首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Abstract: This study investigated possible D1/D2 interactions in rat and bovine striatal tissue by examining the effects of D2 antagonists on the action of dopamine at D1 dopamine receptors. In addition, the extent to which D2 antagonists may induce an agonist low-affinity state of the D1 receptor was evaluated in comparison with the effects of the guanine nucleotide analogue 5′-guanylylimidodiphosphate [Gpp(NH)p]. In saturation experiments dopamine caused a dose-dependent decrease in rat striatal and bovine caudate D1 receptor density. This effect of dopamine, which has been shown to be sensitive to Gpp(NH)p, was not altered by pretreatment with either of the selective D2 antagonists eticlopride (200 nM) or domperidone (200 nM). Results from displacement experiments show that the affinity of dopamine for D1 receptors and the proportion of receptors in an agonist high-affinity state, are reduced by Gpp(NH)p (100 µM) but not by eticlopride. A molar excess of dopamine (100 µM) promotes the dissociation of (±)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol ([3H]SCH 23390) from rat striatal D1 receptors at a rate that is significantly slower than when dissociation is initiated using 1 µM piflutixol. After pretreatment with Gpp(NH)p, [3H]SCH 23390 dissociation induced by dopamine occurred at an even slower rate. Pretreatment with eticlopride had no effect on the dopamine-induced rate of [3H]SCH 23390 dissociation. These results indicate that all experimental approaches detected dopamine effects at D1 receptors that are Gpp(NH)p sensitive and D2 antagonist insensitive and provide no evidence to support a D1/D2 link operating at the receptor level.  相似文献   

2.
To examine the sensitivities of partially purified dopamine receptors to various dopaminergic agonists and antagonists, canine brain striatum dopamine receptors were enriched by isoelectric focusing. The digitonin-solubilized receptors were prelabelled with [3H]spiperone and focused for two time periods. After 5 h (incomplete focusing), radioactive peaks were detected at pH 6 and 9-11. Only the pH 6 peak revealed drug sensitivities expected of D2 receptors. Receptor recovery of the pH 6 peak was 79% with purification being sevenfold. After focusing overnight to equilibrium, the pH 6 peak further separated into peaks at pH 4.6 and 6.8. The receptor was identified only in the pH 4.6 fraction. The recovery of receptors in the pH 4.6 peak was low (10%), indicating little enrichment of the receptor. The rank order of binding of neuroleptics and dopamine agonists to the purified material was similar to that of the original preparation of soluble receptors. Dopamine did not bind to the purified pH 4.6 fraction unless the phosphate buffer (used during focusing) was replaced with Tris buffer. The absence of receptors in the pH 6.8 and pH 10 fractions, although both contained prelabeled [3H]spiperone, indicates the importance of testing agonists and antagonists on each fraction at each step in purification.  相似文献   

3.
The possible existence of a dopamine D2 receptor-mediated regulation of dopamine release was investigated in the goldfish retina. Isolated retinas were preloaded with [3H]dopamine and superfused with D2 dopamine receptor agonists or antagonists to determine if there was an effect on [3H]dopamine release. The D2 receptor antagonist sulpiride increased both baseline [3H]- dopamine release and [3H]dopamine release induced by an increase in extracellular potassium concentration. The D2 receptor agonists LY-171555 and RU-24213 did not reduce baseline [3H]dopamine release but completely inhibited [3H]dopamine release induced by an increase in [K±]o. This action of the D2 agonists was blocked by sulpiride. These studies demonstrate the existence of D2 receptor, possibly autoreceptor, regulation of dopamine release in the teleost retina.  相似文献   

4.
Abstract: To assess the importance of the cysteine residues Cys347 and Cys351 in the carboxylic tail in the human D1 dopamine receptor, seven mutant receptors were constructed by PCR. The pharmacological and functional properties of the wild-type and mutant receptors were assessed following transient expression in COS-7 cells. Affinities for [3H]SCH 23390 of mutant S347 (Cys347→ Gly), T348 (Tyr348→ stop), S351 (Cys351→ Gly), T351 (Cys351→ stop), T352 (Pro352→ stop), and S347/S351 (Cys347→ Gly and Cys351→ Gly) were similar to that of wild-type receptor, whereas the expression levels were reduced up to 80%. The potency of dopaminergic antagonists for these mutant receptors was very similar to that of the wild-type receptor. However, mutant T347 (Cys347→ stop) showed a 15–25-fold reduced affinity for the antagonists SCH 23390, (+)-butaclamol, and cis-flupentixol, thus not allowing radioligand analysis. Wild-type and mutant receptors responded dose-dependently with similar potency to dopamine and SKF 38393 with an increased adenylyl cyclase activity. However, mutant receptors with the Cys347 residue changed or removed displayed a diminished ability to activate adenylyl cyclase. Dopamine preexposure desensitized wild-type and mutant S351 receptors. However, mutant receptors with Cys347 replaced or the distal part of the carboxyl tail removed were unable to desensitize. Thus, Cys347 in the cytoplasmic tail of the human D1 dopamine receptor is important for the receptor in maintaining the conformation for antagonist binding, to play a crucial role in activation of adenylyl cyclase, and to be essential for agonist-induced desensitization.  相似文献   

5.
Cannabinoid CB1 receptors are highly expressed in the striatum where they are known to be co‐localized with dopamine D2 receptors. There is now strong evidence that cannabinoids modulate dopamine release in the brain. Using fast cyclic voltammetry, single pulse stimulation (0.1 ms; 10 V) was applied every 5 min and peak dopamine release was measured with a carbon fibre microelectrode. Application of the D2 receptor agonist, quinpirole, inhibited single pulse dopamine overflow in a concentration‐dependent manner (IC50: 3.25 × 10?8 M). The CB1 receptor agonist WIN55212‐2 (WIN; 1 μM) had no effect on single pulse dopamine release (93.9 ± 6.6% at 60 min, n = 5) but attenuated the inhibitory effect of quinpirole (30 nM; quinpirole 39.0 ± 4.2% vs. quinpirole + WIN, 48.2 ± 3.7%, n = 5, p < 0.05). This affect was antagonized by the CB1 receptor anatgonist [N‐(Piperidin‐1‐yl)‐5‐(4‐iodophenyl)‐1‐(2,4‐dichlorophenyl)‐4‐methyl‐1H‐pyrazole‐3‐carboxamide] (AM‐251, 1 μM). Dopamine release evoked by four pulses delivered at 1 Hz (4P1Hz) and 10 pulses delivered at 5 Hz (10P5Hz) was significantly inhibited by WIN [72.3 ± 7.9% control (peak 4 to 1 ratio measurement) and 66.9 ± 3.8% control (area under the curve measurement), respectively, p < 0.05; n = 6 for both]. Prior perfusion of WIN significantly attenuated the effects of quinpirole on multiple pulse‐evoked dopamine release (4P1Hz: quinpirole, 28.4 ± 4.8% vs. WIN + quinpirole, 52.3 ± 1.2%; 10P5Hz: quinpirole, 29.5 ± 1.3% vs. WIN + quinpirole, 59.4 ±7.1%; p < 0.05 for both; n = 6). These effects were also antagonized by AM‐251 (1 μM). This is the first report demonstrating a functional, antagonistic interaction between CB1 receptors and D2 autoreceptors in regulating rat striatal dopamine release.  相似文献   

6.
Abstract: Inhibition and stimulation of adenylyl cyclase by opioid and D1 dopamine or A2a adenosine agonists, respectively, were characterized in the caudate putamen of rats. D1 dopamine receptors have been reported to be localized preferentially on striatonigral neurons and A2a adenosine receptors on striatopallidal neurons. The aim of the present study was to evaluate the effects of μ-[Tyr-d -Ala-Gly-(N-Me)Phe-Gly-ol (DAMGO)], δ1-[Tyr-d -Pen-Gly-Phe-d -Pen (DPDPE)], and δ2- ([d -Ala2]deltorphin-II [DT-II]) opioid agonists on the D1 dopamine receptor- and A2a adenosine receptor-stimulated adenylyl cyclase in membranes from rat caudate putamen. The results show that DAMGO, DPDPE, and DT-II inhibit forskolin-stimulated adenylyl cyclase [selectively antagonized by d -Phe-Cys-Tyr-d -Trp-Orn-Thr-Pen-Thr-NH2 (CTOP; μ antagonist), 7-benzylidenenaltrexone (BNTX; δ1 antagonist), and naltriben (NTB; δ2 antagonist), respectively], but only μ- and δ2-opioid agonists inhibit D1 dopamine-stimulated adenylyl cyclase (antagonized by CTOP and NTB, respectively). Furthermore, DT-II and DPDPE inhibit A2a adenosine-stimulated adenylyl cyclase (antagonized by NTB and BNTX, respectively), whereas DAMGO did not inhibit A2a adenosine-stimulated adenylyl cyclase activity. These results suggest that μ-, δ1-, and δ2-opioid receptors display differential localization and provide neurochemical evidence suggesting the differential location of the δ1 and δ2 subtypes. μ-Opioid receptors may be preferentially expressed by striatonigral neurons, δ1- by striatopallidal neurons, and δ2- by these two striatal efferent neuron populations.  相似文献   

7.
Abstract: [3H]Nemonapride and [3H]spiperone are very widely used to study dopaminergic systems in vitro and in vivo, but it has been reported that [3H]nemonapride and [3H]spiperone give markedly different B max values for preparations of D2 dopamine receptors from recombinant cell lines or animal tissues. We have used the two radioligands in parallel to study a range of dopamine receptors [D2(short), D2(long), and D3] in different buffers. B max values derived using either radioligand differ by an average of <20%, independent of receptor type or buffer conditions. All competition experiments show that the two ligands compete at a single site. It seems that [3H]spiperone and [3H]nemonapride do not differentiate between different forms or populations of D2-like receptors.  相似文献   

8.
The effect of a unilateral perinatal hypoxic-ischemic brain injury on dopamine D1 and D2 receptors and uptake sites was investigated in rats by using in vitro quantitative binding autoradiography, 2-3 weeks after the insult. We observed significant decreases in the Bmax and KD for [3H]SCH 23390-labeled D1 and in the Bmax for [3H]spiperone-labeled D2 receptors in the lesioned caudate-putamen in rats with moderate brain injury (visible loss in hemispheric volume ipsilateral to the injury) compared with the nonlesioned contralateral caudate-putamen or with control rats. Changes in [3H]SCH 23390 and [3H]spiperone binding predominated in the dorsolateral part of the lesioned caudate-putamen. Pronounced reduction in [3H]SCH 23390 binding was also observed in the substantia nigra pars reticulata on the side of the lesion. In contrast, we did not observe any significant change in Bmax or KD for [3H]mazindol-labeled dopamine uptake sites. Similarly, no significant changes in the levels of dopamine or its metabolites were found on the side of the lesion. The observed reductions in striatal dopamine D1 and D2 receptors are a reflection of striatal cell loss induced by the hypoxic-ischemic injury. The absence of changes in [3H]mazindol binding or dopamine levels in the lesioned caudate-putamen indicates that the dopaminergic presynaptic structures are preserved.  相似文献   

9.
Chronic in vivo exposure of rats to ethanol in a complete liquid diet for 14 or 21 days produced a behavioral tolerance to the acute injection of ethanol. After 21 days, but not 14 days, of chronic exposure, there was a significant increase in the maximum density of striatal D1 and D2 dopamine receptors without a change in these receptors' affinities. A 24-h withdrawal from the 21-day exposure did not alter the observed increase in density. Both the level and duration of ethanol exposure appear to be important variables for demonstration of an increase in striatal D1 and D2 dopamine receptors.  相似文献   

10.
The D2 dopamine receptor is an important therapeutic target for the treatment of psychotic, agitated, and abnormal behavioral states. To better understand the specific interactions of subtype‐selective ligands with dopamine receptor subtypes, seven ligands with high selectivity (>120‐fold) for the D4 subtype of dopamine receptor were tested on wild‐type and mutant D2 receptors. Five of the selective ligands were observed to have 21‐fold to 293‐fold increases in D2 receptor affinity when three non‐conserved amino acids in TM2 and TM3 were mutated to the corresponding D4 amino acids. The two ligands with the greatest improvement in affinity for the D2 mutant receptor [i.e., 3‐{[4‐(4‐iodophenyl) piperazin‐1‐yl]methyl}‐1H‐pyrrolo[2,3‐b]pyridine (L‐750,667) and 1‐[4‐iodobenzyl]‐4‐[N‐(3‐isopropoxy‐2‐pyridinyl)‐N‐methyl]‐aminopiperidine (RBI‐257)] were investigated in functional assays. Consistent with their higher affinity for the mutant than for the wild‐type receptor, concentrations of L‐750,667 or RBI‐257 that produced large reductions in the potency of quinpirole’s functional response in the mutant did not significantly reduce quinpirole’s functional response in the wild‐type D2 receptor. In contrast to RBI‐257 which is an antagonist at all receptors, L‐750,667 is a partial agonist at the wild‐type D2 but an antagonist at both the mutant D2 and wild‐type D4 receptors. Our study demonstrates for the first time that the TM2/3 microdomain of the D2 dopamine receptor not only regulates the selective affinity of ligands, but in selected cases can also regulate their function. Utilizing a new docking technique that incorporates receptor backbone flexibility, the three non‐conserved amino acids that encompass the TM2/3 microdomain were found to account in large part for the differences in intermolecular steric contacts between the ligands and receptors. Consistent with the experimental data, this model illustrates the interactions between a variety of subtype‐selective ligands and the wild‐type D2, mutant D2, or wild‐type D4 receptors.  相似文献   

11.
We have synthesized and characterized a series of novel fluorescently labeled ligands with high affinity and specificity for D1 and D2 dopamine receptors. D1-selective probes were synthesized using (R,S)-5-(4'-aminophenyl)-8-chloro-2,3,4,5-tetrahydro-3-methyl- [1H]-3-benzazepin-7-ol, the 4'-amino derivative of the high-affinity, D1-selective antagonist SCH-23390, whereas D2-selective probes were synthesized using the high-affinity, D2-selective antagonist N-(p-aminophenethyl)spiperone (NAPS). These ligands were coupled via spacer arms of various lengths to the fluorophores fluorescein and bodipy, which fluoresce in the yellow-green region, and to tetramethylrhodamine, which is a red fluorophore. The interaction of these fluorescent ligands with dopamine receptors was evaluated by examining their ability to compete for the binding of the radiolabeled antagonists [3H]SCH-23390 or [3H]methylspiperone to rat striatal D1 or D2 dopamine receptors, respectively. We report here that these novel fluorescent ligands exhibit very high affinity and specificity for either D1 or D2 dopamine receptors. The availability of various fluorescent ligands with different emission maxima and with high affinity and specificity for D1 and D2 dopamine receptors will now permit investigations involving the visualization and localization of these receptor subtypes at the single cell and intracellular levels in the CNS and on intact cells in culture.  相似文献   

12.
The function of the D3 dopamine (DA) receptor remains ambiguous largely because of the lack of selective D3 receptor ligands. To investigate the function and intracellular signaling of D3 receptors, we established a PC‐12/hD3 clone, which expresses the human D3 DA receptor in a DA producing cell line. In this model, we find that the D3 receptor functions as an autoreceptor controlling neurotransmitter secretion. Pre‐treatment with 3,6a,11, 14‐tetrahydro‐9‐methoxy‐2 methyl‐(12H)‐isoquino[1,2‐b] pyrrolo[3,2‐f][1,3] benzoxanzine‐1‐carboxylic acid, a D3 receptor preferring agonist, dose‐dependently suppressed K+‐evoked [3H]DA release in PC‐12/hD3 cells but not in the control cell line. This effect was prevented by D3 receptor preferring antagonists GR103691 and SB277011‐A. Furthermore, activation of D3 receptors significantly inhibits forskolin‐induced cAMP accumulation and leads to transient increases in phosphorylation of cyclin‐dependent kinase 5 (Cdk5), dopamine and cAMP‐regulated phosphoprotein of Mr 32 000 and Akt. Because we observed differences in Cdk5 phosphorylation as well as Akt phosphorylation after DA stimulation, we probed the ability of Cdk5 and phosphatidylinositol‐3 kinase (PI3K) to influence DA release. Cdk5 inhibitors, roscovitine, or olomoucine, but not the PI3K inhibitor wortmannin, blocked the D3 receptor inhibition of DA release. In a complimentary experiment, over‐expression of Cdk5 potentiated D3 receptor suppression of DA release. Pertussis toxin, 3‐[(2,4,6‐trimethoxyphenyl)methylidenyl]‐indolin‐2‐one and cyclosporine A also attenuated D3 receptor‐mediated inhibition of DA release indicating that this phenomenon acts through Gi/oα and casein kinase 1, and phosphatase protein phosphatase 2B (calcineurin), respectively. In support of previous data that D3 DA receptors reduce transmitter release from nerve terminals, the current results demonstrate that D3 DA receptors function as autoreceptors to inhibit DA release and that a signaling pathway involving Cdk5 is essential to this regulation.  相似文献   

13.
Abstract: This study investigated the hypothesis that D1 and D2 dopamine receptors interact to regulate the expression of zif/268 mRNA in rat forebrain after an acute injection of amphetamine or methamphetamine. Forty-five minutes and 3 h after a single injection of amphetamine (4 mg/kg i.p.) or methamphetamine (4 mg/kg i.p.), the mRNA expression of zif/268 in dorsal striatum and sensorimotor cortex was increased, as revealed by quantitative in situ hybridization histochemistry. Induction was more intense in striatal patches at 45 min than at 3 h, when a more homogeneous pattern of zif/268 mRNA induction was observed. SCH 23390, a selective D1 receptor antagonist, suppressed, and eticlopride, a D2 receptor antagonist, elevated, constitutive zif/268 mRNA levels in the striatum, but neither antagonist had a significant effect on the constitutive expression of zif/268 in sensorimotor cortex. Pretreatment with SCH 23390 completely blocked the stimulant-induced zif/268 expression in striatum and partially blocked the stimulant-induced zif/268 expression in cortex. Pretreatment with eticlopride augmented zif/268 mRNA expression in patch and matrix compartments of dorsal and ventral striatum 45 min after amphetamine or methamphetamine injection. However, at 3 h, eticlopride completely blocked amphetamine- and methamphetamine-stimulated zif/268 mRNA in dorsomedial, but not dorsolateral, striatum. In addition, eticlopride partially blocked cortical zif/268 induction by both amphetamines. Both antagonists prevented stimulant-induced hyperlocomotion and stereotypies. These results demonstrate that D1 and D2 receptors in mesolimbic/mesostriatal pathways both regulate amphetamine-and methamphetamine-stimulated behaviors and zif/268 mRNA expression. Furthermore, the effect of D2 receptor blockade on zif/268 expression was found to be contingent on the time interval investigated after psychostimulant administration.  相似文献   

14.
Abstract: Dopamine and the D1, receptor agonist SKF 38393 activate the phospholipase C-rnediated hydrolysis of phosphoinositides in brain slices. This action is selectively inhibited by SCH-23390, thus suggesting its mediation through the dopamine D1 receptor. To determine if the dopamine receptor that mediates Phosphoinositide hydrolysis is the adenylyl, cyclase-linked D1 receptor or a different subtype of the dopamine D1 receptor, 20 benzazepine compounds that were previously characterized as selective dopamine D1 receptor agonists were tested for stimulation of Phosphoinositide hydrolysis in rat striatal slices and for activation of adenylyl cyclase in rat striatal membranes. The compounds displayed a range of potencies and efficacies in stimulating adenylyl cyclase or Phosphoinositide hydrolysis. Compounds such as SKF 81427 and SKF 38393 were as efficacious as dopamine in stimulating Phosphoinositide hydrolysis, whereas other compounds, including SKF 85174 and SKF 86284, although showing high efficacy in stimulating cyclic AMP, failed to stimulate inositol phosphate formation. There was no correlation between the potencies (r= 0.016; p < 0.95) or efficacies (r=?0.294; p < 0.24) of the tested compounds in stimulating cyclic AMP formation and phosphoinositide hydrolysis. These observations indicate that the D1-like dopamine receptor that mediates phosphoinositide hydrolysis is pharmacologically distinct from the classic D1 receptor that is coupled to stimulation of cyclic AMP formation.  相似文献   

15.
Abstract: The role of dopaminergic innervation on the postnatal developmental expression of D1 dopamine receptors was investigated. Bilateral destruction of dopa-mine-containing neurons was achieved by treating rats intracisternally with 6-hydroxydopamine (6-OHDA) on postnatal day 3, and rats were killed on day 21. To ensure effective reduction of D1 receptor activation by residual dopamine, a group of 6-OHDA-lesioned rats was given twice daily injections of the D1 receptor antagonist SCH-23390, from day 4 to 20. D1 dopamine receptor binding was assessed in the caudate—putamen, nucleus accumbens, and olfactory tubercle by quantitative autoradiographic analysis of [3H]SCH-23390 binding. In addition, the relative amount of D1A receptor mRNA was assessed by in situ hybridization of a 35S-labeled riboprobe. In the developing rats, neither the amount of [3H]SCH-23390 binding nor the amount of D1A receptor mRNA was altered by 6-OHDA lesioning followed by chronic treatment with SCH-23390. Thus, bilateral destruction of dopamine-containing neurons and treatment with SCH-23390 in neonatal rats did not interfere with the developmental expression of D1 receptors or alter the levels of mRNA that code for this receptor protein. Treatment of intact rats with SCH-23390 from postnatal day 4 to 20 also did not alter [3H]SCH-23390 binding or levels of D1 receptor mRNA. However, adult rats treated chronically with SCH-23390 exhibited increased [3H]SCH-23390 binding but did not show a significant change in D1 receptor mRNA levels.  相似文献   

16.
Dopamine synthesis rate and cyclic AMP concentration were measured in synaptosomes prepared from rat striatum. Dopamine synthesis rate was decreased by the addition of either adenosine deaminase or 8-phenyltheophylline, an adenosine receptor blocker, and was increased by the addition of 2-chloroadenosine. The addition of L-glutamate in the absence of adenosine deaminase decreased both dopamine synthesis rate and cyclic AMP concentration; in the presence of adenosine deaminase, glutamate had no effect on basal dopamine synthesis, but enhanced K(+)-stimulated synthesis. Both these effects of glutamate were abolished in Ca2(+)-free medium or in the presence of 2-amino-5-phosphonovalerate, an N-methyl-D-aspartate (NMDA) receptor blocker. In Mg2(+)-free medium with adenosine deaminase, glutamate enhanced both basal and K(+)-stimulated synthesis. These results suggest that dopaminergic terminals have A2 adenosine receptors, whose activation can stimulate dopamine synthesis by a cyclic AMP-dependent mechanism, and NMDA receptors, which modulate dopamine synthesis by a Ca2(+)-dependent mechanism.  相似文献   

17.
Dopamine or agonists with D1 receptor potency stimulated cyclic AMP (cAMP) accumulation in whole cell preparations of NS20Y neuroblastoma cells. The accumulation of cAMP after D1 stimulation was rapid and linear for 3 min. Both dopamine and the novel D1 receptor agonist dihydrexidine stimulated cAMP accumulation two- to three-fold over baseline. The pseudo-Km for dopamine was approximately 2 microM, whereas for dihydrexidine it was approximately 30 nM. The effects of both drugs were blocked by either the D1-selective antagonist SCH23390 (Ki, 0.3 nM) or the nonselective antagonist (+)-butaclamol (Ki, 5 nM). Both (-)-butaclamol and the D2-selective antagonist (-)-sulpiride were ineffective (Ki greater than 3 microM). Forskolin (10 microM), prostaglandin E1 (1 microM), and adenosine (10 microM) also stimulated cAMP accumulation, but none were antagonized by SCH23390 (1 microM). Finally, muscarinic receptor stimulation (100 microM carbachol) inhibited both D1- and forskolin-stimulated increases in cAMP accumulation by 80%. The present results indicate that NS20Y neuroblastoma cells have D1 receptors that are coupled to adenylate cyclase, and that these receptors have a pharmacological profile similar to that of the D1 receptor(s) found in rat striatum.  相似文献   

18.
Abstract— The presynaptic regulation of stimulated dopa-mine release from superfused rat striatal synaptosomes by opioids and γ-aminobutyric acid (GABA) was studied. It was found that in addition to dopamine D2 autoreceptors, calcium-dependent K+-stimulated [3H]dopamine release was inhibited through activation of a homogeneous population of k -opioid receptors in view of the potent inhibitory effect of the k -selective agonist U69.593 (EC50 0.2 nM) and its antagonism by norbinaltorphimine. Neither μ-nor δ-selective receptor agonists affected release of [3H]-dopamine. In addition, GABA potently inhibited the evoked [3H]dopamine release (EC50 0.4 nM) through activation of GABAA receptors in view of the GABA-mimicking effect of muscimol, the sensitivity of its inhibitory effect to picro-toxin and bicuculline, and the absence of an effect of the GABAB receptor agonist baclofen. In the presence of a maximally effective concentration of GABA, U69,593 did not induce an additional release-inhibitory effect, indicating that these receptors and the presynaptic D2 receptor are colocalized on the striatal dopaminergic nerve terminals. The excitatory amino acid agonists N-methyl-d -aspartate and kainate, as well as the cholinergic agonist carbachol, stimulated [3H]dopamine release, which was subject to k -opioid receptor-mediated inhibition. In conclusion, striatal dopamine release is under regulatory control of multiple excitatory and inhibitory neurotransmitter by activation of colocalized presynaptic receptors for excitatory amino acids, acetylcholine, dopamine, dynorphins, and GABA within the dopaminergic nerve terminals. Together, these receptors locally control ongoing dopamine neurotransmission.  相似文献   

19.
Abstract: Solubilization of rat striatal membranes with sodium cholate, followed by reconstitution into phospholipid vesicles, leads to a 6.5-fold increase in the agonist high-affinity binding sites of the D1 dopamine receptor. These high-affinity binding sites display differential sensitivity toward temperature. When reconstituted receptors were preincubated for 1 h at 0–4°C (on ice) or at 22°C (room temperature) followed by radioligand binding assays with dopamine, neither the high-affinity values of the receptor for dopamine nor the percent receptors in the high-affinity state (31–39%) were changed from control reconstituted receptors, which were not subject to any preincubations. At 30°C, there was a partial loss in the number of high-affinity D1 receptors with only 25% of the total receptor population in the high-affinity state; there was no change in the affinity values of the high-affinity binding sites. At 37°C, there was a 40% loss in total number of D1 receptor binding sites. All the high-affinity binding sites were lost and the remaining 60% of binding activity represented the low-affinity binding state of the receptor. These results indicate that the high-affinity binding sites of the reconstituted D1 dopamine receptors are uniquely sensitive to higher temperatures.  相似文献   

20.
D1 and D2 dopamine receptors were characterized in the caudate-putamen region of nonhuman primate brains (Macaca fascicularis). D1 dopamine receptors were identified with [3H]SCH 23390 and D2 receptors with [3H]-spiperone. Scatchard analysis of [3H]SCH 23390 saturation data using washed membranes revealed a single high-affinity binding site (KD, 0.352 +/- 0.027 nM) with a density (Bmax) of 35.7 +/- 2.68 pmol/g original wet tissue weight (n = 10). The affinity of [3H]spiperone for the D2 site was 0.039 +/- 0.007 nM and the density was 25.7 +/- 1.97 pmol/g original wet tissue weight (n = 10). D1 and D2 receptors in nonhuman primates may be differentiated on the basis of drug affinities and stereoselectivity. In competition experiments, RS-SKF 38393 was the most selective D1 agonist, whereas (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO] was the most selective D2 agonist. Apomorphine was essentially nonselective for D1 or D2 binding sites. Of the antagonists, R-SKF 83566 and SCH 23390 were the most selective for the D1 site, whereas YM-09151-2 was the most selective for the D2 site. cis-Flupentixol and (S)-butaclamol were the least selective dopamine antagonists. D1 receptors bound benzazepine antagonists (SCH 23390/SCH 23388, R-SKF 83692/RS-SKF 83692) stereoselectively whereas D2 receptors did not. Conversely D2 receptors bound (S)-sulpiride and (+)-PHNO more potently than their enantiomers whereas D1 receptors showed little stereoselectively for each of these isomeric pairs. These binding characteristics may be utilized for evaluation of individual receptor function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号