首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nitrogen deficiency in cotton plants (Gossypium hirsutum L.) increased the threshold water potentials for both stomatal closure and leaf senescence (defined as loss of chlorophyll and protein) during drought. These studies attempted to answer two questions: (1) What is the basis for the N/water interaction on senescence? (2) Is there a direct relationship between stomatal closure and senescence? Young and old leaves from N-deficient and N-sufficient plants maintained their relative sensitivities to water stress when excised leaf discs were floated on solutions of polyethylene glycol in dim light. In this leaf disc system, both leaf aging and N deficiency increased the threshold water potential for senescence. Leaf aging and N deficiency also decreased the concentration of exogenous abscisic acid necessary to initiate senescence in discs. A role for cytokinins in controlling senescence could not be clearly shown. In young leaves of both N-deficient and N-sufficient plants, stomata closed at water potentials much higher than those causing senescence. During leaf aging, the water potentials causing senescence increased more than those causing stomatal closure. The two processes thus occurred at about the same potentials in the oldest leaves. These data argue against a general cause-and-effect relationship between stomatal closure and senescence. Rather, each process apparently responded independently to absicsic acid accumulated during drought.  相似文献   

2.
Knipling EB  Kramer PJ 《Plant physiology》1967,42(10):1315-1320
The dye method for measuring water potential was examined and compared with the thermocouple psychrometer method in order to evaluate its usefulness for measuring leaf water potentials of forest trees and common laboratory plants. Psychrometer measurements are assumed to represent the true leaf water potentials. Because of the contamination of test solutions by cell sap and leaf surface residues, dye method values of most species varied about 1 to 5 bars from psychrometer values over the leaf water potential range of 0 to −30 bars. The dye method is useful for measuring changes and relative values in leaf potential. Because of species differences in the relationships of dye method values to true leaf water potentials, dye method values should be interpreted with caution when comparing different species or the same species growing in widely different environments. Despite its limitations the dye method has a usefulness to many workers because it is simple, requires no elaborate equipment, and can be used in both the laboratory and field.  相似文献   

3.
Smirnoff, N., Winslow, M. D. and Stewart, G. R. 1985. Nitratereductase activity in leaves of barley (Hordeum vulgare) anddurum wheat (Triticum durum) during field and rapidly appliedwater deficits.-J. exp. Bot 36: 1200-1208. The effect of field and rapidly applied water deficits on nitratereductase activity in the leaves of two barley varieties andone durum wheat variety was investigated. In field experimentsplants were subjected to irrigation at different rates in threeMediterranean environments by means of a line source sprinklerirrigation system. The environments differed in rainfall andnitrogen fertility. Plant water potentials decreased from –1.5MPa to between –2.5 and –3.0 MPa as the irrigationrate decreased. Nitrate reductase activity in the leaves ofthese plants during heading was either unaffected or sometimesincreased where the least water was supplied. Nitrate reductaseactivity was highest in the plants growing with an ample nitrogensupply irrespective of water regime. In contrast, seedlingssubject to rapidly applied water stress over 6 d lost 30-85%of their nitrate reductase activity when leaf water potentialfell from between –0.33 and –0.75 MPa to between–O.93 and –2.04 MPa. The decrease was less in theyoung leaves than in the old leaves. Polyethylene glycol inducedosmotic stress resulted in a drop in leaf water potential from–0.20 MPa to between –1.05 and –1.20 MPa alongwith a loss of 40-85% of leaf nitrate reductase activity after48 h. It is suggested that maintenance of nitrate reductase activityin field grown barley and durum wheat plants reflects an acclimationto water deficit Maintenance of nitrate assimilation duringwater stress may allow continued synthesis of nitrogenous compatiblesolutes using the excess photochemical energy available duringstomatal closure. Key words: Nitrate reductase, water stress, barley, durum wheat  相似文献   

4.
Growth rates of seasonal leaf flushes of ‘Valencia’orange [Citrus sinensis (L.) Osbeck] were measured and waterrelations characteristics of young (new) and over-wintered (old)citrus leaves were compared. New flush leaves had lower specificleaf weights and lower midday leaf water potentials than comparablyexposed old leaves. Spring and summer flush new leaves had higherosmotic potentials than old leaves. These differences becamenon-significant as the new leaves matured. During summer conditions,water-stressed new leaves reached zero turgor and stomatal conductancealso began to decrease in them at higher leaf water potentialsthan in old leaves. Old leaves were capable of maintaining openstomata at lower leaf water potentials. Opened flowers and newflush leaves lost more water, on a dry weight basis, than flowerbuds, fruit or mature leaves. The results illustrate differencesin leaf water potential and stomatal conductance which can beattributed to the maintenance of leaf turgor by decreases inleaf osmotic potentials as leaves mature. These changes in citrusleaf water relations are especially important since water stressresulting from high water loss rates of new tissues could reduceflowering and fruit set. Citrus sinensis (L.) Osbeck, orange, Citrus paradisi Macf., grapefruit, growth rate, leaf water relations, osmotic potential, water potential, stomatal conductance  相似文献   

5.
Leaf Elongation in Relation to Leaf Water Potential in Soybean   总被引:13,自引:2,他引:11  
Leaf water potential, turgor pressure, and leaf elongation ratewere measured in soybeans growing in controlled environmentchambers, greenhouses, and outdoors. Plants in chambers hadthe highest water potentials and turgor pressures, and plantsoutdoors the lowest. In all three environments there was a linearrelationship between elongation rate and turgor pressure. Leavesof plants in drier environments required less turgor for elongation,and showed a greater increase in elongation rate per unit increasein turgor. Elongation rates over a 72 h period were equal inthe three environments. Leaves reached the largest final sizein the greenhouse (intermediate in water potential). Epidermalcells were larger in chamber- and greenhouse-grown leaves thanin leaves of plants grown outdoors. The number of epidermalcells per leaf was greater in the greenhouse and outdoors thanin the chamber. Leaf elongation characteristics of greenhouseplants were duplicated by mildly stressing chamber plants, andleaf elongation characteristics of field plants were duplicatedby more severely stressing chamber plants. Leaves of mildlystressed chamber plants also reached a larger final size thanleaves of more severely stressed chamber plants, or leaves ofcontrol plants in the chamber. Water stress in the chamber increasedthe number of epidermal cells per leaf. More severe water stressin the chamber reduced epidermal cell size. Based on the waterstress experiments it is concluded that the differences in plantwater status in the chamber, greenhouse, and field caused differencesin elongation characteristics, and were responsible for thedifferences in leaf size.  相似文献   

6.
Internal water balance of barley under soil moisture stress   总被引:1,自引:1,他引:0       下载免费PDF全文
Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments.

Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied.

The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions.

  相似文献   

7.
Sugar beet were grown for short periods with different amounts of moisture in the soil and air. Growing plants in wet soil (23 % moisture on dry weight) compared with dry soil (15% moisture) increased growth of the shoots and roots and plant dry weights by 15% in young plants and 10% in mature plants. Growing plants in wet air containing 10.9 g m-3 of water (equivalent to a saturation deficit of 2.5 mb) compared with dry air containing 6.4 g m-3 of water (saturation deficit = 8.5 mb) increased the dry weights of both young and mature plants by 8%, mostly by increasing the sizes of their storage roots. Wet air and wet soil increased the net assimilation rates of both young and mature plants. Wet soil, but not wet air, increased leaf areas of young plants by accelerating leaf expansion, and both increased the leaf area of mature plants by slowing senescence of the older leaves. Wet soil increased the water potential of the leaves of both young and mature plants and, by doing so, increased their stomatal conductances and rates of photosynthesis. Wet air also increased stomatal conductances and rates of photosynthesis of leaves of plants of both ages, but without changing their water potentials. Stomatal conductances and photosynthetic rates were greater for young leaves than mature on the same plant and at the same water potential. It is suggested that at certain stages in the crops growth photosynthetic efficiency could be increased by applying additional water as a mist to increase the moisture content of the air around the crop.  相似文献   

8.
Effects of Sodium Chloride on Water Status and Growth of Sugar Beet   总被引:1,自引:0,他引:1  
The effects of sodium chloride on the water status, growth,and physiology of sugar beet subjected to a range of soil waterpotentials were studied under controlled conditions. Sodiumchloride increased plant dry weight and the area, thickness,and succulence of the leaves. It increased the water capacityof the plant, mainly the shoot, but there was no evidence thatit altered the relationships between leaf relative water contentand the leaf water, osmotic, and turgor potentials or changedthe way stomatal conductance and photosynthesis responded todecreasing leaf water potential. The greater leaf expansionin sodium-treated plants is thought to be the consequence ofadjustments made by leaf cells to accommodate changes in ionsand water in a way that minimizes change in water and turgorpotentials. It is also suggested that the greater water capacityof treated plants buffers them against deleterious changes inleaf relative water content and water potential under conditionsof moderate stress.  相似文献   

9.
The effect of water deficits on the water relations and stomatal responses of Helianthus annuus and Helianthus petiolaris were compared in plants growing in the glasshouse under controlled conditions. Unirrigated plants of both genotypes were subjected to two different stress rates in which predawn leaf water potentials declined steadily at either 0.15 MPa day?1 or 0.50 MPa day?1. In both genotypes water stress induced a gradual and similar decrease in leaf conductance from 1.6 to 0.3 cm s?1 as water potential decreased from-0.5 to-2.0 MPa. The relationship between leaf conductance and leaf water potential was not affected by the rate of stress development. Development of predawn leaf water potentials of-1.3 MPa had no significant effect on the relative water content at zero turgor, the apoplastic water content or the volumetric elastic modulus of whole leaves in either species, but decreased the osmotic potential at full turgor and zero turgor by 0.22 MPa and decreased the turgid weight: dry weight ratio from 10.6 to 8.4 in H. annuus, but not in H. petiolaris. In H. annuus leaves expanded during stress development, changes in the osmotic potential at full turgor induced by water deficits did not disappear on rewatering.  相似文献   

10.
Quantum yields were measured for CO2 fixation by sunflower (Helianthus annuus L.) leaves having various water potentials and for dichlorophenolindophenol photoreduction by chloroplasts isolated from similar leaves having various water potentials. In red radiation, the quantum yield for CO2 was 0.076 for an attached sunflower leaf at a water potential of −3 to −4 bars but was 0.020 for the same leaf at −15.3 bars. After recovery to a water potential of −5 bars, the quantum yield rose to 0.060. Soybean (Glycine max L. [Merr.]) leaves behaved similarly. Chloroplasts from a sunflower leaf with a water potential of −3.6 bars had a quantum yield for 4 equivalents of 0.079, but when tissue from the same leaf had a water potential of −14.8 bars, the quantum yield of the chloroplasts decreased to 0.028. The decrease could not be attributed to differences in rates of respiration by the leaves or the chlorophyll content or absorption spectrum of the leaves and chloroplasts.  相似文献   

11.
Effects of sodium fertiliser on growth, water status and yield of sugar beet crops were measured in 1974 and 1975. Sodium increased leaf area index early in the growing period, the water content of the leaves and the final yields of root dry matter and sugar in both years. In 1974, it increased leaf relative water content and diffusive conductance under conditions of moderate soil moisture deficit in August but had no effect in June or September when soil moisture deficits were low. There was also no effect in June 1975 but later, when there was a severe drought, sodium decreased leaf water potential. Further evidence of an interaction between sodium and soil moisture on leaf water status was obtained from a reappraisal of results of field experiments made between 1965 and 1976. Sodium increased sugar yield through at least two different physiological mechanisms; it improved interception of radiation by the crop by increasing leaf area early in the season and it improved the efficiency of leaves under conditions of moderate water stress.  相似文献   

12.
Luo YH  Strain BR 《Plant physiology》1992,98(3):966-970
Velvetleaf (Abutilon theophrasti Medik.) was grown in growth chambers set at 45 or 85% relative humidity at 30°C, CO2 350 microliters per liter and 1000 micromoles per square meter per second of photosynthetically active radiation. Soil water potential was maintained at −0.05 megapascal by subirrigation with half strength Hoagland solution. The third, fourth, and fifth leaves from the base of 21- and 25-day-old plants were used for pressure-volume measurements. Components of leaf water status including water potential (osmotic and potential associated with the apoplast), leaf water content (apoplasmic and symplasmic water), and elastic modulus of leaf tissue were determined. Results indicate: (a) persistent dry air generated leaves with lower water potential at a given relative water content than did humid air; (b) the higher total leaf water content in plants grown in dry air was related to an increase in apoplasmic water, whereas symplasmic water remained similar in both humidity treatments; (c) difference in leaf water potential between low and high humidity treatments was related to decreased potential associated with the apoplast but not to a change in cell wall elasticity.  相似文献   

13.
Maize (Zea mays L.) hybrids varying in drought tolerance were treated with water stress in controlled environments. Experiments were performed during vegetative growth and water was withheld for 19 days beginning 17 days after sowing. Genotypic comparisons used measured changes of leaf water potential or results were expressed by time of treatment. Total dry matter of the drought tolerant hybrid on the final harvest was 53% less than that of the intermediate and susceptible maize hybrids when plants were water sufficient. This showed that maize hybrids selected for extreme drought tolerance possessed a dwarf phenotype that affected soil water contents and leaf water potentials. Changes of shoot and root growth, leaf water potential, net photosynthesis and stomatal conductance in response to the time of water stress treatment were diminished when comparing the drought tolerant to the intermediate or susceptible maize hybrids. Genotypic differences were observed in 26 of 40 total foliar metabolites during water stress treatments. Hierarchical clustering revealed that the tolerant maize hybrid initiated the accumulation of stress related metabolites at higher leaf water potentials than either the susceptible or intermediate hybrids. Opposite results occurred when changes of metabolites in maize leaves were expressed temporally. The above results demonstrated that genotypic differences were readily observed by comparing maize hybrids differing in drought tolerance based on either time of treatment or measured leaf water potential. Current findings provided new and potentially important insights into the mechanisms of drought tolerance in maize.  相似文献   

14.
A better understanding of plant water relations is needed for evaluating the suitability of plant species to site-specific reforestation programs in the heterogeneous karst landscapes in southwestern China that are characterized by temporary water deficit. During both wet and dry periods, leaf water potentials of 65 plant species from five different growth forms were studied at three representative sites (forest, shrubland and grassland), to compare their adaptive strategies against water stress and assess their suitability for reforestation programs. Herbs showed the highest predawn and midday water potentials and smallest diurnal ranges of water potential values at all the three sites, indicating that they follow water stress avoidance strategies. During the dry period, evergreen shrubs showed low water potentials, the largest diurnal ranges and highest soluble sugar contents. This indicates that they have a tolerance strategy responding to water stress. Deciduous shrubs and trees still showed relatively large diurnal ranges of water potential values and high soluble sugar contents, and did not shed leaves when experiencing the lowest midday water potentials during the dry period. They shed leaves only later in the dry winter period when even more serious drought was experienced. Their strategies seem to include both tolerance and avoidance mechanisms. Evergreen trees revealed relatively low water potentials with smallest diurnal range water potentials at the shrubland site, especially during the dry period, which indicated their weak ability to tolerate severe water stress. Increasing degradation of the vegetation clearly impacts negatively plant water relations. Using the ranges of leaf water potentials, the relative suitability of the plants for reforestation could be evaluated.  相似文献   

15.
Water Potential-Water Content Relationships In Apple Leaves   总被引:2,自引:0,他引:2  
Three methods for determining the relationship between xylempressure potential as measured in a pressure chamber (an estimateof leaf water potential) and leaf relative water content werecompared for apple leaves. A range of leaf water contents wasobtained either by sampling leaves in the field at differenttimes of day and on days with differing evaporative demand,or by allowing evaporation from excised leaves in the laboratory,or by expressing sap by overpressurization in a pressure chamber.The first two methods gave very similar results, but the lasttended to give rather lower water potentials at any given watercontent. A possible explanation for these results and theirimplications for the estimation of osmotic potentials usingpressure-volume curves are discussed. Some osmotic adjustmentwas observed in trees droughted for 3 months, with estimatedosmotic potentials, both at full turgor and zero turgor, beingnearly 0.3 MPa lower than in irrigated controls.  相似文献   

16.
Pepper (Capsicum annuum L.) plants were grown aeroponically in a Singapore greenhouse under natural diurnally fluctuating ambient shoot temperatures, but at two different root-zone temperatures (RZTs): a constant 20 +/- 2 degrees C RZT and a diurnally fluctuating ambient (A) (25-40 degrees C) RZT. Plants grown at 20-RZT had more leaves, greater leaf area and dry weight than A-RZT plants. Reciprocal transfer experiments were conducted between RZTs to investigate the effect on plant growth, stomatal conductance (gs) and water relations. Transfer of plants from A-RZT to 20-RZT increased plant dry weight, leaf area, number of leaves, shoot water potential (psi shoot), and gs; while transfer of plants from 20-RZT to A-RZT decreased these parameters. Root hydraulic conductivity was measured in the latter transfer and decreased by 80% after 23 d at A-RZT. Transfer of plants from 20-RZT to A-RZT had no effect on xylem ABA concentration or xylem nitrate concentration, but reduced xylem sap pH by 0.2 units. At both RZTs, gs measured in the youngest fully expanded leaves increased with plant development. In plants with the same number of leaves, A-RZT plants had a higher gs than 20-RZT plants, but only under high atmospheric vapour pressure deficit. The roles of chemical signals and hydraulic factors in controlling gs of aeroponically grown Capsicum plants at different RZTs are discussed.  相似文献   

17.
Leaf Water Potential Response to Transpiration by Citrus   总被引:3,自引:0,他引:3  
This paper reports on further studies of a model for interpreting leaf water potential data for Citrus. Experimental data confirmed the assumption that the ratio of vapor pressure deficit to leaf diffusion resistance adequately estimates transpiration when leaf-to-air temperature differences are small. Data collected diurnally indicated that the relationship between leaf water potential and transpiration followed a sequence of steady states without hysteresis. No difference in water transport characteristics was found for Valencia orange on three rootstocks in well-watered soil, but the two rootstocks Cleopatra mandarin and Rangpur gave slightly greater leaf water stress in Valencia orange leaves than‘Troyer’ citrange rootstock at high transpiration rates under mild soil water deficits. In laboratory studies, previously unstressed seedlings had higher leaf water potentials than field trees at equivalent transpiration rates. After several drying cycles, however, leaf water potentials were similar to those observed in the field.  相似文献   

18.
Potted two-year-old lemon plants (Citrus limon (L.) Burm. fil.) cv. Fino, growing under field conditions were subjected to drought by withholding irrigation for 13 d. After that, plants were re-irrigated and the recovery was studied for 5 d. Control plants were daily irrigated maintaining the soil matric potential at about -30 kPa. Young leaves of control plants presented higher leaf conductance (g1) and lower midday leaf water potential (Ψmd) than mature ones. Young leaves also showed higher leaf water potential at the turgor loss point (Ψtlp) than mature leaves. In both leaf types g1 decreased with increased vapour pressure deficit of the atmosphere. From day 1 of the withholding water, predawn and midday leaf water potentials (Ψpd and Ψmd) decreased, reaching in both cases minimum values of -5.5 MPa, with no significant differences between mature and young leaves. Water stress induced stomatal closure, leaf rolling and partial defoliation. No osmotic adjustment was found in response to water stress in either leaf type, but both were able to enhance the cell wall elasticity (elastic adjustment). After rewatering, leaf water potential recovered quickly (within 2 d) but g1 did not. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary In an attempt to describe some major relationships between soil and plant compartments in a shortgrass steppe, the process of water loss from the system and plant water relations throughout a drying cycle were studied. The water supply was manipulated and some soil and plant variables monitored throughout a drying cycle. Leaf conductance and leaf water potential of blue grama (Bouteloua gracilis) were measured periodically at predawn and noon. Soil water content and water potential of different layers were also monitored.Three different periods were distinguished in the water loss process throughout a drying cycle. These distinctions were made taking into account the relative contribution of different soil layers. Leaf conductance and water potential at noon slowly declined throughout the first 50 days of plant growth. After that, they rapidly decreased, reaching values of 0.29 mm s-1 and-5.0 MPa, respectively. The predawn leaf water potential remained unchanged around-0.5 MPa during the first 45 days, then rapidly decreased. This occurred when soil water of the wettest soil layer was near depletion.Predawn leaf water potentials were highly correlated with water potentials of the wettest layer. Leaf conductance and water potential at noon were correlated with effective soil water potential (soil water potential weighted by the root distribution in the profile). We concluded that root surface area limited the water flow through an important part of the day in this semiarid ecosystem. Axial root resistance did not appear important in determining the equilibrium status between leaves and the wettest soil layer.  相似文献   

20.
Relationship of water potential to growth of leaves   总被引:33,自引:9,他引:24       下载免费PDF全文
Boyer JS 《Plant physiology》1968,43(7):1056-1062
A thermocouple psychrometer that measures water potentials of intact leaves was used to study the water potentials at which leaves grow. Water potentials and water uptake during recovery from water deficits were measured simultaneously with leaves of sunflower (Helianthus annuus L.), tomato (Lycopersicon esculentum Mill.), papaya (Carica papaya L.), and Abutilon striatum Dickson. Recovery occurred in 2 phases. The first was associated with elimination of water deficits; the second with cell enlargement. The second phase was characterized by a steady rate of water uptake and a relatively constant leaf water potential. Enlargement was 70% irreversible and could be inhibited by puromycin and actinomycin D. During this time, leaves growing with their petioles in contact with pure water remained at a water potential of —1.5 to —2.5 bars regardless of the length of the experiment. It was not possible to obtain growing leaf tissue with a water potential of zero. It was concluded that leaves are not in equilibrium with the potential of the water which is absorbed during growth. The nonequilibrium is brought about by a resistance to water flow which requires a potential difference of 1.5 to 2.5 bars in order to supply water at the rate necessary for maximum growth.

Leaf growth occurred in sunflower only when leaf water potentials were above —3.5 bars. Sunflower leaves therefore require a minimum turgor for enlargement, in this instance equivalent to a turgor of about 6.5 bars. The high water potentials required for growth favored rapid leaf growth at night and reduced growth during the day.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号