首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Under N2-fixing conditions in aerobic culture and in symbiosis, frankiae produce spherical, multicellular structures that have been called vesicles. The vesicles have been proposed as the site of nitrogen fixation. We isolated vesicles by using density centrifugation in a single-step sucrose gradient. Vesicles migrated out of 50% (wt/vol) sucrose and banded at the 40 to 50% sucrose interface; they were intact, as assessed by transmission electron microscopy, and were free of hyphal contamination. Specific activities of nitrogenase in vesicles prepared anaerobically were up to 100-fold greater than the specific activity of the largely hyphal pellet, depending on the recovery of vesicles. All of the activity in the pellet could be accounted for by the number of vesicles present in the pellet. Glutamine synthetase activity in crude extracts of vesicles was extremely low.  相似文献   

2.
Mutants of Anabaena sp. strain PCC 7120 that are incapable of sustained growth with air as the sole source of nitrogen were generated by using Tn5-derived transposons. Nitrogenase was expressed only in mutants that showed obvious morphological signs of heterocyst differentiation. Even under rigorously anaerobic conditions, nitrogenase was not synthesized in filaments that were unable to develop heterocysts. These results suggest that competence to synthesize nitrogenase requires a process that leads to an early stage of visible heterocyst development and are consistent with the idea that synthesis of nitrogenase is under developmental control (J. Elhai and C. P. Wolk, EMBO J. 9:3379-3388, 1990). We isolated mutants in which differentiation was arrested at an intermediate stage of heterocyst formation, suggesting that differentiation proceeds in stages; those mutants, as well as mutants with aberrant heterocyst envelopes and a mutant with defective respiration, expressed active nitrogenase under anaerobic conditions only. These results support the idea that the heterocyst envelope and heterocyst respiration are required for protection of nitrogenase from inactivation by oxygen. In the presence of air, such mutants contained less nitrogenase than under anaerobic conditions, and the Fe-protein was present in a posttranslationally modified inactive form. We conclude that internal partial oxygen pressure sufficient to inactivate nitrogenase is insufficient to repress synthesis of the enzyme completely. Among mutants with an apparently intact heterocyst envelope and normal respiration, three had virtually undetectable levels of dinitrogenase reductase under all conditions employed. However, three others expressed oxygen-sensitive nitrogenase activity, suggesting that respiration and barrier to diffusion of gases may not suffice for oxygen protection of nitrogenase in these mutants; two of these mutants reduced acetylene to ethylene and ethane.  相似文献   

3.
In the marine shrimp Sicyonia ingentis, ova lack cortical vesicles at spawning. Previous ultrastructural studies suggested that two different populations of cortical vesicles (dense vesicles and the ring vesicles) appear within 30 min post-spawning. These vesicles undergo sequential exocytosis (exocytosis of the dense vesicles followed by exocytosis of the ring vesicles) that leads to the formation of a hatching envelope around the ovum (see Pillai and Clark: Tissue & Cell 20:941-52, 1988). In the present study, lectins were used as molecular probes to study the development of cortical vesicles subsequent to spawning and the role of these vesicles in formation and elaboration of the hatching envelope. Isolated envelopes were screened with 11 different lectins to determine what group(s) were specific to the envelope glycoconjugates; Concanavalin A (Con A), Griffonia simplicifolia (GS II), Lens culinaris (LCA), and wheat germ agglutinin (WGA) bound to the envelopes. FITC-lectin studies of sectioned ova (fixed at various time points after spawning) utilizing WGA and LCA showed different labelling patterns. Data obtained at the light microscopical level indicated that WGA was specific to the dense vesicles and the outer portion of the envelope, while LCA exhibited specificity for the ring vesicles and the inner portion of the envelope. At the ultrastructural level, gold-LCA labelling was seen associated with the cisternal elements (containing ring-shaped structures), ring vesicles, and the inner layer of the fully formed envelope. These data demonstrated that 1) the ring vesicles are formed by fusion of cisternal elements containing ring-shaped structures; 2) the two species of cortical vesicles are chemically heterogeneous; and 3) the components of each type of vesicle contribute to different integral parts (the outer and inner layers) of the hatching envelope.  相似文献   

4.
Band 3, the erythrocyte anion transporter, has been shown to transfer between human erythrocytes and sonicated vesicles (Newton, A. C., Cook, S. L., and Huestis, W. H. (1983) Biochemistry 22, 6110-6117). Functional band 3 becomes associated with dimyristoylphosphatidylcholine vesicles incubated with human red blood cells. Proteolytic degradation patterns reveal that the transporter is transferred to the vesicles in native orientation. In erythrocytes, native band 3 is degraded on the exoplasmic membrane face by chymotrypsin and on the cytoplasmic surface by trypsin (Cabantchik, Z. I., and Rothstein, A. (1974) J. Membr. Biol. 15, 227-248; Jennings, M. L., Anderson, M. P., and Monaghan, R. (1986) J. Biol. Chem. 261, 9002-9010). Band 3 in intact protein-vesicle complexes is degraded by exogenous chymotrypsin but not by trypsin. In contrast, trypsin entrapped in the lumen of the vesicles proteolyses the vesicle-bound band 3 quantitatively. Band 3 remaining in the membranes of vesicle-treated cells and in cell fragments is not degraded detectably by vesicle-entrapped trypsin. These observations indicate that band 3 is unlikely to transfer between cell and vesicle membranes via a water-soluble form or to adhere nonspecifically to the vesicle surface; the aqueous contents of vesicles and cells (or membrane fragments) are not pooled during cell-vesicle incubations, hence no cell-vesicle fusion occurs; and the band 3 associated with the sonicated vesicle fraction is inserted in the vesicle bilayer in native orientation, with its cytoplasmic segment contacting the aqueous contents of the vesicle lumen.  相似文献   

5.
The interaction and mixing of membrane components in sonicated unilamellar vesicles and also non-sonicated multilamellar vesicles prepared from highly purified phospholipids suspended in NaCl solutions has been examined. Electron microscopy and differential scanning calorimetry were used to characterize the extent and kinetics of mixing of membrane components between different vesicle populations. No appreciable fusion was detected between populations of non-sonicated phospholipid vesicles incubated in aqueous salt (NaCl) solutions. Mixing of vesicle membrane components via diffusion of phospholipid molecules between vesicles was observed in populations of negatively charged phosphatidylglycerol vesicles but similar exchange diffusion was not detected in populations of neutral phosphatidylcholine vesicles. Incubation of sonicated vesicle populations at temperatures close to or above the phospholipid transition temperature resulted in an increase in vesicle size and mixing of vesicle membrane components as determined by a gradual change in the thermotropic properties of the mixed vesicle population. The interaction of purified phospholipid vesicles was also examined in the presence of myristic acid and lysolecithin. Our results indicate that while these agents enhance mixing of vesicle membrane components, in most cases mixing probably proceeds via diffusion of phospholipid molecules rather than by fusion of entire vesicles. Increased mixing of vesicle membrane components was also produced when vesicles were prepared containing a purified hydrophobic protein (myelin proteolipid apoprotein) or were incubated in the presence of dimethylsulfoxide. In these two systems, however, the evidence suggests that mixing of membrane components results from the fusion of entire vesicles.  相似文献   

6.
Membrane vesicles from the envelope of Escherichia coli were separated by electrophoresis through dilute agarose and by sizing chromatography through Sephacryl S-1000. These techniques revealed that proteins were associated with different subsets of vesicles. In particular, dilute agarose electrophoresis clearly separated the inner membrane penicillin-binding proteins (PBPs) into different vesicle groups. Vesicles containing PBPs 4, 6, 7, and 8 migrated rapidly through agarose; vesicles with PBPs 1a, 1b, 2, 3, and 5 eluted later. With the exception of PBP 4, which migrated with PBPs 1 through 5, chromatography through Sephacryl S-1000 was able to distinguish the same two vesicle sets, though the extent of separation was poorer than with agarose. The existence of these associations among vesicles and proteins suggests that there is an organization to the inner membrane of E. coli which is not observed when membrane vesicles are separated solely on the basis of density in sucrose gradients.  相似文献   

7.
A method for implanting exogenous membrane proteins into recipient hepatoma cells is described. Red cell band 3 and Sendai virus envelope proteins HN and F were extracted from their respective sources and purified by centrifugation to equilibrium through sucrose step gradients in the presence of octyl-beta-D-glucopyranoside. 0.05-0.15 micron vesicles were formed by adding lipid to combined detergent solubilized, isolated membrane proteins and removing detergent by dialysis. The vesicles were hybrid band 3-Sendai envelope vesicles and not a mixture of two distinct vesicle types as judged by (1) the ability of Sendai specific antibody to immunoprecipitate greater than 99% of band 3 from vesicle suspensions and (2) comigration of band 3 and Sendai envelope proteins on isopyknic sucrose density gradients. The hybrid vesicles (virosomes) were not fusogenic but did bind to cultured hepatoma cells in the cold. Subsequent treatment of virosomes absorbed onto cultured cells with polyethylene glycol resulted in a stable association of 2-10% of added band 3 and Sendai envelope proteins with the cells. Efficient transfer of virosome-associated band 3 to the cells was dependent on both lipid and Sendai envelope proteins. Fluid phase marker transfer, immunofluorescence, and protease digestion experiments demonstrate that the majority of the virosomes were implanted into recipient hepatoma membranes and not simply adsorbed onto their surface or immediately endocytosed. The hybrid membrane protein-viral envelope vesicles thus offer an efficient means for insertion of foreign proteins into the membranes of recipient cultured cells.  相似文献   

8.
Recent reports suggest that the nuclear envelope possesses specific ion transport mechanisms that regulate the electrolyte concentrations within the nucleoplasm and perinuclear space. In this work, intact nuclei were isolated from sheep cardiac cells. After chromatin digestion, the nuclear envelopes were sonicated and four nuclear vesicle populations were separated by sucrose step gradients (SF1-SF4). These fractions were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their protein content was analyzed by Western blot, using lamin and SEC 61 antibodies. The lamins, which are associated with the inner nuclear membrane, were present in three fractions, SF2, SF3, and SF4, with a lower amount in SF2. The SEC 61 protein, a marker of the rough endoplasmic reticulum, was detected in small amounts in SF1 and SF2. Upon fusion of vesicles into bilayers, the activities of nuclear ionic channels were recorded in 50 mM trans/250 mM cis KCl or CsCl, pH 7.2. Two types of Cl- selective channels were recorded: a large conducting 150-180-pS channel displaying substates, and a low conducting channel of 30 pS. They were both spontaneously active into bilayers, and their open probability was poorly voltage dependent at negative voltages. Retinoic acid (10(-8) M) increases the po of the large Cl- conducting channel, whereas ATP modifies the kinetics of the low conductance anion selective channel. Our data also suggest that this anionic channel is mainly present in the SF3 and SF4 population. The presence of a 181 +/- 10 pS cation-selective channel was consistently observed in the SF2 population. The behavior of this channel was voltage dependent in the voltage range -80 to +60 mV. Furthermore, we report for the first time the activity of a channel exclusively present in the SF3 and SF4 fractions, shown to contain mainly inner membrane vesicles. This cation selective channel displays a 75-pS conductance in 50 mM trans/250 mM cis K-gluconate. It is concluded that the bilayer reconstitution technique is an attractive approach to studying the electrophysiological properties of the inner and outer membranes of the nuclear envelope.  相似文献   

9.
Single shelled lecithin vesicles of uniform size (diameter = 300 A) are prepared without sonication by solubilizing unsonicated lecithin dispersions with sodium cholate and removing the detergent from the mixed lecithin - cholate micelles by gel filtration on Sephadex G-50. A homogeneous population of pure lecithin single-bilayer vesicles free of multilamellar structures is obtained. The vesicle diameter is somewhat larger than the average diameter of sonicated vesicles. The curvature of the bilayer seems to be sufficiently large to allow for similar packing densities (areas/molecule) on the outer and inner layer of the bilayer. The morphology and some physico-chemical properties of these vesicles are described and compared with those of sonicated vesicles.  相似文献   

10.
The reformation of functioning organelles at the end of mitosis presents a problem in vesicle targeting. Using extracts made from Xenopus laevis frog eggs, we have studied in vitro the vesicles that reform the nuclear envelope. In the in vitro assay, nuclear envelope growth is linear with time. Furthermore, the final surface area of the nuclear envelopes formed is directly dependent upon the amount of membrane vesicles added to the assay. Egg membrane vesicles could be fractionated into two populations, only one of which was competent for nuclear envelope assembly. We found that vesicles active in nuclear envelope assembly contained markers (BiP and alpha-glucosidase II) characteristic of the endoplasmic reticulum (ER), but that the majority of ER-derived vesicles do not contribute to nuclear envelope size. This functional distinction between nuclear vesicles and ER-derived vesicles implies that nuclear vesicles are unique and possess at least one factor required for envelope assembly that is lacking in other vesicles. Consistent with this, treatment of vesicles with trypsin destroyed their ability to form a nuclear envelope; electron microscopic studies indicate that the trypsin-sensitive proteins is required for vesicles to bind to chromatin. However, the protease-sensitive component(s) is resistant to treatments that disrupt protein-protein interactions, such as high salt, EDTA, or low ionic strength solutions. We propose that an integral membrane protein, or protein tightly associated with the membrane, is critical for nuclear vesicle targeting or function.  相似文献   

11.
At fertilization, the egg of Carcinus maenas undergoes cortical vesicle exocytosis, in response to the first contacts between the spermatozoon and the egg plasma membrane. This process was observed in vitro and may be connected with a cortical reaction. Carcinus maenas eggs display two populations of cortical vesicles which, during the reaction, successively release two different exudates: a fine granular material and a mass of ring-shaped granules. During the first steps of exocytosis, the two superimposed vitelline envelopes are detached from the egg surface, and the inner one gradually changes. Thus a new coating, derived from the coalescence of the secreted ring-shaped granules, is progressively elaborated under the vitelline envelopes. These events occur over a 7–8 hr period. The morphological uniqueness of the cortical vesicle exudates and the complexity of the related events are discussed in terms of the cortical reaction and of the formation of the fertilization envelope in Carcinus maenas.  相似文献   

12.
Nuclear envelope precursor vesicles were affinity purified from a Xenopus egg extract by a chromatin binding method. Vesicles bound to chromatin at 4 degrees C were dissociated with a high salt buffer and further fractionated into nuclear envelope precursor vesicle fractions 1 (PV1) and 2 (PV2) by differential centrifugation. PV1 contained larger vesicles. When chromatin was incubated in a Xenopus egg cytosol fraction supplemented with PV1, vesicles bound to chromatin, fused with each other, formed a bilayered nuclear envelope, and assembled into spherical small nuclei. However, the thus assembled nuclei did not grow to the normal size. Nuclear pore complexes were not found on the thus assembled nuclei. On the other hand, PV2 contained smaller vesicles. PV2 vesicles bound to chromatin, fused little with each other in the Xenopus egg cytosol fraction, and no nuclei were assembled. When PV1 supplemented with PV2 was used for the nuclear assembly reaction, the assembled nuclei grew to the normal size. Nuclear pore complexes existed in the thus assembled nuclear envelopes. These results suggested that 1) two vesicle populations, PV1 and PV2, are necessary for the assembly of normal sized nuclei, 2) PV1 contains a chromatin targeting molecule(s) and membrane fusion machinery, 3) PV2 contains a chromatin targeting molecule(s) and a molecule(s) necessary for nuclear pore complex assembly, and 4) PV1 has the ability to assemble a nuclear membrane, and PV2 is necessary for the assembly of nuclear pore complexes and for nuclei to grow to the normal size. An in vitro nuclear assembly system constituted with affinity-purified vesicle fractions, PV1 and PV2, was established.  相似文献   

13.
The formation of the nuclear envelope in the mitosis ofSpirogyra was studied with an electron microscope. The nuclear envelope was disrupted around the spindle equator in the metaphase. Many small vesicles were observed in the metaphase spindle. These vesicles surrounded the masses of chromosomes and nucleolar substance in the early anaphase, and they fused with each other to form daughter nuclear envelopes during the early anaphase. The formation of new envelopes from small vesicles at such an early mitotic anaphase is reported here for the first time. The possible origin of these vesicles is also discussed.  相似文献   

14.
The organization of the membrane-bound hydrogenase from Escherichia coli was studied by using two membrane-impermeant probes, diazotized [125I]di-iodosulphanilic acid and lactoperoxidase-catalysed radioiodination. The labelling pattern of the enzyme obtained from labelled spheroplasts was compared with that from predominantly inside-out membrane vesicles, after recovery of hydrogenase by immunoprecipitation. The labelling pattern of F1-ATPase was used as a control for labelling at the cytoplasmic surface throughout these experiments. Hydrogenase (mol.wt. approx. 63 000) is transmembranous. Crossed immunoelectrophoresis with anti-(membrane vesicle) immunoglobulins, coupled with successive immunoadsorption of the antiserum with spheroplasts, confirmed the location of hydrogenase at the periplasmic surface. Immunoadsorption with sonicated spheroplasts suggests that the enzyme is also exposed at the cytoplasmic surface. Inside-out vesicles were prepared by agglutination of sonicated spheroplasts, and the results of immunoadsorption using these vesicles confirms the location of hydrogenase at the cytoplasmic surface.  相似文献   

15.
At the end of mitosis membrane vesicles are targeted to the surface of chromatin and fuse to form a continuous nuclear envelope. To investigate the molecular mechanisms underlying these steps in nuclear envelope assembly, we have developed a defined cell-free system in which the binding and fusion steps in nuclear envelope assembly can be examined separately. We have found that extensively boiled Xenopus egg extracts efficiently promote the decondensation of demembranated Xenopus sperm chromatin. When isolated membranes are added to this decondensed chromatin a specific subfraction of membrane vesicles (approximately 70 nM in diameter) bind to the chromatin, but these vesicles do not fuse to each other. Vesicle binding is independent of ATP and insensitive to N-ethylmalamide. Quantitative analysis of these sites by EM suggests that there is at least one vesicle binding site per 100 kb of chromosomal DNA. We show by tryptic digestion that vesicle-chromatin association requires proteins on both the vesicle and on the chromatin. In addition, we show that the vesicles bound under these conditions will fuse into an intact nuclear envelope when incubated with the soluble fraction of a Xenopus egg nuclear assembly extract. With respect to vesicle fusion, we have found that vesicles prebound to chromatin will fuse to each other when ATP and GTP are present in the boiled extract. These results indicate that nuclear envelope assembly is mediated by a subset of approximately 70-nM-diam vesicles which bind to chromatin sites spaced 100 kb apart and that fusion of these vesicles is regulated by membrane-associated GTP-binding proteins.  相似文献   

16.
R. H. Berg 《Protoplasma》1994,183(1-4):37-48
Summary Using tissue stained en bloc with chromic acid or tissue prepared by high pressure-freezing and freeze-substitution, it was possible to analyze quantitatively the ultrastructure of symbiotic vesicle envelopes (SVE) inAlnus serrulata, Ceanothus americanus, Elaeagnus umbellata, andMyrica cerifera. The lamina measured about 4.7 nm in thickness in thin section. Despite diverse symbiotic vesicle morphology, the SVE thickness was similar in all of these symbioses: 36–71 nm, which corresponded to 6–15 laminae based on counts of chromic acid-stained SVEs. This similarity in structure suggests that a similar environmental signal regulates envelope thickness in the different root nodules. Based on previous studies, this is likely to be pO2. Three types of envelope morphologies were distinguished: (1) theAlnus-type (as inAlnus andElaeagnus), which had localized thickenings around the vesicle and had thickest dimensions over the stalk; (2) theCeanothus-type. characterized as a relatively uniform envelope over both vesicle and attached hypha, and (3) theMyrica-type, which had no stalk region and a basal SVE thickness of about six laminae throughout except where localized thickening occurred. Localized thickening of the SVE resulted from extra numbers of laminae being deposited, generally over regions where septa contacted the edge of the vesicle. Freeze-substituted symbiotic vesicles had a variety of novel structures that are poorly preserved in chemically-fixed tissue. A paracrystalline body inAlnus symbiotic vesicles may be composed of particles that also exist free in the symbiotic vesicle cytoplasm. In addition, a previously unknown complex at the base of theAlnus-type symbiotic vesicle and within its stalk was evident in freeze-substituted tissues.Abbreviations HPF/FS high pressure-frozen/freeze-substituted - SV symbiotic vesicle - SVE symbiotic vesicle envelope Dedicated to the memory of Professor John G. Torrey  相似文献   

17.
ABSTRACT. The microsporidium Janacekia adipophila n. sp., a parasite of Ptychoptera paludosa larvae in Sweden, is described based on light microscopic and ultrastructural characteristics. Merogonial stages and sporonts are diplokaryotic. Merozoites are formed by rosette-like division. Sporonts develop into sporogonial plasmodia with isolated nuclei. These plasmodia give rise to 8–16 sporoblasts by rosette-like budding. A sporophorous vesicle is initiated by the sporogonial plasmodium. Sporoblasts and spores are enclosed in individual sporophorous vesicles. Granular inclusions of the vesicles, visible using light microscopy, discriminate sporogonial stages from stages of the merogony. The monokaryotic, fresh spores are oval with blunt ends, measuring 4.2-6.3 × 9.1-11.2 μm. Macrospores are formed in small numbers. The spore wall has three subdivisions and the exospore is electron-dense. The polaroplast has two parts: closely arranged lamellae anteriorly, wider sac-like compartments posteriorly. The isofilar polar filament, 191–264 nm wide, has 12-13 coils, which are arranged in one layer in the posterior half of the spore. The electron-dense inclusions of the sporophorous vesicle are modified during sporogony, and vesicles with mature spores are traversed by 21–27 nm wide tubules, which connect the exospore with the envelope of the vesicle. The walls of the tubules, the envelope of the vesicles, and the surface layer of the exospore are all identical double-layered structures. The microsporidium is compared to microsporidia of Ptychopteridae and Tipulidae and to related microsporidia of the family Tuzetiidae.  相似文献   

18.
We describe an in vitro system in which post-Golgi vesicles containing metabolically labeled, sialylated, vesicular stomatitis virus (VSV) G protein molecules (VSV-G) are produced from the trans-Golgi network (TGN) of an isolated Golgi membrane fraction. This fraction is prepared from VSV-infected Madin-Darby canine kidney (MDCK) cells in which the (35)S-labeled viral envelope glycoprotein was allowed to accumulate in the trans-Golgi network during a prolonged incubation at 20 degrees C. The vesicles produced in this system are separated from the remnant Golgi membranes by differential centrifugation or by velocity sedimentation in a sucrose gradient. Vesicle production, quantified as the percentage of labeled VSV-G released from the Golgi membranes, is optimal at 37 degrees C and does not occur below 20 degrees C. It requires GTP and the small GTP-binding protein Arf (ADP-ribosylation factor), as well as coat protein type I (COPI) coat components (coatomer) and vesicle scission factors-one of which corresponds to the phosphatidylinositol transfer protein (PITP). Formation of the vesicles does not require GTP hydrolysis which, however, is necessary for their uncoating. Thus, vesicles generated in the presence of the nonhydrolyzable GTP analogs, GTPgammaS or GMP-PNP, retain a coatomer coat visible in the electron microscope, sediment more rapidly in sucrose density gradients than those generated with ATP or GTP, and can be captured with anticoatomerantibodies. The process of coatomer-coated vesicle formation from the TGN can be dissected into two distinct sequential phases, corresponding to coat assembly/bud formation and vesicle scission. The first phase is completed when Golgi fractions are incubated with cytosolic proteins and nonhydrolyzable GTP analogs at 20 degrees C. The scission phase, which leads to vesicle release, takes place when coated Golgi membranes, recovered after phase I, are incubated at higher temperatures in the presence of cytosolic proteins. The scission phase does not take place if protein kinase C inhibitors are added during the first phase, even though these inhibitors do not prevent membrane coating and bud formation. The phosphorylating activity of a protein kinase C, however, plays no role in vesicle formation, since this process does not require ATP.  相似文献   

19.
Shingles R  Roh MH  McCarty RE 《Plant physiology》1996,112(3):1375-1381
Chloroplast inner envelope membrane vesicles that are loaded with the pH-sensitive fluorophore, pyranine, show rapid internal acidification when nitrite is added. Acidification is dependent upon [delta]pH, with the inside of vesicles being alkaline with respect to the outside. The rate of vesicle acidification was directly proportional to the concentration of nitrite that was added and the imposed pH difference across the membrane. In contrast, added nitrate had no effect on vesicle acidification. Nitrite also caused acidification of asolectin vesicles. The extent of vesicle acidification is dependent on the internal volume of vesicles. Inner envelope and asolectin vesicles that were prepared by extrusion were approximately the same size, allowing them to be compared when the final extent of acidification, measured after the pH gradient had collapsed, was similar. The rate of nitrite-dependent acidification was similar in these two preparations at any single nitrite concentration. These results indicate that nitrite movement occurs by rapid diffusion across membranes as nitrous acid, and this movement is dependent on a proton gradient across the lipid bilayer. Under conditions approximating those in vivo, the rate of diffusion of nitrous acid far exceeds that of nitrite reduction within chloroplasts.  相似文献   

20.
Budding of enveloped viruses has been shown to be driven by interactions between a nucleocapsid and a proteolipid membrane. By contrast, we here describe the assembly of viral envelopes independent of a nucleocapsid. Membrane particles containing coronaviral envelope proteins were assembled in and released from animal cells co-expressing these proteins' genes from transfected plasmids. Of the three viral membrane proteins only two were required for particle formation, the membrane glycoprotein (M) and the small envelope protein (E). The spike (S) protein was dispensable but was incorporated when present. Importantly, the nucleocapsid protein (N) was neither required not taken into the particles when present. The E protein, recently recognized to be a structural protein, was shown to be an integral membrane protein. The envelope vesicles were found by immunogold labelling and electron microscopy to form a homogeneous population of spherical particles indistinguishable from authentic coronavirions in size (approximately 100 nm in diameter) and shape. They were less dense than virions and sedimented slightly slower than virions in sucrose velocity gradients. The nucleocapsid-independent formation of apparently bona fide viral envelopes represents a novel mode of virus assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号