首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several fish species belonging to the family Haemulidae present a karyotype consisting of 48 acrocentric chromosomes (FN = 48), and apparently similar chromosomal microstructure, especially in genus Haemulon, representing a striking example of intrafamiliar chromosomal conservation. In this study, a more detailed cytogenetic analysis of the species Conodon nobilis and Pomadasys corvinaeformis was performed using C-banding, Ag-NOR, DAPI/CMA3 staining, in situ digestion by distinct endonucleases and double-FISH to map the 18S and 5S ribosomal genes. Both species showed a similar karyotypic macrostructure with 2n = 48 acrocentric chromosomes and active ribosomal sites at interstitial position on long arms of chromosomal pair 18 and 24 in P. corvinaeformis and C. nobilis, respectively. These sites were the only CMA3+/DAPI-regions in the karyotype. Digestion with restriction enzymes revealed a low number of digestion sites in the heterochromatic segments of both species. The data indicate some degree of interspecific evolutionary diversification At the microstructural level, incorporated in a general pattern of extensive karyotypic conservatism. Thus, the interspecific reproductive isolation leading to phyletic diversification apparently occurred without the contribution of conspicuous karyotypic changes.  相似文献   

2.
Cytogenetic studies involving the family Prochilodontidae have shown that these fish can be characterized by a constant diploid number and a conserved karyotypic macrostructure. This study focused on comparative physical chromosomal mapping using 18S and 5S rDNA to compare the species Semaprochilodus insignis and S. taeniurus. Our results indicated the conservation of large number of conventional chromosomal markers. The molecular cytogenetic analyses of the location of the 18S rDNA indicated the maintenance of a chromosome pair bearing these sites in both species analyzed, and it appears to be a conserved character among the majority of the species of this family. The stability of the number of 5S ribosomal DNA sites and their chromosomal localization as has been reported for the Prochilodontidae was not, however, confirmed for S. insignis and S. taeniurus, as these species showed multiple specific rDNA 5S sites. As such, and in spite of the fact that a number of studies indicate that the family Prochilodontidae has a conserved karyotypic structure, the utilization of molecular tools that use chromosomal segments as markers revealed that this presumed stability cannot be extended to the genome level for the species S. insignis and S. taeniurus.  相似文献   

3.
A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo‐Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species‐specific C‐banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine‐cytosine‐rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.  相似文献   

4.
Chromosome number and morphology in mosquitoes is remarkably uniform: virtually all mosquitoes have a diploid chromosome number of six (2N = 6), and their chromosomes are invariably metacentric or submetacentric. Numerical changes obviously have not been important in mosquito chromosomal evolution, and because of the morphological similarity of their chromosomes, it appears that structural changes have played little or no role in mosquito karyotypic evolution. The goal of the present study was to identify the types and relative numbers of chromosomal changes in mosquito evolution and to extend the comparison where possible to the higher diptera. To do this, we compared the enzyme linkage maps of six species of Aedes to each other and to enzyme maps of seven other mosquito species and to Drosophila melanogaster. Our results indicate that Aedes chromosomes have been modified by inversions, most which were paracentric, and by translocations, most which were Robertsonian. Intrageneric comparison of Aedes enzyme maps also revealed groups of linked enzyme loci whose integrity has been maintained throughout Aedes evolution (conserved linkages/syntenies). Intergeneric comparisons of Aedes enzyme maps with those of species in the genera Culex, Anopheles, and Toxorhynchites disclosed conserved associations of enzyme loci between mosquito genera. These findings lead us to postulate that the ancestral mosquito karyotype consisted of six chromosomal elements which, other than being combined in different ways in various mosquito groups, have remained essentially intact during mosquito evolution. Furthermore, the identification of groups of linked enzyme loci common to mosquitoes and to D. melanogaster indicates that linkage group conservation may characterize the karyotypic evolution of all dipteran insects.  相似文献   

5.
Heterochromatin is a dominant component of the genome in the bottae group of the pocket gopher genus Thomomys, having had a major role in the karyotypic evolution of member species. Heterochromatin characteristics of two subspecies of T. bottae and one of T. umbrinus were examined with fluorochrome dyes identifying presumptive GC- and AT-rich regions. In two karyotypic forms of T. b. fulvus and in T. umbrinus, chromatin that fluoresces brightly with chromomycin A3 is also C-band positive, although not all heterochromatin fluoresces. However, in T. b. bottae, only euchromatic regions fluoresce brightly with chromomycin. Fluorescence patterns produced with DAPI are the reverse of the chromomycin banding in all karyotypic forms. Heterochromatin in these taxa is thus highly differentiated, exhibiting heterogeneity in staining characteristics, and presumably in underlying DNA sequences, both across the genome within a given chromosomal complement as well as among the different karyotypic races and species of the bottae group of pocket gophers.  相似文献   

6.
The MspI family of highly repeated sequences is a centromeric satellite DNA representing about 1% of the genome of the Italian smooth newt, Triturus vulgaris meridionalis. We have studied the structure, genomic organization, chromosomal localization and conservation across species of this family. MspI sequences are around 197 bp long, as shown by sequencing of three cloned units. The family is organized in large clusters of tandemly arrayed units, present at almost all the centromeres of T.v. meridionalis, and is well conserved in the T.v. vulgaris subspecies. Conserved MspI sequences are also present in the related species T. helveticus, where they appear to be clustered at the centromeres of only a few chromosomes. MspI sequences are not found in other Triturus species analysed. The correlation of these sequences with the overall distribution pattern of heterochromatin and the extent of their conservation within the genus Triturus, are discussed.  相似文献   

7.
Using C-banding method and in situ hybridizatiion with the 45S and 5S rRNA gene probes, six hexaploid species of the genus Avena L. with the ACD genome constitution were studied to reveal evolutionary karyotypic changes. Similarity in the C-banding patterns of chromosomal patterns and in the patterns of distribution of the rRNA gene families suggests a common origin of all hexaploid species. Avena fatua is characterized by the broadest intraspecific variation of the karyotype; this species displays chromosomal variants typical of other hexaploid species of Avena. For instance, a translocation with the involvement of chromosome 5C marking A. occidentalis was discovered in many A. fatua accessions, whereas in other representatives of this species this chromosome is highly similar to the chromosome of A. sterilis. Only A. fatua and A. sativa show slight changes in the morphology and in the C-banding pattern of patterns of chromosome 2C. These results can be explained either by a hybrid origin of A. fatua or by the fact that this species is an intermediate evolutionary form of hexaploid oats. The 7C–17 translocation was identified in all studied accessions of wild and weedy species (A. sterilis, A. fatua, A. ludoviciana, and A. occidentalis) and in most A. sativa cultivars, but it was absent in A. byzantina and in two accessions of A. sativa. The origin and evolution of the Avena hexaploid species are discussed in context of the results.  相似文献   

8.

Background  

Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis.  相似文献   

9.
Zhang L  Bao Z  Wang S  Huang X  Hu J 《Genetica》2007,130(2):193-198
Chromosomal structural rearrangement in four scallops, Chlamys farreri (n = 19), Patinopecten yessoensis (n = 19), Chlamys nobilis (n = 16) and Argopecten irradians (n = 16), was studied by fluorescence in situ hybridization using histone H3 gene probes. The results show that histone H3 gene sites differ strikingly with regard to number, location, and intensity among, or even within these species. For example, two histone H3 gene loci were detected on the metaphase chromosomes of P. yessoensis, while one locus was found in the others. In P. yessoensis, differing intensities of hybridization signals were detected between homologues 5 and 11, and within homologue 11. These data suggest that the histone H3 gene is a qualified chromosome marker for the preliminary understanding of the historical chromosomal reconstructing of the Pectinidae family. The variable distribution patterns of the histone H3 gene suggest that gene duplication/diminution as well as chromosome rearrangements by inversion and translocation may have played important roles in the genomic evolution of Pectinidae. We also compiled our present results with former published data regarding the chromosome mapping of rDNAs in species of the Pectinidae family. Such comparative chromosomal mapping should improve our understanding of historical chromosomal reconstructions of modern-day scallops.  相似文献   

10.
Alves AL  Oliveira C  Foresti F 《Genetica》2005,124(2-3):127-136
The family Loricariidae with about 690 species divided into six subfamilies, is one of the world’s largest fish families. Recent studies have shown the existence of several problems in the definition of natural groups in the family, which has made the characterization of the subfamilies and even of some genera quite difficult. With the main objective of contributing for a better understanding of the relationships between loricariids, cytogenetic analysis were conducted with two species of Neoplecostominae and nine species of Hypostominae that, according to morphological and molecular data, may belong to a new monophyletic unit. The results obtained showed a marked chromosomal conservation with the presence of 2n = 54 chromosomes and single interstitial Ag-NORs in all species analyzed. Considering that Neoplecostominae is the primitive sister-group of all other loricariids, with exception of Lithogeneinae, this karyotypic structure may represent the primitive condition for the family Loricariidae. The cytogenetic characteristics partaken by the species of Neoplecostominae and Hypostominae analyzed in the present study reinforce the hypothesis that the species of both these subfamilies might belong to a natural group.  相似文献   

11.
The genera Grindelia Willd. and Haplopappus Cass. belong to the family Asteraceae - Astereae and are distributed in America and South America, respectively. Previous cytotaxonomic studies showed for South American species of Grindelia 2n=12 and for Haplopappus 2n=10 and 2n=12. Both Grindelia species (G. anethifolia, G. prunelloides), newly analyzed with molecular-cytological methods, exhibited symmetric karyotypes (AsI %=55.46 and 55.95) with metacentric chromosome sets (5m + 1m-sat) and 2n=12 chromosomes. The NOR was detected after fluorescence in situ hybridization (FISH) with 18/25S rDNA in the satellite chromosome 2. In contrast H. Happlopappus glutinosus, H. grindeloides and H. stolpii showed exclusively a higher asymmetric index (66.83%, 67.01% and 68.87%, respectively) with submetacentric chromosome sets (4sm + 1sm–sat). The sat-chromosomes 3 of H. glutinosus and H. grindelioides were both significantly different in their length from chromosomes 2 and 4. Furthermore in Grindelia the FISH with 5S rDNA could estimate signals in the short arms of chromosomes 3 or 4, that were not significantly differentiated in their length. Contrary to these findings in Grindelia, the position of 5S rDNA in Haplopappus was detected in the long arms of chromosome 1 (H. grindelioides and H. stolpii) and chromosome 2 (with two different loci) and chromosome 4 of H. glutinosus. The lengths of all measured chromosome arms with 5S rDNA were significantly different to those of the neighbours in the karyotypes. The two-color FISH of 5S and 18/25S rDNA had provided clear karyotypic markers for three (Haplopappus glutinosus) and two (H. grindelioides and H. stolpii) chromosomes. The number and position of rDNA signals were relatively highly conserved in the investigated five species without the double marked chromosome 2 of H. glutinosus, which shows an evolutionary dynamic of this 5S rRNA specific gene cluster. This investigation supports the assumption that the evolution of New World members of Grindelia and Haplopappus has not been accompanied by large karyotypic changes, but small chromosomal rearrangements have undoubtedly occurred (e.g. 5S rDNA localizations).  相似文献   

12.
Homologous segments identified by G-banding sequences of chromosomes of Peromyscus boylii, Neotoma micropus, Oryzomys capito, (Family Cricetidae) Rattus norvegicus, Melomys burtoni, and Apodemus sylvaticus (Family Muridae) were used to hypothesize a chromosomal condition for the cricetid ancestor. A critical assumption in proposing the primitive G-banding sequences for a given chromosome is that if the outgroup and ingroup taxa have a specific sequence, then the ancestor of the ingroup taxa also had that same sequence. Using this methodology, (chromosome numbers refer to proposed homology to the standardized karyotype for Peromyscus), we propose that: (1) the primitive banding pattern of chromosome 1 was identical to that of Neotoma; (2) the primitive patterns of chromosomes 2, 3, 4, 6, 7, 8, 9, 10, 11, and 12 were primitive banding patterns of 5 and 13 were undetermined; (4) a major portion of the banding patterns of 14 and X were present in the ancestral karyotype. Only the largest 14 autosomes and X were examined because the smaller elements had insufficient G-band definition to ensure reasonable accuracy. The karyotype ancestral to that of Peromyscus, Neotoma, and Oryzomys may be as above and the banding patterns of 5, 13, and 14 were acrocentric and identical to those shown for Peromyscus, Neotoma, and Oryzomys (Fig. 1). In the primitive karyotype, heterochromatin (C-band material) was probably limited to the centromeric regions. If the primitive karyotype is as described above, then it is possible to determine the direction, type, and magnitude of chromosomal evolution evident in the various cricetid lineages. Based on the available data, radiation from the ancestral cytotype is characterized by a nonrandom distribution of types of chromosomal changes. Within many genera, more rearrangements occur in the 14 largest autosomal chromosomes of some congeneric species than distinguish the proposed primitive conditions for the genera Peromyscus, Neotoma, and Oryzomys. It would appear that the extensive morphological radiation from the primitive cricetid ancestor as indicated by the presence of over 100 surviving genera within the family, was not accompanied by extensive karyotypic changes. The magnitude of chromosomal variation that accompanies speciation in these genera appears to range from no detectable chromosomal evolution to a radical reorganization of the genome.  相似文献   

13.
Channid fishes, commonly referred to as “snakeheads”, are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.  相似文献   

14.
Cichlids are important in the aquaculture and ornamental fish trade and are considered models for evolutionary biology. However, most studies of cichlids have investigated African species, and the South American cichlids remain poorly characterized. Studies in neotropical regions have focused almost exclusively on classical cytogenetic approaches without investigating physical chromosomal mapping of specific sequences. The aim of the present study is to investigate the genomic organization of species belonging to different tribes of the subfamily Cichlinae (Cichla monoculus, Astronotus ocellatus, Geophagus proximus, Acaronia nassa, Bujurquina peregrinabunda, Hoplarchus psittacus, Hypselecara coryphaenoides, Hypselecara temporalis, Caquetaia spectabilis, Uaru amphiacanthoides, Pterophyllum leopoldi, Pterophyllum scalare, and Symphysodon discus) and reexamine the karyotypic evolutionary patterns proposed for this group. Variations in some cytogenetic markers were observed, although no trends were found in terms of the increase, decrease, or maintenance of the basal diploid chromosome number 2n = 48 in the tribes. Several species were observed to have 18S rDNA genetic duplications, as well as multiple rDNA loci. In most of the taxa analyzed, the 5S rDNA was located in the interstitial region of a pair of homologous chromosomes, although variations from this pattern were observed. Interstitial telomere sites were also observed and appear to be involved in chromosomal rearrangement events and the accumulation of repeat-rich satellite DNA sequences. Our data demonstrated the karyotypic diversity that exists among neotropical cichlids, suggesting that most of this diversity is due to the repetitive sequences present in heterochromatic regions and that repeat sequences have greatly influenced the karyotypic evolution of these fishes.  相似文献   

15.
Somatic metaphase karyotypes were analyzed for 22 diploid species ofEupatorium. The karyotypic comparisons were made using two indices: minimal chromosomal distance (MCD), measuring overall dissimilarities, and chromosomal identity (CI), measuring number of morphologically identical chromosomes between species. The resulting phenograms from these indices are largely compatible. The 22 species cluster into four groups in the phenogram using MCD, and the grouping corresponds well with morphology or geographic distribution into the three N. American groupsEutrochium, Uncasia, Traganthes, and the E. Asian group. These results suggest that karyotypes in perennialEupatorium have been considerably conservative and changed not through large chromosomal mutations but through small chromosomal mutations gradually fixed.  相似文献   

16.
Although similar patterns of phenotypic diversification are often observed in phylogenetically independent lineages, differences in the magnitude and direction of phenotypic divergence have been also observed among independent lineages, even when exposed to the same ecological gradients. The stickleback family is a good model with which to explore the ecological and genetic basis of parallel and nonparallel patterns of phenotypic evolution, because there are a variety of populations and species that are locally adapted to divergent environments. Although the patterns of phenotypic divergence as well as the genetic and ecological mechanisms have been well characterized in threespine sticklebacks, Gasterosteus aculeatus, we know little about the patterns of phenotypic diversification in other stickleback lineages. In eastern Hokkaido, Japan, there are three species of ninespine sticklebacks, Pungitius tymensis and the freshwater type and the brackish‐water type of the P. pungitiusP. sinensis species complex. They utilize divergent habitats along coast–stream gradients of rivers. Here, we investigated genetic, ecological and phenotypic divergence among three species of Japanese ninespine sticklebacks. Divergence in trophic morphology and salinity tolerance occurred in the direction predicted by the patterns observed in threespine sticklebacks. However, the patterns of divergence in armour plate were different from those previously found in threespine sticklebacks. Furthermore, the genetic basis of plate variation may differ from that in threespine sticklebacks. Because threespine sticklebacks are well‐established model for evolutionary research, the sympatric trio of ninespine sticklebacks will be an invaluable resource for ecological and genetic studies on both common and lineage‐specific patterns of phenotypic diversification.  相似文献   

17.
Huang L  Chi J  Nie W  Wang J  Yang F 《Genetica》2006,127(1-3):25-33
A set of Chinese muntjac (Muntiacus reevesi) chromosome-specific paints has been hybridized onto the metaphases of sika deer (Cervus nippon, CNI, 2n = 66), red deer (Cervus elaphus, CEL, 2n = 62) and tufted deer (Elaphodus cephalophus, ECE, 2n = 47). Thirty-three homologous autosomal segments were detected in genomes of sika deer and red deer, while 31 autosomal homologous segments were delineated in genome of tufted deer. The Chinese muntjac chromosome X probe painted to the whole X chromosome, and the chromosome Y probe gave signals on the Y chromosome as well as distal region of the X chromosome of each species. Our results confirmed that exclusive Robertsonian translocations have contributed to the karyotypic evolution of sika deer and red deer. In addition to Robertsonian translocation, tandem fusions have played a more important role in the karyotypic evolution of tufted deer. Different types of chromosomal rearrangements have led to great differences in the genome organization between cervinae and muntiacinae species. Our analysis testified that six chromosomal fissions in the proposed 2n = 58 ancestral pecoran karyotype led to the formation of 2n = 70 ancestral cervid karyotype and the deer karyotypes is more derived compare with those of bovid species. Combining previous cytogenetic and molecular systematic studies, we analyzed the genome phylogeny for 11 cervid species.  相似文献   

18.
Intraspecific color variation has long fascinated evolutionary biologists. In species with bright warning coloration, phenotypic diversity is particularly compelling because many factors, including natural and sexual selection, contribute to intraspecific variation. To better understand the causes of dramatic phenotypic variation in Malagasy poison frogs, we quantified genetic structure and color and pattern variation across three closely related species, Mantella aurantiaca, Mantella crocea, and Mantella milotympanum. Although our restriction site‐associated DNA (RAD) sequencing approach identified clear genetic clusters, they do not align with current species designations, which has important conservation implications for these imperiled frogs. Moreover, our results suggest that levels of intraspecific color variation within this group have been overestimated, while species diversity has been underestimated. Within major genetic clusters, we observed distinct patterns of variation including: populations that are phenotypically similar yet genetically distinct, populations where phenotypic and genetic breaks coincide, and populations that are genetically similar but have high levels of within‐population phenotypic variation. We also detected admixture between two of the major genetic clusters. Our study suggests that several mechanisms—including hybridization, selection, and drift—are contributing to phenotypic diversity. Ultimately, our work underscores the need for a reevaluation of how polymorphic and polytypic populations and species are classified, especially in aposematic organisms.  相似文献   

19.
Chromosome numbers and karyotypes of species from four American Zamiaceae (Cycadales) are reported. Zamia shows interspecific and intraspecific chromosome variation, whereas Microcycas, Ceratozamia, and Dioon have constant karyotypes within each genus. In Zamia, all karyotypes have the same number of submetacentric and acrocentric chromosomes, but they differ in the number of metacentric and telocentric chromosomes. Centric fission of metacentric chromosomes is proposed to explain the karyotypic variation in this genus. Zamia shows karyological relationships with Microcycas and Ceratozamia, whereas Dioon appears very distinct from the other American cycad genera. Affinity among Zamia, Ceratozamia, and Microcycas karyotypes and distinctiveness of Dioon karyotypes are supported by comparative analysis of phenotypic characters in the four genera.  相似文献   

20.
《Zoologischer Anzeiger》2014,253(2):137-142
Chaetodontidae is a family of marine butterflyfishes phylogenetically derived within the Perciformes, whose representatives are important members of coral reef ecosystems worldwide. Biological aspects of Chaetodontidae have been intensively studied, except for chromosomal analyses. Although previous reports indicate a conserved perciform-like karyotype in butterflyfishes, it remains unclear if this pattern extends to the chromosomal microstructure. New cytogenetic data are presented for two Chaetodontidae species (Chaetodon striatus and Chaetodon ocellatus) from the Western Atlantic, including karyotyping, C-banding, Ag-NOR, CMA3/DAPI staining, and two-color-FISH for mapping of 18S and 5S ribosomal genes. All populations of both species shared a karyotype with 2n = 48 acrocentric chromosomes, with pericentromeric C-positive heterochromatin and 5S and 18S rDNA located in the same region on the long arms of pairs 10 and 21, respectively. The cytogenetic similarities within and between both Chaetodon species reinforce their remarkable stability also in the chromosome microstructure. Therefore, speciation in this genus was not followed by significant karyotypic changes. Both ecological and chromosomal properties, combined with recent diversification, might be responsible for the apparent karyotype stasis and high hybridization levels found in marine butterflyfishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号