首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A structural model for the interaction of the LexA repressor DNA binding domain (DBD) with operator DNA is derived by means of Monte Carlo docking. Protein–DNA complexes were generated by docking the LexA repressor DBD NMR solution structure onto both rigid and bent B-DNA structures while giving energy bonuses for contacts in agreement with experimental data. In the resulting complexes, helix III of the LexA repressor DBD is located in the major groove of the DNA and residues Asn-41, Glu-44, and Glu-45 form specific hydrogen bonds with bases of the CTGT DNA sequence. Ser-39, Ala-42, and Asn-41 are involved in a hydrophobic interaction with the methyl group of the first thymine base. Residues in the loop region connecting the two β-sheet strands are involved in nonspecific contacts near the dyad axis of the operator. The contacts observed in the docked complexes cover the entire consensus CTGT half-site DNA operator, thus explaining the specificity of the LexA repressor for such sequences. In addition, a large number of nonspecific interactions between protein and DNA is observed. The agreement between the derived model for the LexA repressor DBD/DNA complex and experimental biochemical results is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

2.
3.
The LexA repressor from Escherichia coli is a sequence-specific DNA binding protein that shows no pronounced sequence homology with any of the known structural motifs involved in DNA binding. Since little is known about how this protein interacts with DNA, we have selected and characterized a great number of intragenic, second-site mutations which restored at least partially the activity of LexA mutant repressors deficient in DNA binding. In 47 cases, the suppressor effect of these mutations was due to an Ind- phenotype leading presumably to a stabilization of the mutant protein. With one exception, these second-site mutations are all found in a small cluster (amino acid residues 80 to 85) including the LexA cleavage site between amino acid residues 84 and 85 and include both already known Ind- mutations as well as new variants like GN80, GS80, VL82 and AV84. The remaining 26 independently isolated second-site suppressor mutations all mapped within the amino-terminal DNA binding domain of LexA, at positions 22 (situated in the turn between helix 1 and helix 2) and positions 57, 59, 62, 71 and 73. These latter amino acid residues are all found beyond helix 3, in a region where we have previously identified a cluster of LexA (Def) mutant repressors. In several cases the parental LexA (Def) mutation has been removed by subcloning or site-directed mutagenesis. With one exception, these LexA variants show tighter in vivo repression than the LexA wild-type repressor. The most strongly improved variant (LexA EK71, i.e. Glu71----Lys) that shows an about threefold increased repression rate in vivo, was purified and its binding to a short consensus operator DNA fragment studied using a modified nitrocellulose filter binding assay. As expected from the in vivo data, LexA EK71 interacts more tightly with both operator and (more dramatically) with non-operator DNA. A determination of the equilibrium association constants of LexA EK71 and LexA wild-type as a function of monovalent salt concentration suggests that LexA EK71 might form an additional ionic interaction with operator DNA as compared to the LexA wild-type repressor. A comparison of the binding of LexA to a non-operator DNA fragment further shows that LexA interacts with the consensus operator very selectively with a specificity factor of Ks/Kns of 1.4 x 10(6) under near-physiological salt conditions.  相似文献   

4.
To analyze the DNA binding domain of E coli LexA repressor and to test whether the repressor binds as a dimer to DNA, negative dominant lexA mutations affecting the binding domain have been isolated. A large number of amino acid substitutions between amino acid positions 39 and 46 were introduced using cassette mutagenesis. Mutants defective in DNA binding were identified and then examined for dominance to lexA+. A number of substitutions weakened repressor function partially, whereas other substitutions led to a repressor with no demonstrable activity and a defective dominant phenotype. Since the LexA binding site has dyad symmetry, we infer that this dominance results from interaction of monomers of wild-type LexA protein with mutant monomers and that an oligomeric form of repressor binds to operator. The binding of LexA protein to operator DNA was investigated further using a mutant protein, LexA408, which recognizes a symmetrically altered operator mutant but not wild-type operator. A mixture of mutant LexA408 and LexA+ proteins, but neither individual protein, bound to a hybrid recA operator consisting of mutant and wild-type operator half sites. These results suggest that at least 1 LexA protein monomer interacts with each operator half site. We discuss the role of LexA oligomer formation in binding of LexA to operator DNA.  相似文献   

5.
6.
Both the amino-terminal and the carboxy-terminal domain of the LexA repressor have been purified using the LexA protein autodigestion reaction at alkaline pH, which leads to the same specific products as the physiological RecA-catalyzed proteolysis of repressor. We show by circular dichroism (c.d) that, upon non-specific binding to DNA, the purified amino-terminal domain induces a very similar if not identical conformational change of the DNA as does the entire repressor. The positive c.d. signal increases approximately 3-fold if the DNA lattice is fully saturated with protein. Further, the amino-terminal domain of the LexA protein binds specifically to the operator of the recA gene, producing qualitatively the same effects on the methylation pattern of the guanine bases by dimethylsulfate as the entire repressor, consisting of a methylation inhibition effect at four distal operator guanines and a slight enhancement at the central bases. The spacing between these contacts suggests that LexA does not bind to the operator along the same face of the DNA helix. As shown by c.d. studies the amino-terminal domain harbours a substantial amount of residues in alpha-helical conformation, a prerequisite for DNA recognition via a helix--turn--helix structural motif as proposed for many other regulatory proteins.  相似文献   

7.
DNA-bound Fos proteins activate transcription in yeast   总被引:59,自引:0,他引:59  
K Lech  K Anderson  R Brent 《Cell》1988,52(2):179-184
  相似文献   

8.
Using hydroxyl radical footprinting and ethylation interference experiments, we have determined the backbone contacts made by the entire LexA repressor and its amino-terminal fragment with the recA operator DNA. These techniques reveal essentially the same contacts between both proteins and one side of the DNA helix if one assumes that the DNA stays in the normal B-conformation. This result is somewhat unexpected because protection of guanine bases against methylation suggested a somewhat twisted recognition surface. The backbone contacts revealed by both methods are symmetrically disposed with respect to the center of the operator, providing further evidence that the operator binds two LexA monomers. Each half-operator contains seven interfering phosphates. These phosphates are found on both sides of the 5'-CTGT sequence that is believed to be the principal recognition target. On the side close to the center of the operator are found two phosphates, whereas the other five are clustered on the side apart from the dyad axis. We are not aware of such an extended cluster of interfering phosphates for any other DNA-binding protein. A quantification of the hydroxyl radical footprints allowed us to compare further the affinity of the LexA repressor for the recA operator with that of its isolated DNA binding domain. We find an only 13-fold higher binding constant for LexA than for its amino-terminal domain, which is in good agreement with our earlier results for the uvrA operator using a completely different binding assay.  相似文献   

9.
Fused protein domains inhibit DNA binding by LexA.   总被引:26,自引:9,他引:17       下载免费PDF全文
  相似文献   

10.
The interaction of the entire LexA repressor and its amino-terminal DNA binding domain with poly[d(A-T)] and random DNA has been studied by circular dichroism. Binding of both protein species induces an about 2-fold increase of the positive circular dichroism band at about 270 nm of both polynucleotides, allowing a precise determination of the principal parameters as a function of mono- and divalent salt concentration and pH. Both proteins interact much more strongly (about 2000-fold) with poly[d(A-T)] than with random DNA as expected from the homology with the specific consensus binding site of LexA (CTGTATATATATACAG). For both LexA and its DNA binding domain we find that the interaction with poly[d(A-T)] is cooperative with a cooperativity factor omega of about 50-70 for both proteins over a wide range of solvent conditions, suggesting that the carboxy-terminal domain of LexA is not involved in this type of cooperativity. On the contrary, no cooperativity could be detected for the interaction of the LexA DNA binding domain with a random DNA fragment. The overall binding constant K omega (or simply K in the case of random DNA) depends strongly on the salt concentration as observed for most protein-DNA interactions, but the behavior of LexA is unusual in that the steepness of this salt dependence (delta log K omega/delta log [NaCl]) is much more pronounced at slightly acidic pH values as compared to that at neutral or slightly alkaline pH. The behavior is not easily understood in terms of the current theories on the electrostatic contribution to protein-DNA interactions on the basis of polyelectrolyte theory. A comparison of the overall binding constant K omega of the entire LexA repressor and its DNA binding domain reveals that LexA binds only 20-50-fold stronger under a wide variety of salt and pH conditions. This result tends to demonstrate further that the additional energy due to the dimerization of LexA via the carboxy-terminal domain should be rather weak as expected from the small dimerization constant of LexA (2 X 10(-4) M-1).  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
In the absence of DNA damage the LexA protein represses the bacterial SOS system. We performed molecular dynamic simulations of two LexA dimers bound to operators. Our model predicted that rotation of the LexA DNA binding domain, with respect to the dimerised C-terminal domain, is required for selective DNA binding. To confirm the model, double and quadruple cysteine LexA mutants were engineered. Electrophoretic mobility-shift assay and surface plasmon resonance showed that disulfide bond formation between the introduced cysteine residues precluded LexA specific DNA binding due to blocked domain reorientation. Our model could provide the basis for novel drug design.  相似文献   

19.
20.
Binding of the Bacillus subtilis LexA protein to the SOS operator   总被引:3,自引:0,他引:3       下载免费PDF全文
The Bacillus subtilis LexA protein represses the SOS response to DNA damage by binding as a dimer to the consensus operator sequence 5′-CGAACN4GTTCG-3′. To characterize the requirements for LexA binding to SOS operators, we determined the operator bases needed for site-specific binding as well as the LexA amino acids required for operator recognition. Using mobility shift assays to determine equilibrium constants for B.subtilis LexA binding to recA operator mutants, we found that several single base substitutions within the 14 bp recA operator sequence destabilized binding enough to abolish site-specific binding. Our results show that the AT base pairs at the third and fourth positions from the 5′ end of a 7 bp half-site are essential and that the preferred binding site for a LexA dimer is 5′-CGAACATATGTTCG-3′. Binding studies with LexA mutants, in which the solvent accessible amino acid residues in the putative DNA binding domain were mutated, indicate that Arg-49 and His-46 are essential for binding and that Lys-53 and Ala-48 are also involved in operator recognition. Guided by our mutational analyses as well as hydroxyl radical footprinting studies of the dinC and recA operators we docked a computer model of B.subtilis LexA on the preferred operator sequence in silico. Our model suggests that binding by a LexA dimer involves bending of the DNA helix within the internal 4 bp of the operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号