首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper deficiency in wheat ( Triticum aestivum L. cv. Nazareno Stramppeli) markedly affects photosynthetic activity. Flag leaves of copper-deficient plants showed a 50% reduction of the photosynthetic rate expressed as mg CO2 dm−2h−1. The activities of PSI and PSII, determined for isolated chloroplasts, as well as fluorescence measurements on intact leaves of copper-deficient plants, indicated a low activity of photosynthetic electron transport. Ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity was not affected by copper deficiency but copper deficiency affected the chloroplast ultrastructure, especially at the level of grana, where a disorganization of thylakoids is evident.  相似文献   

2.
以微弹轰击法转化获得的含bar基因燕麦T3代为材料 ,运用Northernblot方法研究了bar基因在燕麦的不同生育阶段、不同叶位、以及Challenge(0 .2 0 % )处理后不同时间的叶片中mRNA水平的变化。结果表明 ,外源bar基因在燕麦的不同生育阶段、不同叶位、以及除草剂处理后转录水平没有明显差异。由于除草剂喷涂后 ,植株体内氨含量的变化能够反映bar基因编码的PAT酶活性的变化 ,因而测定了Challenge处理后不同时间、不同部位的叶片中氨含量的变化情况。结果发现 ,含bar基因的燕麦植株体内氨含量在除草剂处理后不同时间和不同部位都没有显著的变化 ,而对照植株体内氨的含量在除草剂处理后能迅速上升。这表明 ,含bar基因的燕麦植株体内由于PAT酶的稳定表达 ,而使氨的含量维持在较低水平。从转录和翻译两个层次上反映了水稻Act1启动子融合的bar基因在转基因燕麦T3 中能够稳定表达 ,且表达水平不受叶位和除草剂的影响  相似文献   

3.
A detailed analysis of cold acclimation of a winter rye (Secale cereale L. cv Puma), a winter oat (Avena sativa L. cv Kanota), and a spring oat cultivar (Ogle) revealed that freezing injury of leaves of nonacclimated seedlings occurred at -2[deg]C in both the winter and spring cultivars of oat but did not occur in winter rye leaves until after freezing at -4[deg]C. The maximum freezing tolerance was attained in all cultivars after 4 weeks of cold acclimation, and the temperature at which 50% electrolyte leakage occurred decreased to -8[deg]C for spring oat, -10[deg]C for winter oat, and -21[deg]C for winter rye. In protoplasts isolated from leaves of nonacclimated spring oat, expansion-induced lysis was the predominant form of injury over the range of -2 to -4[deg]C. At temperatures lower than -4[deg]C, loss of osmotic responsiveness, which was associated with the formation of the hexagonal II phase in the plasma membrane and subtending lamellae, was the predominant form of injury. In protoplasts isolated from leaves of cold-acclimated oat, loss of osmotic responsiveness was the predominant form of injury at all injurious temperatures; however, the hexagonal II phase was not observed. Rather, injury was associated with the occurrence of localized deviations of the plasma membrane fracture plane to closely appressed lamellae, which we refer to as the "fracture-jump lesion." Although the freeze-induced lesions in the plasma membrane of protoplasts of spring oat were identical with those reported previously for protoplasts of winter rye, they occurred at significantly higher temperatures that correspond to the lethal freezing temperature.  相似文献   

4.
土壤水分胁迫对燕麦叶片渗透调节物质含量的影响   总被引:11,自引:0,他引:11  
以旱棚内盆栽的'内农大莜一号'燕麦品种为材料,测定了其不同水分胁迫下各生育期叶片的脯氨酸、可溶性糖含量和细胞膜相对透性,分析土壤含水量对燕麦叶片渗透调节物质的影响,以明确燕麦不同生育时期的抗旱特性.结果表明:(1)随着土壤相对含水率的下降,燕麦各生育期叶片脯氨酸含量、可溶性糖含量、细胞膜相对透性均呈上升趋势.(2)随着生育期的推进,燕麦叶片脯氨酸含量在30%和45%土壤含水量下呈持续上升趋势,而在含水量 60%、75%、90%处理下则于生育前期上升,灌浆期略有下降;随着生育期的延续,可溶性糖的含量呈先升后降的抛物线型变化,且其最大值随水分胁迫强度增加而提前,含水量 30%和45%处理的最大值均出现在拔节期,含水量60%和75%处理则分别出现在孕穗期和开花期;随着生育期的延续,各处理燕麦叶片的细胞膜相对透性均呈持续上升趋势.可见,水分胁迫能诱导燕麦叶片渗透调节物质的积累,且增幅随着胁迫强度的增加而上升,从而使燕麦表现出较强的抗旱性.  相似文献   

5.
Summary The effect of fertilization with nitrogen and copper on the amino acid composition of oat straw has been studied.The plants (Avena sativa cv Yielder) were grown in peat with a very low copper content and supplied with two levels of nitrogen (NH4 or NO3) and three levels of copper sulphate.The higher level of nitrogen stimulated growth only when copper was added, whereas, without copper, it had an adverse effect on growth and prevented grain formation altogether. The higher level of nitrogen increased the nitrogen content of the straw at all levels of copper, but particularly in plants receiving no copper.Total amino acids in the straw hydrolysate of copper sufficient oats accounted for about 50% of the total N and was about 20% higher in copper-deficient tissues. The addition of copper caused a decrease in the amounts of all amino acids. The relative proportions of most of the amino acids to glycine remained fairly constant. Threonine, serine, alanine, iso-leucine, histidine and arginine showed small significant differences with copper treatment, whereas valine, tyrosine, phenylalanine, proline, lysine and cysteic acid (derived from cysteine and cystine) showed no differences. The proportion of aspartic acid relative to glycine in the straw hydrolysate was greatly increased in copper deficient plants supplied with the higher level of nitrogen, particularly as ammonium. The proportion of glutamic acid was also increased by the higher level of nitrogen, but showed no effect of added copper. Most of the difference in aspartic acid could be accounted for as free asparagine. The possible reasons for higher proportions of asparagine are discussed in relation to the metabolism of the oat plant.  相似文献   

6.
探讨水分和腐植酸(HA)对燕麦不同器官非结构性碳水化合物(NSC)积累与分配的影响,进一步明确水分和HA对燕麦糖代谢和粒重形成的作用机制,可为旱作地区燕麦的推广种植提供理论指导和技术支撑。试验以‘蒙农大燕1号'和‘内燕5号'两个燕麦品种为材料,分别在旱作(无灌溉)和有限灌溉(拔节期和抽穗期每次灌水60 mm)两个水分条件下喷施HA与清水(CK),研究燕麦开花后不同时期NSC组分在茎、叶、穗中的动态变化以及叶片中碳代谢相关酶活性的变化。结果表明: 两个燕麦品种茎、叶、穗中的NSC组分含量均随开花后时间的延长先升高后降低,且两品种各器官中的NSC组分含量大致相同;与CK相比,在灌水条件下喷施HA后蒙农大燕1号穗部的果聚糖含量提升幅度明显大于旱作条件;喷施HA后蒙农大燕1号叶片中果聚糖外水解酶和转化酶活性分别显著提高了27.1%和30.6%,单穗粒重显著提高了55.9%,且与旱作条件下相比提高幅度更大;蒙农大燕1号籽粒千粒重和单穗粒重与叶片果聚糖含量呈显著正相关关系。综上,水分和腐植酸协同作用可以有效调节燕麦果聚糖的积累及主要代谢酶活性,从而提高千粒重和单穗粒重,促进产量形成。  相似文献   

7.
The lipid composition of the plasma membrane isolated from leaves of spring oat (Avena sativa L. cv Ogle) was vastly different from that of winter rye (Secale cereale L. cv Puma). The plasma membrane of spring oat contained large proportions of phospholipids (28.8 mol% of the total lipids), cerebrosides (27.2 mol%), and acylated sterylglucosides (27.3 mol%) with lesser proportions of free sterols (8.4 mol%) and sterylglucosides (5.6 mol%). In contrast, the plasma membrane of winter rye contained a greater proportion of phospholipids (36.6 mol%), and there was a lower proportion of cerebrosides (16.4 mol%); free sterols (38.1 mol%) were the predominant sterols, with lesser proportions of sterylglucosides (5.6 mol%) and acylated sterylglucosides (2.9 mol%). Although the relative proportions of individual phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine, and the molecular species of these two phospholipids were similar in oat and rye, the relative proportions of di-unsaturated species of these two phospholipids were substantially lower in oat than in rye. The relative proportions of sterol species in oat were different from those in rye; the molecular species of cerebrosides were similar in oat and rye, with only slight differences in the proportions of the individual species. After 4 weeks of cold acclimation, the proportion of phospholipids increased significantly in both oat (from 28.8 to 36.8 mol%) and rye (from 36.6 to 43.3 mol%) as a result of increases in the proportions of phosphatidylcholine and phosphatidylethanolamine. For both oat and rye, the relative proportions of di-unsaturated species increased after cold acclimation, but the increase was greater in rye than in oat. In both oat and rye, this increase occurred largely during the first week of cold acclimation. During the 4 weeks of cold acclimation, there was a progressive decrease in the proportion of cerebrosides in the plasma membrane of rye (from 16.4 to 10.5 mol%), but there was only a small decrease in oat (from 27.2 to 24.2 mol%). In both oat and rye, there were only small changes in the proportions of free sterols and sterol derivatives during cold acclimation. Consequently, the proportions of both acylated sterylglucosides and cerebrosides remained substantially higher in oat than in rye after cold acclimation. The relationship between these differences in the plasma membrane lipid composition of oat and rye and their freezing tolerance is presented.  相似文献   

8.
Chlorophyllase seems to be responsible for the degradation of chlorophyll during senescence of detached leaves of barley (Hordeum vulgare) and oat (Avena sativa). Treatment at temperatures higher than 40°C — which protects against chlorophyll loss — lowers the level of chlorophyllase. Kinetin treatment lowers the level of chlorophyllase in barley leaves and prevents its rise in oat leaves after their detachment. Synthesis of proteins in both cytoplasm and chloroplast seems to be required in order to maintain a high level of Chlorophyllase in barley leaves after detachment.  相似文献   

9.
Membranous fractions from leaves of oat seedlings readily convert cholesterol beta-D-glucoside into its 6'-O-acyl derivative using endogenous acyllipids as acyl sources. Experiments with delipidated enzyme preparations showed that among acyllipids present in oat leaves digalactosyldiacylglycerols are evidently the best acyl donors in this reaction. Beside of sterol glucosides, the enzyme can acylate beta-D-glucosides of several other steroids, although at very different rates.  相似文献   

10.
This study was conducted to determine the effects of nutrient interactions between dietary carbohydrates and copper levels on fructose-metabolizing hepatic enzymes in male and female rats. Male and female rats were fed diets for 5 weeks that were either adequate or deficient in copper that contained either starch or fructose. Rats of both sexes fed fructose as compared with those fed starch showed higher activity of hepatic fructose metabolizing enzymes. There were also significant differences in fructose metabolism of liver between the male and female rats. Female rats had lower hepatic ketohexokinase and triose kinase but higher triosephosphate isomerase activities compared with male rats. Male rats fed copper-deficient diets had lower aldolase B activity compared with those fed copper-adequate diets. Female rats fed copper-deficient diets had higher triosephosphate isomerase activity compared with rats fed copper-adequate diets. Our data suggest that gender differences in hepatic fructose metabolism may not be the primary reason for the severity of copper deficiency syndrome in male rats fed copper-deficient diet with fructose.  相似文献   

11.
12.
Abstract. Avena sativa L. (oat) seedings were grown 4 d in continuous white light followed by 3 d in darkness. Probes derived from an oat phytochrome cDNA clone (pAP 3.2) were used in slot blot analyses to measure the abundance of phytochrome mRNA in the distinct etiolated and green portions of the leaves produced by these seedlings. Both the green and etiolated portions accumulated phytochrome mRNA to a level of about 85% of the etiolated seedling level. Subsequent experiments with similar seedlings showed that both the green and etiolated portions were capable of inducing a dramatic decline in phytochrome mRNA abundance in response to a saturating red light pulse. Despite the ability of green portions of oat leaves to accumulate phytochrome mRNA and to down-regulate phytochrome mRNA abundance in response to light, no substantial variation in phytochrome mRNA abundance was observed in green oat seedlings maintained on a 12-h day/12-h night cycle. In the same oat seedlings, the abundance of chlorophyll a/b binding protein mRNA fluctuated dramatically during the day/night cycle.  相似文献   

13.
In order to investigate the possibility that cytokinins control transpiration indirectly through affecting leaf senescence, a direct comparison was made of the effect of different cytokinins on transpiration and senescence of oat leaves (Avena sativa L. cv. Forward). Senescence was assessed by measuring chlorophyll loss. The synthetic cytokinins N6 benzyladenine (BA) and kinetin delayed senescence and increased transpiration of oat leaves to a greater extent than did the naturally occurring compounds zeatin, Nb2 isopentenyladenine (i6 Ade) and 6-ø-hydroxybenzyladenosine (hyd-BA riboside). During the early stages of the transpiration experiment zeatin showed similar or greater activity than BA. This period was longest when freshly excised leaves were used, was reduced when leaves were used after incubation in distilled water in the dark for 20 h and was eliminated by incubation in cytokinin solution in the dark. After this period the activity of zeatin declined relative to BA. The effect of cytokinins in increasing transpiration occurred only in the light; no effect was observed in the dark. BA showed higher activity than zeatin in senescence tests but both cytokinins were less effective as the tests progressed, this decrease in activity being more rapid when older leaves were used. The results are discussed in relation to the mechanisms by which endogenous cytokinins might control sensecence and transpiration in oat leaves and to the value of the oat leaf senscence and transpiration bioassays as tests for cytokinin activity of plant extracts.  相似文献   

14.
The levels of acyl carrier proteins (ACP) in greening spinachcotyledons and greening oat leaves were examined by immunoblottingwith antiserum raised against spinach ACP I. Two isoforms ofACP, ACP I and ACP II, were found in spinach cotyledons, asthey were in the green leaves. The level of ACP II was higherthan that of ACP I in etiolated cotyledons. The level of ACPI increased markedly with greening. In the greened cotyledons,the major isoform was ACP I as was the case in green spinachleaves. In oat leaves, two isoforms were also identified, oatACPI (about 12kDa) and ACP II (about 17kDa), which cross-reactedwith the antiserum against spinach ACP I, but which were differentfrom spinach ACPs I and II. The levels of oat ACPs I and IIwere very low in etiolated leaves. The increase in levels ofboth ACPs corresponded to the change in the activity of fattyacid synthesis during illumination for 24 h. During furtherillumination for 24 h, the level of ACP II increased a littlein parallel with the change in the activity of fatty acid synthesis,whereas the level of ACP I increased somewhat more. The functionof oat ACPs I and II is discussed in connection with the formationof chloroplast. (Received March 27, 1989; Accepted September 18, 1989)  相似文献   

15.
Avenanthramides, a series of substituted cinnamic acid amides with anthranilate, are phytoalexins in oats (Avena sativa L.). The precursors of avenanthramides, cinnamate and anthranilate, are biosynthesized via the shikimate pathway that branches at chorismate. Chorismate mutase (CM, EC 5.4.99.5) is the first enzyme on the branch that provides the cinnamate part of avenanthramides. The induction of CM was investigated in primary oat leaves using oligo-N-acetylchitooligosaccharides as elicitors. The CM activity started to increase 6 h after elicitation, and reached a maximum by 9 h, being around twice as large as that in control leaves. Among the oligo-N-acetylchitooligosaccharides tested, tetra-, penta-, and hexasaccharides effectively induced the CM activity in a dose-dependent manner. The activity was separated into two major peaks on anion exchange chromatography with Mono Q, indicating that at least two CM isoforms are present in oat leaves. A comparison of elution profiles of CM activity in intact and elicitor-treated leaves revealed that only one CM isoform is responsive to the elicitor. Two CM isoforms in oat leaves were partially purified and characterized. Both CM isoforms were insensitive to l-phenylalanine, l-tyrosine, l-tryptophan, and caffeate. The fractionation of oat cells indicated that both CM isoforms localized in plastids.  相似文献   

16.
Plotnikova LIa 《Tsitologiia》2008,50(5):439-446
Parasitic rust fungi Puccinia triticina and P. coronata specialized to cereals are not able to form functionally completed cellular structures (germ tubes and appressoria) on the surface of plant species that do not belong to Poaceae. Fungus structures are induced by the surface features of grains leaves (millet, maize, oat, common wheat) to a different extent. Nuclear division and activity of parasites are partially suppressed on the non-host leaves. Fungi intrusions into sub-stomal cavities of the oat and wheat leaves are predominantly prevented by oxidative burst and to the less extent by defense proteins.  相似文献   

17.
The influence of temperature and light on prepenetration development of single and mixed isolates of Puccinia graminis avenae and Puccinia coronata avenae was studied on 0–2% water agar and on leaves of three oat cultivars and on three non-cultivated species of Avena. Germination of uredospores of P. graminis avenae and P. coronata avenae occurred best at 10–30oC and at 20oC respectively. The optimum temperature for germ-tube growth and for appressorial formation was 20oC for both rusts. An inverse relationship was observed between light intensity and prepenetration development with maximal germination of uredospores, germ-tube growth and appressorial formation occurring in darkness. Under optimum conditions maximum percentage germination and appressorium formation of both rusts was attained within 4 and 12 h after inoculation respectively. The proportion of germinated uredospores of crown rust which gave rise to appressoria was about twice that observed for stem rust. No significant differences were observed in prepenetration development between the single and mixed race inocula of the two rusts. Although germination of uredospores was significantly greater on water agar than on oat leaves, there were no significant differences in prepenetration development of the rusts on the various oat cultivars and species examined. Consequently, the data failed to indicate the presence of resistance mechanisms operating during the prepenetration phase of the infection process on the cultivars and species examined.  相似文献   

18.
Ice nucleation temperatures of individual leaves were determined by a tube nucleation test. With this assay, a direct quantitative relationship was obtained between the temperatures at which ice nucleation occurred on individual oat (Avena sativa L.) leaves and the population sizes of ice nucleation active (INA) bacteria present on those leaves. In the absence of INA bacteria, nucleation of supercooled growth-chamber grown oat leaves did not occur until temperatures were below approximately −5°C. Both nucleation temperature and population size of INA bacteria were determined on the same individual, field-grown oat leaves. Leaves with higher ice nucleation temperatures harbored larger populations of INA bacteria than did leaves with lower nucleation temperatures. Log10 mean populations of INA bacteria per leaf were 5.14 and 3.51 for leaves with nucleation temperatures of −2.5°C and −3.0°C, respectively. Nucleation frequencies (the ratio of ice nuclei to viable cells) of INA bacteria on leaves were lognormally distributed. Strains from two very different collections of Pseudomonas syringae and one of Erwinia herbicola were cultured on nutrient glycerol agar and tested for nucleation frequency at −5°C. Nucleation frequencies of these bacterial strains were also lognormally distributed within each of the three sets. The tube nucleation test was used to determine the frequency with which individual leaves in an oat canopy harbored large populations of INA bacteria throughout the growing season. This test also predicted relative frost hazard to tomato (Lycopersicon esculentum Mill) plants.  相似文献   

19.
The tissue-specificity of the sugarcane bacilliform virus (SCBV) promoter was investigated in oat, barley, and wheat to determine whether its expression pattern in one species was predictive of promoter specificity in the other closely related Gramineae species. Progeny of transgenic plants produced using constructs containing the SCBV promoter driving gusA were sampled at different stages of plant development and stained for GUS activity using a histochemical assay. Overall, the GUS staining patterns were most similar between oat and barley. In all three species, similar GUS staining patterns were observed in mature endosperms, leaves, and floral bracts of developing infloresences. No GUS staining was detected in oat embryos whereas the entire barley embryo was stained, and GUS staining was confined to the scutellum of wheat embryos. Oat and barley stems exhibited GUS staining whereas no GUS staining was observed in stems of the transgenic wheat plants. The SCBV promoter conferred strong GUS staining intensity in most tissues of oat and barley but was generally weaker in wheat. These differences in SCBV promoter specificity indicate that promoter evaluation should be conducted in the target species of interest rather than by extrapolation from expression patterns in other species.  相似文献   

20.
《Phytochemistry》1986,25(11):2525-2529
Crude homogenates or acetone powder preparations from oat leaves efficiently catalyse the glucosylation of a steroidal sapogenin, nuatigenin [22,25-epoxy-(20S)(22S)(25S)-furost-5-en-3β,26-diol], using UDP-glucose as the sugar donor. The reaction product was identified as nuatigenin 3β-D-monoglucoside. In contrast to the glucosylation of phytosterols, which is also catalysed by enzyme preparations from oat leaves, the formation of nuatigenin glucoside is not stimulated by Triton X-100. This result suggests that glucosyltransferases with different specifirity patterns are involved in sterol and nuatigenin glucosylation in oat leaves. Enzymatic acylation of nuatigenin glucoside to its monoacyl derivative with the use of an endogenous acyl source was also observed with a crude homogenate or a crude membranous fraction as the enzyme preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号