首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of juglone (JG) on the endogenous growth, growth in the presence of either indoleacetic acid (IAA) or fusicoccin (FC) and on proton extrusion were studied in maize coleoptile segments. In addition, membrane potential changes were also determined at chosen JG concentrations. It was found that JG, when added to the incubation medium, inhibited endogenous growth as well as growth in the presence of either IAA or FC. Simultaneous measurements of growth and external pH indicated that inhibition of either IAA-induced growth or proton extrusion by JG was a linear function of JG concentration. Addition of JG to the control medium caused depolarization of the membrane potential (Em), value of which was dependent on JG concentration and time after its administration. Hyperpolarization of Em induced by IAA was suppressed in the presence of JG. It was also found that for coleoptile segments initially preincubated with JG, although subsequently removed, addition of IAA was not effective in the stimulation of growth and medium acidification. Taken together, these results suggest that the mechanism by which JG inhibits the IAA-induced growth of maize coleoptile segments involves inhibition of PM H+-ATPase activity.  相似文献   

2.
The dose–response curves for IAA-induced growth in maize coleoptile segments were studied as a function of time and temperature. In addition, the kinetics of growth rate responses at some auxin concentrations and temperatures was also compared. It was found that the dose–response curves for IAA-induced elongation growth were, independently of time and temperature, bell-shaped with an optimal concentration at 10−5 M IAA. The kinetics of IAA-induced growth rate responses depended on IAA concentration and temperature, and could be separated into two phases (biphasic reaction). The first phase (very rapid) was followed by a long lasting one (second phase), which began about 30 min after auxin addition. For coleoptile segments incubated at 30°C, the amplitudes of the first and second phase were significantly higher, when compared with 25°C, at all IAA concentrations studied. However, when coleoptile segments were incubated at 20°C, the elongation growth of coleoptile segments treated with suboptimal IAA concentrations was diminished, mainly as a result of both phases reduction. In conclusion, we propose that the shape of the dose–response curves for IAA-induced growth in maize coleoptile segments is connected with biphasic kinetic of growth rate response.  相似文献   

3.
Cd accumulation, its effects on elongation growth of maize coleoptile segments, pH changes of their incubation medium and the membrane potential of parenchymal cells were studied. The Cd content increased significantly with exposure to increasing cadmium concentrations. Coleoptile segments accumulated the metal more efficiently in the range 10–100 μM Cd, than in the range 100–1000 μM Cd. Cd at concentrations higher than 1.0 μM produced a significant inhibition of both growth and proton extrusion. 100 μM Cd caused depolarization of the plasma membrane (PM) potential in parenchymal cells. The simultaneous treatment of maize coleoptile segments by indole-3-acetic acid (IAA) and Cd, counteracted the toxic effect of Cd on growth. Moreover, our data also showed that 100 μM Cd suppressed the characteristic IAA-induced hyperpolarization of the membrane potential, causing membrane depolarization. These results indicate that the toxic effect of Cd on growth of maize coleoptile segments might be, at least in part, caused via reduced PM H+-ATPase activity.  相似文献   

4.
The effect of thiosulphinates contained in garlic extract (GE) on endogenous growth, growth in the presence of either indoleacetic acid (IAA) or fusicoccin (FC), and proton extrusion in maize coleoptile segments were studied. In addition, membrane potential changes at some GE dilutions and the protective effect of dithiothreitol (DTT) against GE toxicity were also determined. It was found that GE at almost all dilutions studied, when added to the incubation medium inhibited endogenous growth as well as growth in the presence of either IAA or FC. Simultaneous measurements of growth and external pH indicated that the administration of GE resulted in a complex change in the pH of the external medium; after an initial transient acidification, pH increased and reached the maximal value followed by a gradual decrease of medium pH. When IAA or FC was added after preincubation of the segments in the presence of GE the changes in medium pH were not significantly different from these obtained with GE only. If the coleoptile segments were first preincubated with GE and subsequently GE was removed, the addition of IAA induced strong growth and medium acidification. Dithiothreitol added together with GE neutralized the toxic effect of GE on growth of coleoptile segments incubated in the presence of IAA. The addition of GE to the control medium caused a depolarization of the membrane potential, the value of witch depended on GE dilution. These results indicate that the toxic effect of GE on growth of plant cells might be caused by disruption of the catalytic function of the plasma membrane H+-ATPase on formation of the disulfide bonds.  相似文献   

5.
The effect of Cd and Pb on endogenous and IAA-induced elongation growth and medium pH of maize coleoptile segments incubated at 20, 25 and 30 °C was studied. It was found that the elongation of coleoptile segments and proton extrusion increased with the temperature and reached its maximum at 30 °C. For Cd, the maximal inhibition of endogenous and IAA-induced growth as well as medium acidification of coleoptile segments was observed at 25 °C. Meanwhile, Pb, irrespective of the temperature, diminished the growth of the segments by ca. 20%, increasing the acidification of the incubation medium. It was also found that in contrast to Cd, Pb accumulation in maize coleoptile segments did not correlate with temperature. The results suggest that the toxic effect of Cd on elongation growth of coleoptile segments is connected with the decrease of the PM H(+)-ATPase activity and probably with Cd-induced high acivity of IAA oxidase, whereas the effect of Pb did not depend on activity of any of the enzymes.  相似文献   

6.
Plant growth and development are tightly regulated by both plant growth substances and environmental factors such as temperature. Taking into account the above, it was reasonable to point out that indole-3-acetic acid (IAA), the most abundant type of auxin in plants, could be involved in temperature- dependent growth of plant cells. We have recently shown that growth of maize coleoptile segments in the presence of auxin (IAA) and fusicoccin (FC) shows the maximum value in the range 30–35°C and 35–40°C, respectively. Furthermore, simultaneous measurements of growth and external medium pH indicated that FC at stressful temperatures was not only much more active in the stimulation of growth, but was also more effective in acidifying the external medium than IAA. The aim of this addendum is to determine interrelations between the action of IAA and FC (applied together with IAA) on growth and medium pH of maize coleoptile segments incubated at high temperature (40°C), which was optimal for FC but not for IAA.Key words: auxin, fusicoccin, coleoptile segments, elongation growth, medium pHA well studied aspect of auxin action especially in maize coleoptile, is its effect on cell elongation, proton extrusion and membrane potential.17 It is now generally agreed that indole-3-acetic acid (IAA), as the principal regulator of plant elongation growth, causes (i) acceleration of elongation growth as compared to endogenous growth, (ii) enhancement of proton extrusion as compared to auxin—free medium, and (iii) transient depolarization followed by a slow hyperpolarization of membrane potential. According to the “acid growth theory” of elongation growth,811 auxin induced cell wall acidification provides favorable conditions for cell wall loosening, a requirement for cell elongation. At least in maize coleoptile segments, auxin induced cell wall acidification is mediated by increased activity and/or amount of the PM H+-ATPase.11,12 In the case of fusicoccin, which mimics the effect of auxin in many respects,13 it was shown that FC-binding site arises from interaction of the 14-3-3 protein dimmer with the C-terminal autoinhibitory domain of the H+-ATPase and that FC stabilizes this complex.1418 It should be pointed out that in spite of abundant literature on the mechanism through which IAA or FC control growth of grass coleoptiles, little is know how these substances work at extreme temperatures. Over the past decade, the involvement of 14-3-3 proteins in plant stress responses has often been suggested.19 For example, work by Chelysheva et al.,20 and Babakov et al.,21 demonstrated that under low temperature and high osmolarity conditions, 14-3-3 proteins interact with the C-terminal autoinhibitory domain of the PM H+-ATPase activating the proton pump that play a key role in stress responses in higher plants. We have recently shown22 that FC at 40°C induced maximal growth whereas growth observed at the same temperature in the presence of IAA was reduced by 33% compared to the maximal value at 30°C. It was also found22 that at 40°C the kinetics of the pH change differed significantly for both growth substances; the segments treated with IAA at 40°C were virtually not able to acidify the external medium, whereas FC at this temperature caused practically maximal acidification. In this addendum we have shown that application of FC together with IAA conteracted the inhibitory effect of high temperature (40°C) on IAA-induced growth and proton extrusion in maize coleoptile segments (Fig. 1). For example, the total IAA-induced elongation growth of coleoptile segments at 40°C was 1438.1 ± 134.5 µm cm−1 (mean ± SE, n = 11) while elongation of 2747.4 ± 269.7 µm cm−1 (mean ± SE, n = 11) was observed in IAA applied together with FC (Fig. 1A). The data in Figure 1B indicate that coleoptile segments incubated at 40°C (over 2 h), without growth substances (control) characteristically changed the pH of the medium: usually within the first 30–45 min an increase of pH (by ca. 0.5 pH unit) was observed, followed by a slow decrease of pH. When IAA or FC was added (after 2 h of segment''s incubation in control medium), an additional decrease of pH was observed. As can be seen in Figure 1B, FC added at 40°C was much more effective in acidification of the medium, as compared to IAA. For FC, 5h after its addition, the pH of the incubation medium dropped to pH 4.2, whereas for IAA the pH was only 5.4. However, addition of IAA together with FC at 40°C dropped medium pH approximately to the same value as was observed in the presence of FC only.Open in a separate windowFigure 1Effect of high temperature (40°C) on growth (A) and medium pH (B) of maize coleoptile segments incubated in the presence of IAA (10 µM) and FC (1 µM). The growth of a stack of 21 segments, expressed as elongation (µm cm−1), was measured simultaneously with medium pH at 40°C. After preincubation (over 2 h) of the coleoptile segments in control medium, IAA and FC was added (arrow). Values are means of 11 independent experiments. Bars indicate ± SE. In the case of medium pH SE did not exceed 8%.In conclusion, the results presented in this addendum provide further evidence that FC on the receptor level is much more effective than IAA.  相似文献   

7.

Background and Aims

The mechanism of auxin action on ion transport in growing cells has not been determined in detail. In particular, little is known about the role of chloride in the auxin-induced growth of coleoptile cells. Moreover, the data that do exist in the literature are controversial. This study describes experiments that were carried out with maize (Zea mays) coleoptile segments, this being a classical model system for studies of plant cell elongation growth.

Methods

Growth kinetics or growth and pH changes were recorded in maize coleoptiles using two independent measuring systems. The growth rate of the segments was measured simultaneously with medium pH changes. Membrane potential changes in parenchymal cells of the segments were also determined for chosen variants. The question of whether anion transport is involved in auxin-induced growth of maize coleoptile segments was primarily studied using anion channel blockers [anthracene-9-carboxylic acid (A-9-C) and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS)]. In addition, experiments in which KCl was replaced by KNO3 were also performed.

Key Results

Both anion channel blockers, added at 0·1 mm, diminished indole-3-acetic acid (IAA)-induced elongation growth by ∼30 %. Medium pH changes measured simultaneously with growth indicated that while DIDS stopped IAA-induced proton extrusion, A-9-C diminished it by only 50 %. Addition of A-9-C to medium containing 1 mm KCl did not affect the characteristic kinetics of IAA-induced membrane potential changes, while in the presence of 10 mm KCl the channel blocker stopped IAA-induced membrane hyperpolarization. Replacement of KCl with KNO3 significantly decreased IAA-induced growth and inhibited proton extrusion. In contrast to the KCl concentration, the concentration of KNO3 did not affect the growth-stimulatory effect of IAA. For comparison, the effects of the cation channel blocker tetraethylammonium chloride (TEA-Cl) on IAA-induced growth and proton extrusion were also determined. TEA-Cl, added 1 h before IAA, caused reduction of growth by 49·9 % and inhibition of proton extrusion.

Conclusions

These results suggest that Cl plays a role in the IAA-induced growth of maize coleoptile segments. A possible mechanism for Cl uptake during IAA-induced growth is proposed in which uptake of K+ and Cl ions in concert with IAA-induced plasma membrane H+-ATPase activity changes the membrane potential to a value needed for turgor adjustment during the growth of maize coleoptile cells.  相似文献   

8.
A. Nelles 《Planta》1977,137(3):293-298
The membrane potential difference of dwarf maize coleoptile cells is increased by both 10-5moll-1 gibberellic acid (GA3) and indoleacetic acid (IAA) a few minutes after application. A final level is reached after 10–20 min. The membrane permeability ratio P Na:P K is altered by both hormones during the first 15 min after application, indicating a rapid effect on the membrane. Elongation growth of coleoptile segments, however, is only stimulated by IAA. The auxin-induced growth as well as the auxin effect on membrane permeability depends on the calcium ion concentration of the medium. It is concluded that IAA acts via a proton extrusion pump that is electrically balanced by a potassium ion uptake, driven by the electromotive force of the pump. The mode of action of GA3 on elongation growth is assumed to involve a process that depends on the physiologic state of the tissue and/or metabolic energy.Abbreviations IAA indoleacetic acid - GA3 gibberellic acid - FC fusicoccin - PD electric potential difference between the vacuole and the external medium  相似文献   

9.
The effects of 1,4-naphthoquinone (NQ) and 2-hydroxy-1,4-naphthoquinone (NQ-2-OH) on indole-3-acetic acid (IAA)-induced growth, medium pH changes and membrane potential (Em) in maize (Zea mays L.) coleoptile cells were determined. In addition, the redox cycling properties of both naphthoquinones were also compared. The dose-response curves constructed for the effects of NQ and NQ-2-OH on endogenous and IAA-induced growth differ in shape. It was found that NQ was by 10–50% more effective in inhibiting IAA-induced growth in maize coleoptile segments than NQ-2-OH. Simultaneous measurements of growth and external medium pH indicated that NQ and NQ-2-OH reduced or eliminated proton extrusion at all of the concentrations used, excluding NQ at 1 µM. It was found that both naphthoquinones at concentrations higher than 10 µM caused the depolarisation of the membrane potential (Em). Additionally, compared to the controls, NQ- and NQ-2-OH-exposure of coleoptile segments, at concentrations higher than 10 µM, caused an elevation of the hydrogen peroxide (H2O2) production and plasma membrane redox activity. The highest catalase activity was observed at 10 µM NQ and it was ca. 18-fold greater (at 4 h) than in the control medium. Moreover, it was also found that NQ and NQ-2-OH, at all concentrations studied, increased the malondialdehyde content of coleoptile segments at 4 h of the experiment. The data presented here are discussed taking into account the “acid growth hypothesis” of auxin action and the mechanisms by which naphthoquinones interact with biological systems.  相似文献   

10.
A study has been made of the prolonged growth of Avena coleoptile sections in response to fusicoccin (FC), a phytotoxin that promotes apoplastic acidification. The final amount of FC-induced growth is a function of the FC concentration. Removal of the epidermis speeds up the initial rate of elongation and shortens the duration of the response, without affecting the total amount of extension. A suboptimal FC concentration (7×10−8 M ) which induces the same rate of proton excretion as does optimal indoleacetic acid (IAA) (1×10−5 M ), causes elongation which is 60–75% of that induced by IAA in 4 h or 50–65% in 7 h. This suggests that acid-induced extension could make a major contribution to auxin-induced growth for at least 7 h.  相似文献   

11.
The physiological activity of exogenous 4-Cl-IAA, as compared to IAA, was examined in maize coleoptile segments. It was found that in this model system 4-Cl-IAA is much more active in the stimulation of elongation than IAA. Simultaneous measurements of growth and external pH indicated that administration of either IAA or 4-Cl-IAA resulted in medium acidification. The kinetics of the pH changes, however, were faster after the addition of 4-Cl-IAA. In contrast to IAA, the coleoptile segments treated with chlorinated auxin were not able to increase medium pH after its initial drop. The re-addition of IAA after 5 h further enhanced growth over the next 2 h by 31%. By contrast, the re-addition of 4-Cl-IAA at the same time protocol as IAA did not cause an additional effect. The administration of 10 microM IAA induced in maize coleoptile cells a transient depolarization followed by a slow hyperpolarization of their membrane potential. In contrast to IAA, 4-Cl-IAA at 1 microM caused an immediate hyperpolarization of the membrane potential which, on average, was 2-fold greater than for IAA. The results reported here provide further evidence that 4-Cl-IAA is much more active, as compared to IAA, in stimulating the growth of maize coleoptile segments. Although it has not been directly demonstrated here, a plausible interpretation for the high 4-Cl-IAA activity is that, at least in part, it might be caused via a reduced metabolism of 4-Cl-IAA. Furthermore, for the first time, the data show that membrane potential responds to 4-Cl-IAA in a qualitatively different fashion than to IAA. These findings may, in turn, suggest a specific signal transduction pathway to 4-Cl-IAA in maize coleoptile cells.  相似文献   

12.
The effect of 253.7 nm ultraviolet radiation on elongation growth, medium acidification and changes in electric potential difference between vacuole and external medium in cells of maize ( Zea mays L.) coleoptile segments was investigated. It was found that irradiation with 390, 1170, 3900 and 5 850 J m−2 UV-C (ultraviolet radiation 253.7 nm) inhibited elongation growth, whereas at 195 J m−2 stimulation of growth was observed. The administration of IAA (10−5 M ) to the incubation medium of coleoptile segments partially abolished the inhibitory effect of UV-C. The pH of the incubation medium, measured simultaneously with growth, showed that the exposure of the segments to UV-C caused inhibition of H+-extrusion (or stimulation of H+ uptake). The presence of IAA (10−5 M ) in the incubation medium promoted (except after 5850 J m−2 irradiation) H+-extrusion to a level comparable with that produced by IAA in non-irradiated segments. In UV-C irradiated segments the potential difference underwent significant alterations. Irradiation of coleoptile segments with 390 J m−2 caused a transient depolarization, which was fully reversible within 30 min, while at higher doses depolarization was irreversible. The hyperpolarization of the membrane potential (MP) in cells of maize coleoptile induced by IAA was completely nullified by subsequent irradiation with UV-C. It is suggested that UV-C inhibited IAA-induced growth by a mechanism independent of cell wall acidification.  相似文献   

13.
The objectives were to determine the influence of water activity (aw, 0.997–0.92) and temperature (10–37°C) and their interactions on conidial germination, mycelial growth and sporulation of two strains of Stachybotrys chartarum in vitro on a potato dextrose medium. Studies were carried out by modifying the medium with glycerol and either spread plating with conidia to evaluate germination and germ tube extension or centrally inoculating treatment media for measuring mycelial growth rates and harvesting whole colonies for determining sporulation. Overall, germination of conidia was significantly influenced by aw and temperature and was fastest at 0.997–0.98 aw between 15 and 30°C with complete germination within 24 h. Germ tube extension was found to be most rapid at similar aw levels and 25–30°C. Mycelial growth rates of both strains were optimal at 0.997 aw between 25 and 30°C, with very little growth at 37°C. Sporulation was optimum at 30°C at 0.997 aw. However, under drier conditions, this was optimum at 25°C. This shows that there are differences in the ranges of aw x temperature for germination and growth and for sporulation. This may help in understanding the role of this fungal species in damp buildings and conditions under which immune-compromised patients may be at risk when exposed to such contaminants in the indoor air environment.  相似文献   

14.
Rattan Lal 《Plant and Soil》1974,40(3):589-606
Summary The effect of constant and fluctuating soil temperature and two soil moisture regimes on the growth, development, transpiration and nutrient uptake by maize seedlings was studied in a greenhouse investigation. The constant root temperatures were maintained at 30, 34, 35, 36, 37, and 38°C for both 250 and 750 cm of soil moisture suctions. The fluctuating root temperature, for 250 cm of soil moisture suction only, of 30–35, 30–39, 30–40, 30–45 and 30–48°C were maintained to simulate the soil temperature regime under field conditions. The constant root temperature of 35°C and fluctuating temperature between 30–40°C significantly decreased the shoot and root growth and transpiration rate. On the average, there was 1.3 and 0.7 g decrease in fresh shoot weight and 0.36 and 0.30 g in fresh root weight per degree increase in root temperature for 250 and 750 soil moisture suction, respectively. In general, the effect of high soil moisture suction on maize seedlings was more severe when at high root temperature. The shoot and root concentration of N, P, and K decreased while that of B increased with increase in root temperature. The root concentration of Zn also decreased with increase in root temperature.  相似文献   

15.
Ray PM 《Plant physiology》1985,78(3):466-472
Fusicoccin (FC), like indoleacetic acid (IAA), causes Golgi-localized β-1,4-glucan synthase (GS) activity to increase when applied to pea third internode segments whose GS activity has declined after isolation from the plant. This suggests that GS activity is modulated by H+ extrusion; in agreement, vanadate and nigericin inhibit the GS response. The GS response is not due to acidification of the cell wall. Treatment of tissue with heavy water, which in effect raises intracellular pH, mimics the IAA/FC GS response. However, various treatments that tend to raise cytoplasmic pH directly, other than IAA- or FC-induced H+ extrusion, failed to increase GS activity, suggesting that cytoplasmic pH is not the link between H+ extrusion and increased GS activity. Although FC stimulates H+ extrusion more strongly than IAA does, FC enhances GS activity at most only as much as, and often somewhat less than, IAA does. This and other observations indicate that GS enhancement is probably not due to membrane hyperpolarization, stimulated sugar uptake, or changes in ATP level, but leave open the possibility that GS is controlled by H+ transport-driven changes in intracellular concentrations of ions other than H+.  相似文献   

16.
The effect of fusicoccin (FC) on the activity of the PM H+-ATPase was investigated in a plasma membrane (PM) fraction from radish seedlings purified by the phase-partitioning procedure. FC stimulated the PM H+-ATPase activity by up to 100 %; the effect was essentially on Vmax with only a slight decrease of the apparent KM of the enzyme for ATP. FC-induced stimulation of the PM H+-ATPase was evident within the first minute and maximal within five minutes of membrane treatment with the toxin indicating that transmission of the signal from the activated receptor to the PM H+-ATPase is very rapid. Both FC-induced stimulation of the PM H+-ATPase and FC binding to its receptor decreased dramatically upon incubation of the membranes in ATPase assay medium at 33 °C in the absence of FC, due to the lability of the free FC receptor. FC-induced stimulation of the PM H+-ATPase was strongly pH dependent: absolute increase of activity was maximal at pH 7, while percent stimulation increased with the increase of pH up to pH 7.5; FC binding was scarcely influenced by pH in the pH range investigated. Taken as a whole, these results indicate that FC binding is a condition necessary, but not sufficient, for FC-induced stimulation of the PM H+-ATPase.  相似文献   

17.
The effects of fusicoccin (FC) on growth and ethylene synthesis of tomato (Lycopersicon esculentum Mill.) hypocotyls were compared to those of indole-3-acetic acid (IAA). Fusicoccin promoted both growth and ethylene production maximally at <2μM. Growth was stimulated to a slightly greater extent by FC as compared to IAA, while ethylene synthesis rates in response to FC were about 50% less than those induced by IAA. Cycloheximide (0.5 μM) inhibited auxin-induced growth by 80% but had no effect on FC-induced growth; ethylene production was inhibited to the same extent (58%) when induced by either IAA or FC. Both IAA and FC caused tissue contents of 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-ACC to increase, indicating that like IAA, FC induces ethylene synthesis by stimulating the formation of ACC. Orthovanadate, a potent inhibitor of proton-translocating plasma membrane ATPases, reduced both IAA- and FC-induced growth and ethylene synthesis at concentrations less than 1 mM, with ethylene synthesis being approximately 10 times more sensitive to inhibition than growth. Vanadate did not affect tissue ACC levels, slightly reduced total ACC production, and inhibited conversion of ACC to ethylene. However, significant inhibition of in vivo ethylene-forming enzyme activity required high concentrations of vanadate (1 mM) and was less effective than inhibition by cobaltous ion. The site of action of vanadate in inhibiting ethylene synthesis remains unclear, but the ion did not prevent the elevation of tissue ACC levels in response to IAA or FC. It is unlikely, therefore, that stimulation of plasma membrane H+-ATPase activity is required for the induction of ACC synthase by IAA and FC.  相似文献   

18.
The experiments were carried out with 96-h-old intact maize seedlings and 10 mm long coleoptile segments cut 4 mm below the tip. The electric fields were applied longitudinally along the seedlings. The electric field (15 V) caused inhibition of the elongation growth of intact seedlings which was dependent on both the polarity and the duration of the applied voltage. The growth inhibition was greater when the tip of the shoot was positive relative to the roots. The electric field also caused inhibition of indole-3-acetic acid (IAA) and fusicoccin (FC) induced growth of maize coleoptile segments excised from electrically treated seedlings. IAA-induced growth of coleoptile segments was greater when the tip of the shoot was negative to the roots (not in the case of FC-treated segments and intact seedlings). It was suggested that apart from the changes induced by electric field in transport system of auxin the electric field affected also the activity of plasmalemma proton pump.  相似文献   

19.
The role of proton excretion in the growth of apical segments of maize roots has been examined. Growth is stimulated by acidic buffers and inhibited by neutral buffers. Organic buffers such as 2[N-morpholino] ethane sulphonic acid (MES) — 2-amino-2-(hydroxymethyl)propane-1,3 diol (Tris) are more effective than phosphate buffers in inhibiting growth. Fusicoccin(FC)-induced growth is also inhibited by neutral buffers. The antiauxins 4-chlorophenoxyisobutyric acid (PCIB) and 2-(naphthylmethylthio) propionic acid (NMSP) promote growth and H+-excretion over short time periods; this growth is also inhibited by neutral buffers. We conclude that growth of maize roots requires proton extrusion and that regulation of root growth by indol-3yl-acetic acid (IAA) may be mediated by control of this proton extrusion.Abbreviations IAA indol-3yl-acetic acid - ABA abscisic acid - FC fusicoccin - PCIB 4-chlorophenoxy-isobutyric acid - MES 2(N-morpholino)ethane sulphonic acid - Tris 2-amino-2-(hydroxymethyl) propane-1,3-diol - NMSP 2-(naphthylmethylthio)propionic acid  相似文献   

20.
The effects of fusicoccin (FC) on growth and ethylene synthesis of tomato (Lycopersicon esculentum Mill.) hypocotyls were compared to those of indole-3-acetic acid (IAA). Fusicoccin promoted both growth and ethylene production maximally at <2M. Growth was stimulated to a slightly greater extent by FC as compared to IAA, while ethylene synthesis rates in response to FC were about 50% less than those induced by IAA. Cycloheximide (0.5 M) inhibited auxin-induced growth by 80% but had no effect on FC-induced growth; ethylene production was inhibited to the same extent (58%) when induced by either IAA or FC. Both IAA and FC caused tissue contents of 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-ACC to increase, indicating that like IAA, FC induces ethylene synthesis by stimulating the formation of ACC. Orthovanadate, a potent inhibitor of proton-translocating plasma membrane ATPases, reduced both IAA- and FC-induced growth and ethylene synthesis at concentrations less than 1 mM, with ethylene synthesis being approximately 10 times more sensitive to inhibition than growth. Vanadate did not affect tissue ACC levels, slightly reduced total ACC production, and inhibited conversion of ACC to ethylene. However, significant inhibition of in vivo ethylene-forming enzyme activity required high concentrations of vanadate (1 mM) and was less effective than inhibition by cobaltous ion. The site of action of vanadate in inhibiting ethylene synthesis remains unclear, but the ion did not prevent the elevation of tissue ACC levels in response to IAA or FC. It is unlikely, therefore, that stimulation of plasma membrane H+-ATPase activity is required for the induction of ACC synthase by IAA and FC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号