首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectrophotometric analysis affords the most convenient means for determining the proportion of methylene blue and trimethyl thionin (azure B) present in a mixture of these two dyes. The method proposed depends upon the determination of an “absorption ratio.” A suitable ratio for the purpose is that of the extinction coefficient at 640 mμ to that at 670 mμ. On account of the difference in absorption maxima of the two dyes, this ratio increases as the percentage of methylene blue decreases. The ratio value for eleven different mixtures is given and a graph is plotted from this data by means of which the proportions of the two dyes present in any mixture can be calculated from the absorption ratio determined as specified.  相似文献   

2.
Chromatographic analysis of commercial batches of toluidine blue shows these to be dye mixtures. Histologically, some samples were found to be poor metachromatic dyes. These unsatisfactory stains contained blue dyes with little or no metachromatic properties as well as a metachromatic fraction. On the other hand, contaminating dyes in histologically satisfactory samples had poor staining qualities and hence did not interfere with the color produced by the metachromatic fraction.

Chromatographic fractionation of different commercial batches of toluidine blue yielded identical, homogeneous metachromatic dyes. These purified dyes had a peak absorption at 615 mμ in contrast to that of purified azure A whose peak absorption was at 622.5 mμ.  相似文献   

3.
Twenty-four new Schiff-type reagents were discovered in a survey of 140 different dyes. These dyes include acid fuchsin, acridine yellow, acriflavine hydrochloride, azure C., Bismarck brown R, Bismarck brown Y, celestine blue B, chrysoidine 3R, chrysoidine Y extra, cresyl violet, crystal violet, gentian violet, methylene blue, neutral violet, phenosafranin, phosphine GN, proflavine, toluidine blue O, and toluylene blue. Positive results obtained with crystal violet and a few samples of methylene blue are considered due to impurities. Various chemical extractions, aldehyde blocking reagents, and enzymatic treatments were used to verify the aldehyde specificity of the above dye-SO2, reagents as well as azure A, brilliant cresyl blue, neutral red, safranin O, and thionin which have been mentioned by other workers. These reagents were tested in the Feulgen reaction for DNA and the PAS reaction for polysaccharides. Absorption curves were obtained from individual nuclei stained for DNA. The absorption peaks ranged from 450 mμ, to 630 mμ. depending on the dye studied. The Feulgen reaction could be followed by the PAS reaction or vice versa in mouse intestine using reactive dyes of complementary colors. The evidence indicates that a potential Schiff-type reagent must have at least one free NH2 group on the dye molecule.  相似文献   

4.
Though Bernthsen's methylene violet (MV) is a common constituent of polychrome methylene blue, the hydrolytic oxydation of methylene blue to yield azure-free MV has been considered a difficult chemical reaction since the time of Bernthsen, who used Ag2O in the hydrolysis. MV is qualitatively distinguished from azures by Bernthsen's criteria and the author's new tests: (1) light-excited isomeric change, (2) reactivity to acidity, (3) reaction with KCIO, and (4) reaction with Na2SO3 of azures in CHCI3, while MV gives none. But MV shows (5) indicator properties at pH 4, while azures do not. For practical hydrolysis, treat methylene blue (10 parts by weight) and KCIO3 (1 part) with 1-2 N NaOH to convert methylene blue to a mixture of MV and azures. Then dilute the solution, add a Zn salt and NaHCO3 in excess of the amount needed to convert the NaOH to Na2CO3. Boil the solution gently for 1-2 hr. The end point of the reaction is found by pipetting a drop of reactant into 3% acetic acid in a test tube, adding CHC13 and extracting. The acetic layer should then be almost colorless while the CHC13 is colored intensely cherry red. After cooling, the precipitated dye is filtered and dried. This procedure gives good yields of a dye which meets the criteria given by Bernhsen. The peak of the absorption curve in solution, pH 4-11, is at 624 mμ (Bernthsen 625 mμ) and in acid solution, pH 0-4, 588 mμ (Biological Stains, 1953; 580 μ). The dye contains so little azures, that purification of the MV fraction obtained from the reaction mixture is unnecessary when it is used in the Wright-type Romanowsky stain. The remarkable staining effect of MV is its power to bring out red azurophil granules of monocytes and lymphocytes when used with eosinated thiazins in Wright's stain.  相似文献   

5.
The absorption spectra of eosinates of thiazin dyes in water exhibit absorption maxima at the same spectral locations as do the individual component dyes in aqueous solution.

Commercial samples of Wright's stain showing thiazin absorption maxima between 620 and 660 mμ generally give satisfactory blood stains. Nuclear staining is redder and cytoplasm grayer blue in 620-640 range, and consequently staining of malaria parasites is less satisfactory in that range. The best malaria stains show their thiazin absorption maxima usually between 650 and 660 mμ.

Successive batches of Wright's stain made by the same manufacturer, as well as experimental laboratory lots, may show wide variations in their thiazin absorption maxima and in their staining characteristics.  相似文献   

6.
The reactions of 13 anionic dyes in solution with a basic protein (protamine), a cationic detergent, guanidine, histamine, procaine, quinine, and strychnine were examined visually and spectrophotometrically in order to distinguish metachromatic changes of the dyes. Disazo dyes (Congo red, benzopurpurin, but not trypan blue) were metachromatic; indigoid, triphenylmethane and xanthene dyes were not. The magnitude of metachromasy in this series of dyes was not great compared with cationic dyes, the shifts of absorbance maxima being only about 15 mμ against 90 mμ or more for some cationic metachromatic dyes. The most effective chromotropes were protamine and a cationic detergent. Agreement between visual observations on tissue sections, visual observations on solutions, and spectral observations on solutions was generally good.  相似文献   

7.
Martin Schwartz 《BBA》1967,131(3):548-558
Studies of phenazine methosulphate (PMS)-catalyzed O2 exchange and phosphorylation in spinach chloroplasts reveal that at short wavelengths (<680 mμ) PMS acts at a reduced quantum efficiency as an oxidant for O2 evolution with concomitant phosphorylation. The quantum yield profile of phosphorylation obtained with PMS differs markedly from the yield profile of phosphorylation for normal chloroplasts with NADP+ or ferricyanide as oxidant. Between 525 and 680 mμ the quantum yield of phosphorylation (ATP) catalyzed by PMS is less than half the constant maximum ATP of the normal system. The maximum ATP value for the normal system is approx. 0.16 ATP/hv. With the PMS system a peak in the yield at 690 mμ is obtained approaching the ATP value of the normal system. This yield falls again at longer wavelengths (>700 mμ).

The addition of ascorbate to the PMS phosphorylating system decreases the short-wavelength (<680 mμ) phosophorylation activity but increases the long-wavelength (>690 mμ) phosphorylation activity. The quantum yield profile of this system, showing a long-wavelength rise in phosphorylation efficiency is obtained with or without the addition of 3(3,4-dichlorophenyl)-1, 1-dimethylurea.

These experiments have been interpreted as indicating two separate electrontransfer processes catalyzed by PMS, one in which PMS acts at a reduced efficiency as a Hill oxidant, and the other in which PMS acts as an electron donor and acceptor in a cyclic fashion in sensitizing and essentially long-wavelength phosphorylation process.  相似文献   


8.
Microspectrophotometric measurements of carmine, orcein and carmine-orcein were made in solutions, in air-dried films and in stained adult and embryonic tissues of the domestic chicken. For individual stains only minor differences were found between dried dye and stained tissue. The absorption curve for carmine in solution showed a single peak at 490 mμ but was bimodal at about 530 and 570 mμ in dry films and stained tissue. Orcein showed a single broad peak at 510 mμ in solution; in dry films and stained tissue a broadening of the absorption curve in the red wavelengths was observed. The dye mixture carmine-orcein in solution showed a single peak at 500 mμ, but in tissue the spectral absorptions closely resembled carmine. With alum-like carmine, spectral changes due to the addition of iron were not detected. The results indicate that nuclear staining with carmine-orcein is due mainly to the carmine component of the mixture. Interpretation of spectral shifts indicates that acew-carmine is a metachromatic stain while aceto-orcein is mainly an ortho-chromatic stain, although some metachromasy is evident.  相似文献   

9.
Tetsuo Hiyama  Bacon Ke 《BBA》1971,226(2):320-327
Kinetics of the absorption change of P700 (blue band) and cytochrome f in whole cells of a blue-green alga, Plectonema boryanum, have been studied by Q-switched ruby-laser flash excitation (694 nm; approx. 20 nsec) to elucidate the sequential relationship of these two components in photosynthetic electron transport. “P700” was photooxidized within 2 μsec and recovered in two phases t1/2 10 μsec and 200 μsec). Under the same conditions cytochrome f was oxidized with a half time of 15 μsec. The magnitude of the fast phase of “P700” recovery, however, diminished at lower laser intensity while the cytochrome f change remained unaffected. The result suggests that cytochrome f and P700 may not be on the same electron-transport chain.  相似文献   

10.
Comparisons of absorption peaks of seven samples of methyl green showed that two different types of the dye were represented. One type (2 samples) had the visible peak near 617 mμ; the other (4 samples) near 630 mμ, while one sample was intermediate in spectral characteristics. Using these findings as a means of differentiating between heptamethyl and hexamethylethyl pararosanil-in is suggested. The Y and B forms of pyronin were found to be readily distinguishable by comparing their absorption maxima (Y, 546 mμ, B, 557-8 mμ). A check on the application of Beer's law of dilution showed that it held (1-3 mg./liter) for pyronin and that the relative effect of dilution was a slow increase with pyronin but a rapid decrease with methyl green.  相似文献   

11.
Martin Schwartz 《BBA》1967,131(3):559-570
At short wavelengths (525–690 mμ) the direct measurement of the quantum yield of the photoreduction of NADP+ in normal O2-evolving spinach chloroplasts is constant ( approx. 0.3 equiv/hv). At short wavelengths (<690 mμ) the quantum yield for NADP+ reduction in 3(3,4-dichlorophenyl)-1,1-dimethylurea-poisoned chloroplasts supplied with the ascorbate-2,6-dichlorophenolindophenol couple (donor system) is approx. half as efficient as the normal system. At long wavelengths the quantum yield of NADP+ reduction in the donor system increases by a factor of 2 ( approx. 0.3 equiv/hv) when compared with the corresponding yield for the donor system at short wavelengths ( approx. 0.15 equiv/hv).

Between 525 and 690 mμ, the phosphorylation yield for the normal system is constant ( = 0.15 ATP/hv), maintaining a constant P/2e ratio of unity. The P/2e ratios indicate a tight coupling between phosphorylation and electron transport encompassing a single phosphorylation site for the transfer of two electrons.

Between 525 and 680 mμ, the phosphorylation yield for the donor system is constant ( approx. 0.04 ATP/hv), maintaining a P/2e ratio of approx. 0.5. At longer wavelengths (>690 mμ) the phosphorylation yield of the donor system rises ( approx. 0.07–0.08 ATP/hv) concomitant with the rise in the yield of electron flow.

These experiments suggest the possibility that two types of phosphorylation processes operate in chloroplasts, (1) a short-wavelength process coupled to the normal O2-evolving activity, and (2) a long-wavelength process coupled to the electron-donor activity of reagents such as DCIP.  相似文献   


12.
A sample of the orange fat-staining compound present in commercial Sudan III was isolated and purified by chromatographic methods. This material showed the presence of no other contaminating colored compounds when analyzed by paper chromatographic methods. Spectrographic analysis in the visible and ultra-violet ranges shows a strong absorption maximum at 481 mμ, a shoulder at approximately 425 mμ, and a weak absorption maximum at 315 mμ.  相似文献   

13.
1. Spinach chloroplasts subjected to sonication show light-induced absorption changes at 700 mμ characteristic of the photooxidation of the chlorophyll component P700. The appearance of P700 absorption changes probably resulted from the release of plastocyanin thus interrupting the electron flow between pigment systems 1 and 2. The general features of the absorption-change transients are similar to those observed previously with digitonin-treated chloroplasts. The addition of 2 mM ascorbate or 10 μM 3-(3,4-dichlorophenyl)-1, 1-dimethylurea had practically no effect on either the magnitude or the dark decay of the transient absorption change.

2. Phenazine methosulfate (PMS) (in the presence or in the absence of ascorbate) reduction appeared to be coupled to P700 photooxidation, as shown by the corresponding transients at 430 and 388 mμ. The absorbance changes at these two wavelengths indicate that the amount of PMS photoreduced was equivalent to that of P700 photooxidized. Higher PMS concentrations accelerate the dark decay of the P700 signal. When PMS alone is present, anaerobiosis caused the dark decay to become more rapid than in the presence of ascorbate.

3. Unlike PMS, other redox agents such as 2,6-dichlorophenolindophenol, N,N,N′,N′-tetramethyl-p-phenylenediamine or diaminodurol in the presence of excess ascorbate, did not noticeably affect the kinetics of the dark decay at 430 or 703 mμ, suggesting that these reduced species are not efficiently coupled to photooxidized P700.

4. The onset and decay rates of the P700 transient in the presence of PMS and excess ascorbate was insensitive to temperature between 25° and o°. However, when the chloroplast sample was frozen at temperatures ranging from −5° to −196°, all reactions ceased. When the frozen (−196°) sample was brought back to the room temperature, the reaction was restored completely. Fresh broken chloroplasts behave similarly. Digitonin-treated chloroplasts persisted down to about −25° but with diminishing magnitude and slower decay.  相似文献   


14.
Supravital staining by thiazins of segments of small intestine and mesentery of young dogs was studied with reference to specificity for nervous tissue. Attempts to secure a purer form of methylene blue by alumina adsorption and alcohol elution of the commercial, medicinal dye yielded a product which appeared to be structurally different from the original dye. The treated dye had absorption maxima from 620 to 655 mμ in contrast with 665 for the untreated. Small nerve bundles were stained by the treated dye after 2 to 4 hours of immersion, but staining was always incomplete. Staining by untreated methylene blue was compared with that by the leucobase, thionol, methylene green, toluidine blue, new methylene blue and the azures. It was concluded that the specificity for nerve fibers resides mainly in the =N(CH3)2Cl radical, although some specificity appears to be effected by the methyl groups on the trivalent nitrogen, since azure A (dimethyl) and azure C (mono-methyl) stained weakly, but thionin did not. Methylene green showed some specificity but stained weakly. The leucobase was less active than the reoxidized dye obtained from it.  相似文献   

15.
By the term “blood stain” one ordinarily means a compound dye formed from the chemical union of an acid and a basic dye, and usually a compound of the eosin-methylene-blue group. It is well known today that the sodium salt of a color acid (e. g. eosin) and the chloride of a dye base (e. g. methylene blue) may be converted by simple metathesis into sodium chloride plus the compound dye (e. g. methylene blue eosinate), the latter being insoluble in water unless an excess is present of either the acid or the basic dye. In modern blood stains a compound dye of this type is dissolved in methyl alcohol and mixed with water on the slide at the moment of staining.  相似文献   

16.
Zinc chloride methylene blue appeared on the market almost contemporaneously with the zinc-free medicinal form. The former has rarely been reported as being used in blood stains. Recent suspension of manufacture of medicinal methylene blue by it. principal American producer has excited interest in the use of the zinc chloride form for the preparation of blood stains. According to Lillie (1944a,b) the azure B content of zinc chloride methylene blue may have varied from 5 to 30% in the samples studied. Taking the Merck Index (1968, 1976) figures for the spectroscopic absorption maximum (λmax) of 667.8 and 668 nm as standard, recent samples of zinc chloride methylene blue are calculated to contain 6-8% azure B. These figures are baaed on 1) the shift of λmax after exhaustive pH 9.5 chloroform extraction, 2) evaluation of the actual ratio of the observed TiCl2 dye content to the theoretical for pure zinc chloride methylene blue, 3) comparison of spectroscopic and staining effects of graded hot dichromate oxidation products with those of highly purified azure B-methylene blue mixtures of known proportions.

As far as can be found, medicinal methylene blue is almost the exclusive source of cosin polychrome methylene blue blood stains. Lillie (1944c) included a short series comparing 5 zinc chloride methylene blues with a dozen medicinal methylene blue samples; all were oxidized with hot dichromate to produce successful Wright stains. No effort was made to remove the zinc Exhaustive pH 9.5 chloroform extraction of zinc chloride methylene blue (lot MCB 12-H-29) yielded a small amount of red dye which when extracted into 0.1 N HCI gave λmax = 650. The extraction moved the absorption peak of the zinc chloride methylene blue from 667 to 668 nm and the midpoint of the 90% maximum absorption band, 18 nm wide, from 666.5 to 667.5 nm.  相似文献   

17.
Satoru Higashi  Kiyozo Kawai 《BBA》1970,216(2):274-281
1. The spermatozoa of the freshwater mussel (Hyriopsis schlegelii) contain cytochromes aa3, b and c, flavoproteins and nicotinamide nucleotides in molar ratios of 1.0:0.9:1.8:1.8:8.7. Cytochrome c1 is not detectable even at liquid-N2 temperature, but a c1-like cytochrome with an -band at 550 mμ is found at liquid-N2 temperature in a cell preparation from which cytochrome c is completely removed.

2. The near-ultraviolet difference spectrum of whole cells reveals an absorption peak at 315 mμ with a shoulder around 350 mμ.

3. Both the endogenous respiration and motility of spermatozoa are completely blocked by 0.2 mM CN and by 0.2 μM antimycin A. 2,4-Dinitrophenol and pentachlorophenol completely inhibit motility at the maximal stimulation of respiration. Rotenone strongly inhibits NADH oxidase of spermatozoa, although it has no effect on the respiration of whole cells.

4. It is concluded that the motility of mussel spermatozoa is tightly coupled to respiration, and the respiratory chain phosphorylating process is the only energy-supplying system for motility.  相似文献   


18.
TO determine the amount of K2Cr2O7 required to produce optimal Giemsa type staining, six 1 g amounts (corrected for dye content) of zinc methylene blue were oxidized with graded quantities of K2Cr2O7 to produce 4, 8, 12, 16, 20 and 24% conversion of methylene blue to azure B. These were heated with a blank control 15 minutes at 100 C in 60-65 ml 0.4 N HCI. cooled, and adjusted to 50 ml to give 20 mg original dye/ml. Aliquots were then diluted to 1% and stains were made by the “Wet Giemsa” technic (Lillie and Donaldson 1979) using 6 ml 1% polychrome methylene blue, 4 ml 1% cosin (corrected for dye content), 2 ml 0.1 M pH 6.3 phosphate buffer, 5 ml acetone, and 23 ml distilled water. The main is added last and methanol fixed blood films are stained immediately for 20-40 min.

For methylene blue supplied by MCB 12-H-29, optimal stains were obtained with preparations containing 20 and 24% conversion of methylene blue to azure B. With methylene blue supplied by Aldrich (080787), 16% conversion of methylene blue to azure B was optimal. Eosinates prepared from a low azure B/methylene blue preparation selected in this way give good stains when used as a Wright stain in 0.3% methanol solution. However, when the 600 mg eosinate solution in glycerol methanol is supplemented with 160 mg of the same azure B/methylene blue chloride the mixture fails to perform well. The HCI precipitation of the chloride apparently produces the zinc methylene blue chloride salt which is poorly soluble in alcohol. It appears necessary to have a zinc-free azure B/methylene blue chloride to supplement the probably zinc-free eosinate used in the Giemsa mixture.  相似文献   

19.
Bromophenol blue and methyl orange removal capabilities of citraconic anhydride-modified horseradish peroxidase were compared with those of native horseradish peroxidase. Citraconic anhydride-modified horseradish peroxidase showed higher decolorization efficiencies for both dyes than native horseradish peroxidase. Upon the chemical modification, the decolorization efficiencies were increased by 1.8% and 12.4% for bromophenol blue and methyl orange, respectively. The quantitative relationships between decolorization efficiencies of dyes and reaction conditions were also investigated. Experimental data revealed that aqueous phase pH, reaction time, temperature, enzyme concentration and ratio of dye and H2O2 play a significant role on the dye degradation. Lower dose of citraconic anhydride-modified horseradish peroxidase was required than that of native enzyme for the decolorizations of both dyes to obtain the same decolorization efficiencies. Citraconic anhydride-modified HRP exhibited a good decolorization of dye over a wide range of dye concentration from 8 to 24 or 32 μmol l−1 at 300 μmol l−1 H2O2, which would match industrial expectations. Kinetic constants for two different dyes were also determined. Citraconic anhydride-modified horseradish peroxidase shows greater affinity and catalytic efficiency than native horseradish peroxidase for both dyes.  相似文献   

20.
We have developed a simple method to determine cell viability using two fluorescent dyes, Hoechst 33258 and acridine orange. When these dyes are used in combination, dead cells fluoresce brilliant blue and live cells fluoresce green. This method works over a range of dye concentrations (Hoechst 33258, 0.25-2 μg/ml; acridine orange, 1-5.0 μg/ml) and the fluorescence spectra of the two dyes are such that only one set of filters is required to visualize the effects of both dyes simultaneously. It is insensitive to a wide range of exogenous serum concentrations and is read with greater uniformity by different observers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号