponding part of the target sequence. This intermediate species can function to regulate the overall calcium sensitivity of activation and to determine the affinity of the calmodulin target interaction.  相似文献   

3.
We present a comprehensive profile of amino acid side-chain constraints in a calmodulin (CaM) peptide complex. These data were obtained from the analysis of calmodulin binding to an array of all single substitution analogues as well as N- and C-terminal truncations of the skMLCK derived M13 peptide ligand. The experimentally derived binding data were evaluated with respect to the known 3D-structure of the CaM/M13 complex. Besides an almost perfect agreement between the measured affinities and the structural data, the unexpected high-affine Asn5Ala variant of the M13(*) peptide described by Montigiani et al. could be verified. In contrast to other reports our data clearly support the postulate of the minor and major hydrophobic anchors of this calcium dependent interaction.  相似文献   

4.
Among the neuronal binding partners of calmodulin (CaM) are Munc13 proteins as essential presynaptic regulators that play a key role in synaptic vesicle priming and are crucial for presynaptic short-term plasticity. Recent NMR structural investigations of a CaM/Munc13-1 peptide complex have revealed an extended structure, which contrasts the compact structures of most classical CaM/target complexes. This unusual binding mode is thought to be related to the presence of an additional hydrophobic anchor residue at position 26 of the CaM binding motif of Munc13-1, resulting in a novel 1-5-8-26 motif. Here, we addressed the question whether the 1-5-8-26 CaM binding motif is a Munc13-related feature or whether it can be induced in other CaM targets by altering the motif''s core residues. For this purpose, we chose skeletal muscle myosin light chain kinase (skMLCK) with a classical 1-5-8-14 CaM binding motif and constructed three skMLCK peptide variants mimicking Munc13-1, in which the hydrophobic anchor amino acid at position 14 was moved to position 26. Chemical cross-linking between CaM and skMLCK peptide variants combined with high-resolution mass spectrometry yielded insights into the peptides'' binding modes. This structural comparison together with complementary binding data from surface plasmon resonance experiments revealed that skMLCK variants with an artificial 1-5-8-26 motif cannot mimic CaM binding of Munc13-1. Apparently, additional features apart from the spacing of the hydrophobic anchor residues are required to define the functional 1-5-8-26 motif of Munc13-1. We conclude that Munc13 proteins display a unique CaM binding behavior to fulfill their role as efficient presynaptic calcium sensors over broad range of Ca2+ concentrations.  相似文献   

5.
The cardiac L-type voltage-dependent calcium channel is responsible for initiating excitation-contraction coupling. Three sequences (amino acids 1609-1628, 1627-1652, and 1665-1685, designated A, C, and IQ, respectively) of its alpha(1) subunit contribute to calmodulin (CaM) binding and Ca(2+)-dependent inactivation. Peptides matching the A, C, and IQ sequences all bind Ca(2+)CaM. Longer peptides representing A plus C (A-C) or C plus IQ (C-IQ) bind only a single molecule of Ca(2+)CaM. Apocalmodulin (ApoCaM) binds with low affinity to the IQ peptide and with higher affinity to the C-IQ peptide. Binding to the IQ and C peptides increases the Ca(2+) affinity of the C-lobe of CaM, but only the IQ peptide alters the Ca(2+) affinity of the N-lobe. Conversion of the isoleucine and glutamine residues of the IQ motif to alanines in the channel destroys inactivation (Zühlke et al., 2000). The double mutation in the peptide reduces the interaction with apoCaM. A mutant CaM unable to bind Ca(2+) at sites 3 and 4 (which abolishes the ability of CaM to inactivate the channel) binds to the IQ, but not to the C or A peptide. Our data are consistent with a model in which apoCaM binding to the region around the IQ motif is necessary for the rapid binding of Ca(2+) to the C-lobe of CaM. Upon Ca(2+) binding, this lobe is likely to engage the A-C region.  相似文献   

6.
The solution structures of complexes between calcium-saturated calmodulin (Ca (2+)/CaM) and a CaM-binding domain of the HIV-1 matrix protein p17 have been determined by small-angle X-ray scattering with use of synchrotron radiation as an intense and stable X-ray source. We used three synthetic peptides of residues 11-28, 26-47, and 11-47 of p17 to demonstrate the diversity of CaM-binding conformation. Ca (2+)/CaM complexed with residues 11-28 of p17 adopts a dumbbell-like structure at a molar ratio of 1:2, suggesting that the two peptides bind each lobe of CaM, respectively. Ca (2+)/CaM complexed with residues 26-47 of p17 at a molar ratio of 1:1 adopts a globular structure similar to the NMR structure of Ca (2+)/CaM bound to M13, which adopted a compact globular structure. In contrast to these complexes, Ca (2+)/CaM binds directly with both CaM-binding sites of residues 11-47 of p17 at a molar ratio of 1:1, which induces a novel structure different from known structures previously reported between Ca (2+)/CaM and peptide. A tertiary structural model of the novel structure was constructed using the biopolymer module of Insight II 2000 on the basis of the scattering data. The two domains of CaM remain essentially unchanged upon complexation. The hinge motions, however, occur in a highly flexible linker of CaM, in which the electrostatic residues 74Arg, 78Asp, and 82Glu interact with N-terminal electrostatic residues of the peptide (residues 12Glu, 15Arg, and 18Lys). The acidic residues in the N-terminal domain of CaM interact with basic residues in a central part of the peptide, thereby enabling the central part to change the conformations, while an acidic residue in the C-terminal domain interacts with two basic residues in the two helical sites of the peptide. The overall structure of the complex adopts an extended structure with the radius of gyration of 20.5 A and the interdomain distance of 34.2 A. Thus, the complex is principally stabilized by electrostatic interactions. The hydrophobic patches of Ca (2+)/CaM are not responsible for the binding with the hydrophobic residues in the peptide, suggesting that CaM plays a role to sequester the myristic acid moiety of p17.  相似文献   

7.
The ability of calcium-bound calmodulin (CaM) to recognize most of its target peptides is caused by its binding to two hydrophobic residues ('anchors'). In most of the CaM complexes, the anchors pack against the hydrophobic pockets of the CaM domains and are surrounded by fully conserved Met side chains. Here, by using metadynamics simulations, we investigate quantitatively the energetics of the final step of this process using the M13 peptide, which has a high affinity and spans the sequence of the skeletal myosin light chain kinase, an important natural CaM target. We established the accuracy of our calculations by a comparison between calculated and NMR-derived structural and dynamical properties. Our calculations provide novel insights into the mechanism of protein/peptide recognition: we show that the process is associated with a free energy gain similar to that experimentally measured for the CaM complex with the homologous smooth muscle MLCK peptide (Ehrhardt et al., 1995, Biochemistry 34, 2731). We suggest that binding is dominated by the entropic effect, in agreement with previous proposals. Furthermore, we explain the role of conserved methionines by showing that the large flexibility of these side chains is a key feature of the binding mechanism. Finally, we provide a rationale for the experimental observation that in all CaM complexes the C-terminal domain seems to be hierarchically more important in establishing the interaction.  相似文献   

8.
Binding of calcium to calmodulin (CaM) causes a conformational change in this ubiquitous calcium regulatory protein that allows the activation of many target proteins. Met residues make up a large portion of its hydrophobic target binding surfaces. In this work, we have studied the surface exposure of the Met residues in the apo- and calcium-bound states of CaM in solution. Complexes of calcium-CaM with synthetic peptides derived from the CaM-binding domains of myosin light chain kinase, constitutive nitric-oxide synthase, and CaM-dependent protein kinase I were also studied. The surface exposure was measured by NMR by studying the effects of the soluble nitroxide spin label, 4-hydroxyl-2,2,6, 6-tetramethylpiperidinyl-1-oxy, on the line widths and relaxation rates of the Met methyl resonances in samples of biosynthetically 13C-methyl-Met-labeled CaM. The Met residues move from an almost completely buried state in apo-CaM to an essentially fully exposed state in Ca2+4-CaM. Binding of two Ca2+ to the C-terminal lobe of CaM causes full exposure of the C-terminal Met residues and a partial exposure of the N-terminal Met side chains. Binding of the three target peptides blocks the access of the nitroxide surface probe to nearly all Met residues, although the mode of binding is distinct for the three peptides studied. These data show that calcium binding to CaM controls the surface exposure of the Met residues, thereby providing the switch for target protein binding.  相似文献   

9.
10.
The interactions between the abundant methionine residues of the calcium regulatory protein calmodulin (CaM) and several of its binding targets were probed using fluorescence spectroscopy. Tryptophan steady-state fluorescence from peptides encompassing the CaM-binding domains of the target proteins myosin light chain kinase (MLCK), cyclic nucleotide phosphodiesterase (PDE) and caldesmon site A and B (CaD A, CaD B), and the model peptide melittin showed Ca(2+)-dependent blue-shifts in their maximum emission wavelength when complexed with wild-type CaM. Blue-shifts were also observed for complexes in which the CaM methionine residues were replaced by selenomethionine, norleucine and ethionine, and when a quadruple methionine to leucine C-terminal mutant of CaM was studied. Quenching of the tryptophan fluorescence intensity was observed with selenomethionine, but not with norleucine or ethionine substituted protein. Fluorescence quenching studies with added potassium iodide (KI) demonstrate that the non-native proteins limit the solvent accessibility of the Trp in the MLCK peptide to levels close to that of the wild-type CaM-MLCK interaction. Our results show that the methionine residues from CaM are highly sensitive to the target peptide in question, confirming the importance of their role in binding interactions. In addition, we provide evidence that the nature of binding in the CaM-CaD B complex is unique compared with the other complexes studied, as the Trp residue of this peptide remains partially solvent exposed upon binding to CaM.  相似文献   

11.
Marlow MS  Wand AJ 《Biochemistry》2006,45(29):8732-8741
As the primary intracellular calcium sensor, calcium-saturated calmodulin (CaM) regulates numerous and diverse proteins. Several mechanisms, including tissue-specific expression, localization, and sequestration, work in concert to limit the total number of available targets of calmodulin within a cell. While the free energies of binding of calmodulin-binding domains of regulated proteins by CaM have been shown to be highly similar, they result from vastly different enthalpic and entropic contributions. Here, we report the backbone and side-chain methyl dynamics of calcium-activated calmodulin in complex with a peptide corresponding to the CaM-binding domain of calmodulin kinase kinase, along with the thermodynamic underpinnings of complex formation. The results show a considerable reduction in side-chain mobility throughout CaM upon binding the CaMKKalpha peptide, which is consistent with the enthalpically driven nature of the binding. Site-specific comparison to another kinase-derived peptide complex with similar thermodynamic values reveals significant differences in dynamics largely localized to the hydrophobic binding sites.  相似文献   

12.
Gao ZH  Zhong G 《Gene》1999,228(1-2):51-59
Calcineurin B (CnB) and calmodulin (CaM) are two structurally similar but functionally distinct 'EF-hand' Ca2+-binding proteins. CnB is the regulatory subunit of the CaM-stimulated protein phosphatase, calcineurin. CaM is a unique multifunctional protein that interacts with and modulates the activity of many target proteins. CnB and CaM are both required for the full activation of the phosphatase activity of calcineurin and are not interchangeable. The two proteins recognize distinct binding sites on calcineurin A subunit (CnA) and perform different functions. Phage-displayed peptide libraries (pIII and pVIII libraries) were screened with CnB and CaM to isolate peptides that could then be compared to determine if there were binding preferences of the two proteins. The Ca2+-dependent binding of phage-displayed peptides to CnB and CaM is specifically blocked by synthetic peptides derived from the CnB-binding domain of CnA and the CaM-binding domain of myosin light chain kinase respectively. Both CnB- and CaM-binding peptides have a high content of tryptophan and leucine, but CnB-binding peptides are more hydrophobic than CaM-binding peptides. CnB-binding peptides are negatively charged with clusters of hydrophobic residues rich in phenylalanine, whereas the CaM-binding peptides are positively charged and often contain an Arg/Lys-Trp motif. The binding preferences identified with peptide libraries are consistent with the features of the CnB-binding domains of all CnA isoforms and the CaM-binding domains of CaM targets.  相似文献   

13.
The calcium-regulatory protein calmodulin (CaM) can bind with high affinity to a region in the cytoplasmic C-terminal tail of glycoprotein 41 of simian immunodeficiency virus (SIV). The amino acid sequence of this region is (1)DLWETLRRGGRW(13)ILAIPRRIRQGLELT(28)L. In this work, we have used near- and far-uv CD, and fluorescence spectroscopy, to study the orientation of this peptide with respect to CaM. We have also studied biosynthetically carbon-13 methyl-Met calmodulin by (1)H, (13)C heteronuclear multiple quantum coherence NMR spectroscopy. Two Trp-substituted peptides, SIV-W3F and SIV-W12F, were utilized in addition to the intact SIV peptide. Two half-peptides, SIV-N (residues 1-13) and SIV-C (residues 13-28) were also synthesized and studied. The spectroscopic results obtained with the SIV-W3F and SIV-W12F peptides were generally consistent with those obtained for the native SIV peptide. Like the native peptide, these two analogues bind with an alpha-helical structure as shown by CD spectroscopy. Fluorescence intermolecular quenching studies suggested binding of Trp3 to the C-lobe of CaM. Our NMR results show that SIV-N can bind to both lobes of calcium-CaM, and that it strongly favors binding to the C-terminal hydrophobic region of CaM. The SIV-C peptide binds with relatively low affinity to both halves of the protein. These data reveal that the intact SIV peptide binds with its N-terminal region to the carboxy-terminal region of CaM, and this interaction initiates the binding of the peptide. This orientation is similar to that of most other CaM-binding domains.  相似文献   

14.
S H Yoo 《Biochemistry》1992,31(26):6134-6140
Chromogranin A (CGA), the most abundant protein in bovine adrenal chromaffin granules, is a high-capacity, low-affinity Ca(2+)-binding protein found in most neuroendocrine cells, and binds calmodulin (CaM) in a Ca(2+)-dependent manner. The binding of chromogranin A to calmodulin was determined by measuring the intrinsic tryptophan fluorescence of chromogranin A in the presence and absence of Ca2+. Binding was specifically Ca(2+)-dependent; neither Mg2+ nor Mn2+ could substitute for Ca2+. Chelation of Ca2+ by EGTA completely eliminated the chromogranin A-calmodulin interaction. CaM binding was demonstrated by a synthetic CGA peptide representing residues 40-65. When the CGA peptide and CaM were mixed in the presence of 15 mM CaCl2, the intrinsic tryptophan fluorescence emission underwent a substantial blue-shift, shifting from 350 to 330 nm. Like the intact CGA, the peptide-CaM binding was specifically Ca(2+)-dependent, and neither Mg2+ nor Mn2+ could induce the binding. Calmodulin bound both to CGA and to the synthetic CGA peptide with a stoichiometry of one to one. The dissociation constants (Kd) determined by fluorometric titration were 13 nM for the peptide-CaM binding and 17 nM for intact CGA-CaM binding. The Kd values are comparable to those (approximately 10(-9) M) of other CaM-binding proteins and peptides, demonstrating a tight binding of CaM by CGA. The CaM-binding CGA residues 40-65 are 100% conserved among all the sequenced CGAs in contrast to 50-60% conservation found in the entire sequence, implying essential roles of this region.  相似文献   

15.
Localization of a felodipine (dihydropyridine) binding site on calmodulin   总被引:1,自引:0,他引:1  
The fluorescent dihydropyridine calcium antagonist drug felodipine binds to calmodulin (CaM) in a Ca2+-dependent manner. Its binding can be regulated by the interaction of CaM antagonist drugs through allosteric mechanisms [Mills, J.S., & Johnson, J.D. (1985) Biochemistry 24, 4897]. Here, we have examined the binding of a nonspecific hydrophobic fluorescent probe molecule TNS (toluidinylnaphthalenesulfonate) and of felodipine to CAM and several of its proteolytic fragments. While TNS interacts with sites on both the amino-terminal half of the protein [proteolytic fragment TR1C (1-77)] and carboxy-terminal half [proteolytic fragment TR2C (78-148)], felodipine binding shows more selectivity. It binds in a Ca2+-dependent manner to the proteolytic fragments TM1 (1-106) and TR2E (1-90) but exhibits only weak affinity for TR1C (1-77) and TR2C (78-148). Furthermore, felodipine exhibits selectivity over TNS and trifluoperazine (TFP) in blocking the tryptic cleavage between residues 77 and 78. These studies indicate a selective binding of felodipine to a hydrophobic site existing in residues 1-90 and suggest that productive binding requires amino acids in the region 78-90. Although the felodipine binding site is preserved in fragment 1-106, the allosteric interactions between the prenylamine and the felodipine binding sites that are observed with intact CaM are not observed in this fragment. Rather, prenylamine simply displaces felodipine from its binding site on this fragment. Our results are consistent with calmodulin containing not less than two allosterically related hydrophobic drug binding sites. One of these sites (felodipine) appears to be localized in region 1-90 and the other one in region 78-148.  相似文献   

16.
Molecular dynamics studies of the N-domain (amino acids 1-77; CaM(1-77)) of Ca2+-loaded calmodulin (CaM) show that a solvent exposed hydrophobic cleft in the crystal structure of CaM exhibits transitions from an exposed (open) to a buried (closed) state over a time scale of nanoseconds. As a consequence of burying the hydrophobic cleft, the R(g) of the protein is reduced by 1.5 A. Based on this prediction, x-ray scattering experiments were conducted on this domain over a range of concentrations. Models built from the scattering data show that the R(g) and general shape is consistent with the simulation studies of CaM(1-77). Based on these observations we postulate a model in which the conformation of CaM fluctuates between two different states that expose and bury this hydrophobic cleft. In aqueous solution the closed state dominates the population, while in the presence of peptides, the open state dominates. This inherent flexibility of CaM may be the key to its versatility in recognizing structurally distinct peptide sequences. This model conflicts with the currently accepted hypothesis based on observations in the crystal structure, where upon Ca2+ binding the hydrophobic cleft is exposed to solvent. We postulate that crystal packing forces stabilize the protein conformation toward the open configuration.  相似文献   

17.
Peptide-induced conformational changes in five isofunctional mutants of calmodulin (CaM), each bearing a single tryptophan residue either at the seventh position of each of the four calcium-binding loops (i.e., amino acids 26, 62, 99, and 135) or in the central helix (amino acid 81) were studied by using fluorescence spectroscopy. The peptides RS20F and RS20CK correspond to CaM-binding amino acid sequence segments of either nonmuscle myosin light chain kinase (nmMLCK) or calmodulin-dependent protein kinase II (CaMPK-II), respectively. Both steady-state and time-resolved fluorescence data were collected from the various peptide-CaM complexes. Steady-state fluorescence intensity measurements indicated that, in the presence of an excess of calcium, both peptides bind to the calmodulin mutants with a 1:1 stoichiometry. The tryptophans located in loops I and IV exhibited red-shifted emission maxima (356 nm), high quantum yields (0.3), and long average lifetimes (6 ns). They responded in a similar manner to peptide binding, by only slight changes in their fluorescence features. In contrast, the fluorescence intensity of the tryptophans in loops II and III decreased markedly, and their fluorescence spectrum was blue-shifted upon peptide binding. Analysis of the tryptophan fluorescence decay of the last mentioned calmodulins supports a model in which the equilibrium between two (Trp-99) or three (Trp-62) states of these tryptophan residues, each characterized by a different lifetime, was altered toward the blue-shifted short lifetime component upon peptide binding. Taken together, these data provide new evidence that both lobes of calmodulin are involved in peptide binding. Both peptides induced similar changes in the fluorescence properties of the tryptophan residues located in the calcium-binding loops, with the exception of calmodulin with Trp-135. For this last mentioned calmodulin, slight differences were observed. Tryptophan in the central helix responded differently to RS20F and RS20CK binding. RS20F binding induced a red-shift in the emission maximum of Trp-81 while RS20CK induced a blue-shift. The quenching rate of Trp-81 by iodide was slightly reduced upon RS20CK binding, while RS20F induced a 2-fold increase. These results provide evidence that the environment of Trp-81 is different in each case and are, therefore, consistent with the hypothesis that the central helix can play a differential role in the recognition of, or response to, CaM-binding structures.  相似文献   

18.
The small bilobal calcium regulatory protein calmodulin (CaM) activates numerous target enzymes in response to transient changes in intracellular calcium concentrations. Binding of calcium to the two helix-loop-helix calcium-binding motifs in each of the globular domains induces conformational changes that expose a methionine-rich hydrophobic patch on the surface of each domain of the protein, which it uses to bind to peptide sequences in its target enzymes. Although these CaM-binding domains typically have little sequence identity, the positions of several bulky hydrophobic residues are often conserved, allowing for classification of CaM-binding domains into recognition motifs, such as the 1–14 and 1–10 motifs. For calcium-independent binding of CaM, a third motif known as the IQ motif is also common. Many CaM-peptide complexes have globular conformations, where CaM’s central linker connecting the two domains unwinds, allowing the protein to wrap around a single predominantly α-helical target peptide sequence. However, novel structures have recently been reported where the conformation of CaM is highly dissimilar to these globular complexes, in some instances with less than a full compliment of bound calcium ions, as well as novel stoichiometries. Furthermore, many divergent CaM isoforms from yeast and plant species have been discovered with unique calcium-binding and enzymatic activation characteristics compared to the single CaM isoform found in mammals.  相似文献   

19.
A variety of viral and signal transduction proteins are known to be myristoylated. Although the role of myristoylation in protein-lipid interaction is well established, the involvement of myristoylation in protein-protein interactions is less well understood. CAP-23/NAP-22 is a brain-specific protein kinase C substrate protein that is involved in axon regeneration. Although the protein lacks any canonical calmodulin (CaM)-binding domain, it binds CaM with high affinity. The binding of CAP-23/NAP-22 to CaM is myristoylation dependent and the N-terminal myristoyl group is directly involved in the protein-protein interaction. Here we show the crystal structure of Ca2+-CaM bound to a myristoylated peptide corresponding to the N-terminal domain of CAP-23/NAP-22. The myristoyl moiety of the peptide goes through a hydrophobic tunnel created by the hydrophobic pockets in the N- and C-terminal domains of CaM. In addition to the myristoyl group, several amino-acid residues in the peptide are important for CaM binding. This is a novel mode of binding and is very different from the mechanism of binding in other CaM-target complexes.  相似文献   

20.
pp60v-src tyrosine protein kinase was suggested to interact with Ca2+-bound calmodulin (Ca2+/CaM) through the N-terminal region based on its structural similarities to CAP-23/NAP-22, a myristoylated neuron-specific protein, whose myristoyl group is essential for interaction with Ca2+/CaM; (1) the N terminus of pp60v-src is myristoylated like CAP-23/NAP-22; (2) both lysine residues are required for the myristoylation-dependent interaction and serine residues that are thought to regulate the interaction through the phosphorylations located in the N-terminal region of pp60v-src. To verify this possibility, we investigated the direct interaction between pp60v-src and Ca2+/CaM using a myristoylated peptide corresponding to the N-terminal region of pp60v-src. The binding assay indicated that only the myristoylated peptide binds to Ca2+/CaM, and the non-myristoylated peptide is not able to bind to Ca2+/CaM. Analyses of the binding kinetics revealed two independent reactions with the dissociation constants (KD) of 2.07 x 10(-9)M (KD1) and 3.93 x 10(-6)M (KD2), respectively. Two serine residues near the myristoyl moiety of the peptide (Ser2, Ser11) were phosphorylated by protein kinase C in vitro, and the phosphorylation drastically reduced the interaction. NMR experiments indicated that two molecules of the myristoylated peptide were bound around the hydrophobic clefts of a Ca2+/CaM molecule. The small-angle X-ray scattering analyses showed that the size of the peptide-Ca2+/CaM complex is 2-3A smaller than that of the known Ca2+/CaM-target molecule complexes. These results demonstrate clearly the direct interaction between pp60v-src and Ca2+/CaM in a novel manner different from that of known Ca2+/CaM, the target molecules, interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号