首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoincorporation of p-azido[3H]puromycin [6-(dimethylamino)-9-[3'-deoxy-3'-[(p-azido-L-phenylalanyl)amino]-beta-D-ribofuranosyl]purine] into specific ribosomal proteins and ribosomal RNA [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1982) Biochemistry (preceding paper in this issue)] is decreased in the presence of puromycin, thus demonstrating that labeling is site specific. The magnitudes of the decreases in incorporation into the major labeled 50S proteins found on addition of different potential ribosome ligands parallel the abilities of these same ligands to inhibit peptidyltransferase. This result provides evidence that p-azidopuromycin photoincorporation into these proteins occurs at the peptidyltransferase center of the 50S subunit, a conclusion supported by other studies of ribosome structure and function. A striking new finding of this work is that puromycin aminonucleoside is a competitive inhibitor of puromycin in peptidyltransferase. The photoincorporation of p-azidopuromycin is accompanied by loss of ribosomal function, but photoincorporated p-azidopuromycin is not a competent peptidyl acceptor. The significance of these results is discussed. Photolabeling of 30S proteins by p-azidopuromycin apparently takes place from sites of lower puromycin affinity than that of the 50S site. The possible relationship of the major proteins labeled, S18, S7, and S14, to tRNA binding is considered.  相似文献   

2.
Methylation of ribosomal proteins in Bacillus subtilis   总被引:2,自引:1,他引:1       下载免费PDF全文
We measured the methylation of ribosomal proteins from the 30S and 50S subunits of Bacillus subtilis after growing the cells in the presence of [1-14C]methionine and [methyl-3H]methionine. Two-dimensional polyacrylamide gel electrophoretic analysis revealed a preferential methylation of the 50S ribosomal proteins. Proteins L11 and L16, and possibly L9, L10, L18, and L20, were methylated. On the other hand, only two possibly methylated proteins were found on the 30S subunit. A comparison of these results with those for Escherichia coli suggests a common methylation pattern for the bacterial ribosomal proteins.  相似文献   

3.
1. 30S and 50S ribosomal subunits of Escherichia coli were treated with N-[2,3-(14)C]-ethylmaleimide and iodo[(14)C]acetamide. 2. The proteins in the native subunits which reacted with the reagents were S1,double dagger S2, S12, S13, S18, S21, L2, L5, L6, L10, L11, L15, L17, L20, L26+28 and L27. 3. Several proteins, such as S1, S12, S14, S18, L2, L6, L10, L11 and either L26 or 28, had thiol groups in an oxidized form and reacted to a greater extent after reduction with beta-mercaptoethanol or dithiothreitol. 4. The total number of thiol groups in 30S and 50S subunits was determined as 16-17 and 26-27 respectively. The total number of thiol groups in each ribosomal protein was also determined. 5. The reaction of 30S and 50S subunits with iodoacetamide under several different conditions established the order of reactivity of thiol groups.  相似文献   

4.
Methylation of the 50S ribosomal proteins from Bacillus stearothermophilus, Bacillus subtilis, Alteromonas espejiana, and Halobacterium cutirubrum was measured after the cells were grown in the presence of [1-14C]methionine or [methyl-3H]methionine or both. Two-dimensional polyacrylamide gel electrophoretic analysis revealed, in general, similar relative electrophoretic mobilities of the methylated proteins from each eubacterium studied. Proteins known to be structurally and functionally homologous in several microorganisms were all methylated. Thus, the following group of proteins, which appear to be involved in peptidyltransferase or in polyphenylalanine-synthesizing activity in B. stearothermophilus (P.E. Auron and S. R. Fahnestock, J. Biol. Chem. 256:10105-10110, 1981), were methylated (possible Escherichia coli methylated homologs are indicated in parentheses): BTL5(EL5), BTL6(EL3), BTL8(EL10), BTL11(EL11), BTL13(EL7L12) and BTL20b(EL16). In addition, the pentameric ribosomal complex BTL13 X BTL8, analogous to the complex EL7L12 X EL10 of E. coli, contained methylated proteins. Analysis of the methylated amino acids in the most heavily methylated proteins, BSL11 from B. subtilis and BTL11 from B. stearothermophilus, showed the presence of epsilon-N-trimethyllysine as the major methylated amino acid in both proteins, in agreement with known data for E. coli. In addition, BSL11 appeared to contain trimethylalanine, a characteristic, modified amino acid previously described only in EL11 from E. coli. These results and those previously obtained from other bacteria indicate a high degree of conservation for ribosomal protein methylation and suggest an important, albeit unknown, role for the modification of these components in eubacterial ribosomes.  相似文献   

5.
Affinity labeling of E. coli ribosomes with the 2',3'-O-[4-(N-2-chloroethyl)-N-methyl-amino]benzylidene derivative of AUGU6 (AUGU6-[14C]CHRCl) was studied within the pretranslocational complex ribosome.AUGU6[14C]CHRCl.tRNA(fMet)(P-site).fMetPhe-tR NA(Phe)(A-site) and posttranslocational complex ribosome.AUGU6[14C]CHRCl.fMetPhe-tRNA(Phe)(P-site). Both 30S and 50S subunits were labeled within these complexes, but the extent of 30S subunit modification was 6-8-fold higher than those for 50S subunit. Ribosomal proteins of both subunits were found to be labeled preferentially. Proteins S1, S5, S11, L1 were identified to be crosslinked with AUGU6[14C]CHRCl within the pretranslocational complex and S7--within the posttranslocational complex from the data of two-dimensional electrophoresis in the polyacrylamide gel.  相似文献   

6.
Escherichia coli and Saccharomyces cerevisiae ribosomal proteins were chemically iodinated with 125I by chloramine T under conditions in which the proteins were denatured. The labelled proteins were subsequently separated by two-dimensional gel electrophoresis with an excess of untreated ribosomal proteins from the same species. The iodination did not change the electrophoretic mobility of the proteins as shown by the pattern of spots in the stained gel slabs and their autoradiography. The 125I radioactivity incorporated in the proteins was estimated by cutting out the gel spots from the two-dimensional electrophoresis gel slabs. The highest content of 125I was found in the ribosomal proteins L2, L11, L13, L20/S12, S4 and S9 from E. coli, and L2/L3, L4/L6/S7, L5, L19/L20, L22/S17, L29/S27, L35/L37 and S14/S15 from S. cerevisiae. Comparisons between the electrophoretic patterns of E. coli and S. cerevisiae ribosomal proteins were carried out by coelectrophoresis of labelled and unlabelled proteins from both species. E. coli ribosomal proteins L5, L11, L20, S2, S3 and S15/S16 were found to overlap with L15, L11/L16, L36/L37, S3, S10 and S33 from S. cerevisiae, respectively. Similar coelectrophoresis of E. coli 125I-labelled proteins with unlabelled rat liver and wheat germ ribosomal proteins showed the former to overlap with proteins L1, L11, L14, L16, L19, L20 and the latter with L2, L5, L6, L15, L17 from E. coli.  相似文献   

7.
S R Fahnestock 《Biochemistry》1975,14(24):5321-5327
The functional role of the Bacillus stearothermophilus 50S ribosomal protein B-L3 (probably homologous to the Escherichia coli protein L2) was examined by chemical modification. The complex [B-L3-23S RNA] was photooxidized in the presence of rose bengal and the modified protein incorporated by reconstitution into 50S ribosomal subunits containing all other unmodified components. Particles containing photooxidized B-L3 are defective in several functional assays, including (1) poly(U)-directed poly(Phe) synthesis, (2) peptidyltransferase activity, (3) ability to associate with a [30S-poly(U)-Phe-tRNA] complex, and (4) binding of elongation factor G and GTP. The rates of loss of the partial functional activities during photooxidation of B-L3 indicate that at least two independent inactivating events are occurring, a faster one, involving oxidation of one or more histidine residues, affecting peptidyltransferase and subunit association activities and a slower one affecting EF-G binding. Therefore the protein B-L3 has one or more histidine residues which are essential for peptidyltransferase and subunit association, and another residue which is essential for EF-G-GTP binding. B-L3 may be the ribosomal peptidyltransferase protein, or a part of the active site, and may contribute functional groups to the other active sites as well.  相似文献   

8.
Photolysis of [3H]tetracycline in the presence of Escherichia coli ribosomes results in an approximately 1:1 ratio of labelling ribosomal proteins and RNAs. In this work we characterize crosslinks to both 16S and 23S RNAs. Previously, the main target of photoincorporation of [3H]tetracycline into ribosomal proteins was shown to be S7, which is also part of the one strong binding site of tetracycline on the 30S subunit. The crosslinks on 23S RNA map exclusively to the central loop of domain V (G2505, G2576 and G2608) which is part of the peptidyl transferase region. However, experiments performed with chimeric ribosomal subunits demonstrate that peptidyltransferase activity is not affected by tetracycline crosslinked solely to the 50S subunits. Three different positions are labelled on the 16S RNA, G693, G1300 and G1338. The positions of these crosslinked nucleotides correlate well with footprints on the 16S RNA produced either by tRNA or the protein S7. This suggests that the nucleotides are labelled by tetracycline bound to the strong binding site on the 30S subunit. In addition, our results demonstrate that the well known inhibition of tRNA binding to the A-site is solely due to tetracycline crosslinked to 30S subunits and furthermore suggest that interactions of the antibiotic with 16S RNA might be involved in its mode of action.  相似文献   

9.
E Metspalu  M Ustav  R Villems 《FEBS letters》1983,153(1):125-127
The immobilized tRNA-50 S ribosomal subunit protein (TP50) complex binds the smaller ribosomal subunit. We constructed tRNA . TP50 . 5 S [32P] RNA and tRNA . TP50 . t [32P] RNA complexes and investigated the accessibility of the 32P-labelled tRNAs to ribonuclease T1. It was found that in this complex both 5 S RNA and tRNA are attacked by T1 RNase. In sharp contrast, the addition of 30 S subunit protects 5 S RNA as well as tRNA from degradation. We suggest that 5 S RNA-TP50 complex is exposed to the ribosomal interface and is involved in subunit interaction.  相似文献   

10.
The sequence of the amino-terminal region of eleven rat liver ribosomal proteins–S4, S6, S8, L7a, L18, L27, L30, L37a, and L39 - was determined. The analysis confirmed the homogeneity of the proteins and suggests that they are unique, since no extensive common sequences were found. The N-terminal regions of the rat liver proteins were compared with amino acid sequences in Saccharomyces cerevisiae and in Escherichia coli ribosomal proteins. It seems likely that the proteins L37 from rat liver and Y55 from yeast ribosomes are homologous. It is possible that rat liver L7a or L37a or both are related to S cerevisiae Y44, although the similar sequences are at the amino-terminus of the rat liver proteins and in an internal region of Y44. A number of similarities in the sequences of rat liver and E coli ribosomal proteins have been found; however, it is not yet possible to say whether they connote a common ancestry.  相似文献   

11.
The ribosomes from four temperature-sensitive mutants of Escherichia coli have been examined for defects in cell-free protein synthesis. The mutants examined had alterations in ribosomal proteins S10, S15, or L22 (two strains). Ribosomes from each mutant showed a reduced activity in the translation of phage MS2 RNA at 44 degrees C and were more rapidly inactivated by heating at this temperature compared to control ribosomes. Ribosomal subunits from three of the mutants demonstrated a partial or complete inability to reassociate at 44 degrees C. 70-S ribosomes from two strains showed a reducton in messenger RNA binding. tRNA binding to the 30 S subunit was reduced in the strains with altered 30-S proteins and binding to the 50 S subunit was affected in the mutants with a change in 50 S protein L22. The relation between ribosomal protein structure and function in protein synthesis in these mutants is discussed.  相似文献   

12.
The use of some bifunctional Pt(II)-containing cross-linking reagents for investigation of structural organization of ribosomal tRNA- and mRNA-binding centres is demonstrated for various types of [70S ribosome.mRNA-tRNA] complexes. It is shown that treatment of the complexes [70S ribosome.Ac[14C]Phe-tRNA(Phe).poly(U)], [70S ribosome.3'-32pCp-tRNA(Phe).poly(U)] and [70S ribosome.f[35S]Met-tRNA(fMet).AUGU6] with Pt(II)-derivatives results in covalent attachment of tRNA to ribosome. AcPhe-tRNA(Phe) and 3'-pCp-tRNA(Phe) bound at the P site were found to be cross-linked preferentially to 30S subunit. fMet-tRNA(fMet) within the 70S initiation complex is cross-linked to both ribosome subunits approximately in the same extent, which exceeds two-fold the level of the tRNA(Phe) cross-linking. All used tRNA species were cross-linked in the comparable degree both to rRNA and proteins of both subunits in all types of the complexes studied. 32pAUGU6 cross-links exclusively to 30S subunit (to 16S RNA only) within [70S ribosome.32pAUGU6.fMet-tRNA(fMet)] complex. In the absence of fMet-tRNAfMet the level of the cross-linking is 4-fold lower.  相似文献   

13.
gamma-Amides of GTP and affinity and photoaffinity derivatives of gamma-amides of GTP: gamma-anilide of GTP, gamma-(4-azido)anilide of GTP, gamma-[N-(4-azidobenzyl)-N-methyl]amide of GTP, gamma[4-N-(2-chloroethyl)-N-methylaminobenzyl]amide of GTP and gamma-[4-N-(2-oxoethyl)-N-methylaminobenzyl]amide of GTP substituted efficiently for GTP in the EF-Tu-dependent transfer of aminoacyl-tRNA to the ribosome but, in contrast to GTP, they were not hydrolyzed in this process. They represent a new class of non-hydrolyzable GTP analogs with preserved gamma-phosphodiester bond. The radioactive analog of GTP: gamma-[4-N-(2-chloroethyl)-N-methylamino[14C]benzyl]amide of GTP was used as an affinity labeling probe for the identification of components of the GTPase center formed in the EF-Tu-dependent transfer reaction of aminoacyl-tRNA to the ribosomal A-site. Within a six-component complex of poly(U)-programmed E. coli ribosomes with elongation factor Tu, Phe-tRNA(Phe) (at the A-site), tRNA(Phe) (at the P-site) and the [14C]GTP analog, mainly the ribosomal 23S RNA and to a lesser extent the ribosomal proteins L17, L21, S16, S21 and the ribosomal 16S RNA were labeled by the reagent. No significant modification of EF-Tu was detected.  相似文献   

14.
Ultraviolet irradiation (lambda = 254 nm) of ternary complexes of E. coli 70 S ribosomes with poly(U) and either Phe-tRNAPhe (in the A-site) or NAcPhe-tRNAPhe (in the P-site) effectively induces covalent linking of tRNA with a limited number of ribosomal proteins. The data obtained indicate that in both sites tRNA is in contact with proteins of both 30 S and 50 S subunits (S5, S7, S9, S10, L2, L6 and L16 proteins in the A-site and S7, S9, S11, L2, L4, L7/L12 and L27 proteins in the P-site). Similar sets of proteins are in contact with total aminoacyl-tRNA and N-acetylaminoacyl-tRNA. However, here no contacts of tRNA in the P-site with the S7 and L25/S17 proteins were revealed, whereas in the A-site total aminoacyl-tRNA contacts L7/L12. Proteins S9, L2 and, probably, S7 and L7/L12 are common to both sites.  相似文献   

15.
Oligo(U) derivatives with [14C]-4-(N-2-chloroethyl-N-methylamino)benzaldehyde attached to 3'-end cis-diol group via acetal bond, p(Up)n-1UCHRCl as well as with [14C]-4-(N-2-chloroethyl-N-methylamino)benzylamine attached to 5'-phosphate via amide bond, ClRCH2NHpU(pU)6 were used to modify 70S E. coli ribosomes near mRNA binding centre. Within ternary complex with ribosome and tRNAPhe all reagents covalently bind to ribosome the extent of modification being 0.1-0.4 mole/mole 70S. p(Up)n-1UCHRCl alkylates either 30S (n=5,7) or both subunits (n=6,8). rRNA is preferentially modified within 30S subunit. ClRCH2NHpU(pU)6 alkylates both subunits the proteins being mainly modified. The distribution of the label among proteins differ for various reagents. S4, S5, S7, S9, S11, S13, S15, S18 and S21 are found to be alkylated within 30S subunit, proteins L1, L2, L6, L7/L12, L19, L31 and L32 are modified in the 50S subunit. Most proteins modified within 30S subunit are located at the "head" of this subunit and proteins modified within 50S subunit are located at the surface of the contact between this subunit and the "head" of 30S subunit at the model of Stoffler.  相似文献   

16.
Identification of all the protein components of the large subunit (39 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 39 S subunits followed by analysis of the resultant peptides by liquid chromatography and mass spectrometry. Peptide sequence information was used to search the human EST data bases and complete coding sequences were assembled. The human mitochondrial 39 S subunit has 48 distinct proteins. Twenty eight of these are homologs of the Escherichia coli 50 S ribosomal proteins L1, L2, L3, L4, L7/L12, L9, L10, L11, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L27, L28, L30, L32, L33, L34, L35, and L36. Almost all of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. No mitochondrial homologs to prokaryotic ribosomal proteins L5, L6, L25, L29, and L31 could be found either in the peptides obtained or by analysis of the available data bases. The remaining 20 proteins present in the 39 S subunits are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of the proteins has a clear homolog in D. melanogaster while all can be found in the genome of C. elegans. Ten of the 20 mitochondrial specific 39 S proteins have homologs in S. cerevisiae. Homologs of 2 of these new classes of ribosomal proteins could be identified in the Arabidopsis thaliana genome.  相似文献   

17.
The effect of two photoreactive analogues of spermine, N(1)-azidobenzamidino- (ABA-) spermine and N(1)-azidonitrobenzoyl- (ANB-) spermine, on ribosomal functions was studied in a cell-free system derived from Escherichia coli. In the dark, both analogues stimulated the binding of AcPhe-tRNA to poly(U)-programmed ribosomes, enhanced the stability of the ternary complex AcPhe-tRNA.poly(U).ribosome (complex C), and caused stimulatory and inhibitory effects on peptidyltransferase activity. ABA-spermine exhibited more pronounced effects than ANB-spermine. Each photoprobe was covalently attached after irradiation to both ribosomal subunits and also to free rRNA isolated from 70S ribosomes. Photolabeled complex C showed a reactivity toward puromycin, similar to that exhibited by complex C reacting reversibly with photoprobes free in solution. The distribution of the incorporated radioactivity among the ribosomal components was determined under two experimental conditions, one stimulating and the other inhibiting peptidyltransferase activity. Under both conditions, ABA-spermine was the strongest cross-linker. Upon stimulatory conditions, 14% of ABA-[(14)C]spermine cross-linked to complex C was bound to the protein fraction. The proteins primarily labeled were identified as S3, S4, L2, L3, L6, L15, L17, and L18. Upon inhibitory conditions, a higher percent of the incorporated radioactivity was found in ribosomal proteins, while the pattern of protein labeling was characterized by a remarkable decrease of cross-linked proteins L2, L3, L6, L15, L17. and L18 and by an increase of cross-linked proteins S9, S18, L1, L16, L22, L23, and L27. On the basis of these results and literature data, the involvement of spermine in the conformation and important functions of ribosomes is discussed.  相似文献   

18.
The effect of magnesium starvation upon the fate of individual ribosomal proteins was studied in Escherichia coli. During a 21 h incubation in the absence of Mg2+ the 30 S subunit was more susceptible to degradation, retaining an average 31.9% of its ribosomal proteins as compared to 40.0% for the 50 S subunit. An examination of those 50-S proteins dissociated to a lesser extent than the average value (L1, L2, L3, L7, L10, L13, L16, L17, L19, L21, L22, L23, and L29) revealed that, with the exception of L16, all were classified by Dohme and Nierhaus [5] as tightly bound. Of the ribosomal proteins dissocated during magnesium starvation only five were reincorporated (and these to a minimal degree) during recovery of cells in a medium containing Mg2+. These studies suggest that ribosomal proteins once released from the ribosome particles during magnesium starvation are not reutilized in the assembly of new subunits.  相似文献   

19.
Nucleotide residues of E. coli tRNA interacting directly with proteins in pre- and posttranslocated ribosomal complexes have been identified by analysis of photo-induced tRNA-protein cross-links. A9, G18, A26 and U59 residues of NAcPhePhe-tRNA, located in the Ab-site (pretranslocated complex) have been cross-linked with proteins S10, L27, S7 and L2 respectively. In deacylated tRNA, located in the Pb-site, residues C17, G44, C56 and U60 have been cross-linked with proteins L2, L5, L27 and S9 respectively. The G44-L5 cross-link disappeared after translocation (NAc-PhePhe-tRNA located in the Pt-site).  相似文献   

20.
In previous work we have shown that both puromycin [Weitzmann, C. J., & Cooperman, B. S. (1985) Biochemistry 24, 2268-2274] and p-azidopuromycin [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Coooperman, B. S. (1982) Biochemistry 21, 3809-3817] site specifically photoaffinity label protein L23 to the highest extent of any Escherichia coli ribosomal protein. In this work we demonstrate that L23 that has been photoaffinity labeled within a 70S ribosome by puromycin (puromycin-L23) can be separated from unmodified L23 by reverse-phase high-performance liquid chromatography (RP-HPLC) and further that puromycin-L23 can reconstitute into 50S subunits when added in place of unmodified L23 to a reconstitution mixture containing the other 50S components in unmodified form. We have achieved a maximum incorporation of 0.5 puromycin-L23 per reconstituted 50S subunit. As compared with reconstituted 50S subunits either containing unmodified L23 or lacking L23, reconstituted 50S subunits containing 0.4-0.5 puromycin-L23 retain virtually all (albeit low) peptidyl transferase activity but only 50-60% of mRNA-dependent tRNA binding stimulation activity. We conclude that although L23 is not directly at the peptidyl transferase center, it is sufficiently close that puromycin-L23 can interfere with tRNA binding. This conclusion is consistent with a number of other experiments placing L23 close to the peptidyl transferase center but is difficult to reconcile with immunoelectron microscopy results placing L23 near the base of the 50S subunit on the side facing away from the 30S subunit [Hackl, W., & St?ffler-Meilicke, M. (1988) Eur. J. Biochem. 174, 431-435].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号