首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the molecular properties of eight temperature-sensitive mutants of simian virus 40 large T antigen (tsA mutants). The mutants have single amino acid substitutions that block DNA replication at 39 to 41 degrees C in vivo. In vitro, five of the mutant proteins were highly sensitive to a brief heat shock at 39 degrees C, while the three remaining proteins were only partially sensitive at 41 degrees C. We characterized the five most defective mutant proteins, using a variety of biochemical assays for replication functions of T antigen. Heat shock of purified T antigen with a mutation at amino acid 422 significantly impaired the oligomerization, origin-binding, origin-unwinding, ATPase, and helicase functions of T antigen. In contrast, substitution of amino acid 186, 357, 427, or 438 had more selective, temperature-sensitive effects on T-antigen functions. Our findings are consistent with the conclusion that T antigen functions via a hierarchy of interrelated domains. Only the ATPase activity remained intact in the absence of all other functions. Hexamer formation appears to be necessary for core origin-unwinding and helicase activities; the helicase function also requires ATPase activity. All five tsA mutants were impaired in functions important for the initiation of DNA replication, but three mutants retained significant elongation functions.  相似文献   

2.
3.
The carboxyl-terminal portion of simian virus 40 large T antigen is essential for productive infection of CV-1 and CV-1p green monkey kidney cells. Mutant dlA2459, lacking 14 base pairs at 0.193 map units, was positive for viral DNA replication, but unable to form plaques in CV-1p cells (J. Tornow and C.N. Cole, J. Virol. 47:487-494, 1983). In this report, the defect of dlA2459 is further defined. Simian virus 40 late mRNAs were transcribed, polyadenylated, spliced, and transported in dlA2459-infected cells, but the level of capsid proteins produced in infected CV-1 green monkey kidney cells was extremely low. dlA2459 large T antigen lacks those residues known to be required for adenovirus helper function, and the block to productive infection by dlA2459 occurs at the same stage of infection as the block to productive adenovirus infection of CV-1 cells. These results suggest that the adenovirus helper function is required for productive infection by simian virus 40. Mutant dlA2459 was able to grow on the Vero and BSC-1 lines of African green monkey kidney cells. Additional mutants affecting the carboxyl-terminal portion of large T were prepared. Mutant inv2408 contains an inversion of the DNA between the BamHI and BclI sites (0.144 to 0.189 map units). This inversion causes transposition of the carboxyl-terminal 26 amino acids of large T antigen and the carboxyl-terminal 18 amino acids of VP1. This mutant was viable, even though the essential information absent from dlA2459 large T antigen has been transferred to the carboxyl terminus of VP1 of inv2408. The VP1 polypeptide carrying this carboxyl-terminal portion of large T could overcome the defect of dlA2459. This indicates that the carboxyl terminus of large T antigen is a separate and separable functional domain.  相似文献   

4.
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.  相似文献   

5.
Four (groups of) phosphorylation sites exist in the large T antigen of simian virus 40, and they involve at least two serine and two threonine residues (Van Roy et al. J. Virol. 45:315-331, 1983). All the phosphorylation sites were found to be modified and again dephosphorylated at discrete rates, with phosphoserine residues having the highest turnover rate. The measured half-lives ranged between 3 h (for the carboxy-terminal phosphoserine site) and 5.5 h (for the amino-terminal phosphothreonine site). The influence of four temperature-sensitive A mutations on phosphorylation of large T antigen was also examined. At restrictive temperature, phosphorylation of the carboxy-terminal phosphoserine in mutated large T antigen was found to be particularly impaired. These data emphasize the physiological importance of the latter phosphorylation site.  相似文献   

6.
The position of phosphothreonine in the predicted primary structure of simian virus 40 large T antigen was determined by different methods. After digestion of large T antigen with trypsin and subsequent two-dimensional peptide mapping, a single peptide containing phosphothreonine could be separated from the bulk of phosphoserine-containing peptides. Its amino acid composition was determined by differential labeling with various amino acids in vivo. The high yield of proline (4.5 mol) within the phosphothreonine peptide indicated that it was derived from the carboxy terminus of large T antigen and had in its unphosphorylated form the sequence Lys-Pro-Pro-Thr-Pro-Pro-Pro-Glu-Pro-Glu-Thr-COOH. A phosphopeptide generated by chymotrypsin could be converted into the tryptic phosphothreonine peptide, indicating that the latter was part of the chymotryptic peptide. The origin of the phosphothreonine-containing peptides was independently confirmed by using an antiserum directed against the carboxy terminus of large T antigen. This serum reacted specifically with the proline-rich, phosphothreonine-containing peptides. Further analysis by partial acid hydrolysis indicated that the internal threonine was phosphorylated. The unusual amino acid composition on both sides of the phosphothreonine and the possible function of this phosphorylation site are discussed.  相似文献   

7.
We have completed the cloning and sequencing of all known temperature-sensitive, amino acid substitution mutants of simian virus 40 large T antigen (tsA mutants). Surprisingly, many of the mutants isolated from distinct viral strains by different laboratories are identical. Thus, 17 independently isolated mutants represent only eight distinct genotypes. This remarkable clustering of tsA mutations in a few "hot spots" in the amino acid sequence of T antigen and the temperature-sensitive phenotypes of the mutations strongly suggest that these amino acids play crucial roles in organizing the structure of one or more functional domains. Most of the mutations are located in highly conserved regions of T antigen that correlate with DNA binding, protein-protein interactions, or ATP binding. With the exception of one mutant with a lesion in the putative ATP-binding region, all the mutants are temperature sensitive for DNA replication.  相似文献   

8.
trans-dominant defective mutants of simian virus 40 T antigen.   总被引:10,自引:7,他引:3       下载免费PDF全文
We constructed a collection of linker insertion mutants in the simian virus 40 (SV40) genome and studied several of these with changes limited to a part of the large T antigen gene corresponding to an amino acid sequence shared with other ATPases. Two of these mutants were found to have a novel phenotype in that they could not be complemented for plaque formation by a late-region deletion mutant. These two mutants, in contrast to other mutants in this region, were able to transform rat cells in culture at a frequency close to that of the wild-type gene. The noncomplementing mutants were found to be potent inhibitors of SV40 DNA replication despite the presence of wild-type T antigen in the transfected cells. This inhibition was shown to be the result of the introduced mutations in the large T antigen gene. We conclude that the large T antigens of the noncomplementing mutants can act as inhibitors of SV40 DNA replication.  相似文献   

9.
We generated fragments of simian virus 40 large tumor antigen (T antigen) by tryptic digestion and assayed them for helicase activity and helicase substrate (mostly single-stranded DNA)-binding activity in order to map the domain sites on the protein. The N-terminal 130 amino acids were not required for either activity, since a 76-kilodalton (kDa) fragment (amino acids 131 to 708) was just as active as intact T antigen. To map the helicase domain further, smaller tryptic fragments were generated. A 66-kDa fragment (131 to about 616) retained some activity, whereas a slightly smaller 62-kDa fragment (137 or 155 to 616) had none. This suggests that the minimal helicase domain maps from residue 131 to approximately residue 616. To map the helicase substrate-binding domain, we tested various fragments in a substrate-binding assay. The smallest fragment for which we could clearly demonstrate activity was a 46-kDa fragment (131 to 517). To determine the relationship between the helicase substrate domain and the origin-binding domain (131 to 257, minimal core region; 131 to 371, optimal region), we performed binding experiments with competitor DNAs present. We found that origin-containing double-stranded DNA was an excellent competitor of the binding of the helicase substrate to T antigen, suggesting that the two domains overlap. Therefore, full helicase activity requires at least a partial origin-binding domain as well as an active ATPase domain. Additionally, we found that the helicase substrate was a poor competitor of origin-binding activity, indicating that T antigen has a much higher affinity to origin sequences than to the helicase substrate.  相似文献   

10.
We used sodium bisulfite mutagenesis to introduce point mutations within the early region of the simian virus 40 genome. Seventeen mutants which contained amino acid changes in the amino-terminal half of the large T antigen coding sequence were assayed for their ability to replicate viral DNA and to induce transformation in the established rodent cell line Rat-3. The mutants fell into four basic classes with respect to these two biological functions. Five mutants had wild-type replication and transformation activities, six were totally defective, three were replication deficient and transformation competent, and two were replication competent and transformation deficient. Within these classes were mutants which displayed intermediate phenotypes, such as four mutants which were not totally deficient in viral replication or cellular transformation but instead showed reduced large T antigen function relative to wild type. Three large T mutants displayed transforming activity that was greater than that of wild type and are called supertransforming mutants. Of the most interest are mutants differentially defective in replication and transformation activities. These results both support and extend previous findings that two important biological functions of large T antigen can be genetically separated.  相似文献   

11.
To study the role of the biochemical and physiological activities of simian virus 40 (SV40) large T antigen in the lytic and transformation processes, we have analyzed DNA replication-defective, transformation-competent T-antigen mutants. Here we describe two such mutants, C8/SV40 and T22/SV40, and also summarize the properties of all of the mutants in this collection. C8/SV40 and T22/SV40 were isolated from C8 and T22 cells (simian cell lines transformed with UV-irradiated SV40). Early regions encoding the defective T antigens were cloned into a plasmid vector to generate pC8 and pT22. The mutations responsible for the defects in viral DNA replication were localized by marker rescue, and subsequent DNA sequencing revealed missense and one nonsense mutation. The T22 mutation predicts a change of histidine to glutamine at residue 203. C8 has two mutations, one predicts lysine224 to glutamamic acid and the other changes the codon for glutamic acid660 to a stop codon; therefore, C8 T antigen lacks the 49 carboxy-terminal amino acids. pC8A and pC8B were constructed to contain the C8 mutations separately. Plasmids pT22, pC8, pC8A, and pC8B were able to transform primary rodent cell cultures. T22 T antigen is defective in binding to the SV40 origin. C8B (49-amino-acid truncation) is a host-range mutant defective in a late function in CV-1 but not BSC cells. Analysis of T antigens in mutant SV40-transformed mouse cells suggests that the replicative function of T antigen is important in generating SV40 DNA rearrangements that allow the expression of "100K" variant T antigens in the transformants.  相似文献   

12.
An 8,000-molecular-weight (8K) T antigen was found in all cells transformed by simian virus 40. The 8K T antigen was weakly labeled in vivo with [35S]methionine or 32Pi. A deletion in the human papovavirus BK genome, in the region coding for the carboxy-terminal end of the large T antigen, reduced the size of the 8K T antigen. The last 80 amino acids of the large T antigen include the sequence Asp-Asp-Asp-Asp unique to the activation peptide of trypsinogen. Large T antigen bound diisopropyl fluorophosphate and was retained by D-phenylalanine coupled to Sepharose beads, an affinity adsorbent that can retain chymotrypsin. The large T antigen and the recA protein of Escherichia coli, a known protease, have several properties in common as well as several similar sequences. Antibodies against large T antigen interacted with native recA protein.  相似文献   

13.
The phosphorylation patterns of cytoplasmic and nuclear forms of simian virus 40 large T antigen encoded by simian virus 40-adenovirus 7 hybrid viruses were analyzed by two-dimensional peptide mapping. The PARA(cT) mutant which encodes a large T antigen defective for nuclear transport was used as source for cytoplasmic large T antigen. The data suggest that the large T antigen is phosphorylated in a sequential manner at a subset of sites in the cytoplasm and at additional sites in the nucleus.  相似文献   

14.
The state of phosphorylation and the relationship of various subclasses of simian virus 40 large T antigen (large T) differing in DNA-binding activity, degree of oligomerization, age, and subcellular distribution were investigated. Young large T (continuously labeled for 4 h late in infection) comprised about 20% of the total cellular large T. It was phosphorylated to a low degree and existed primarily in a monomeric form, sedimenting at 5S. More than 50% of this fraction bound to simian virus 40 DNA, preferentially to origin-containing sequences. Old large T (continuously labeled for 17 h, followed by a 4-h chase) represented the majority of the population. It was highly phosphorylated and predominantly in an oligomeric form, sedimenting at 15S to 23S. Only 10 to 20% of this fraction bound to simian virus 40 DNA. Another subclass of large T which was extracted from nuclei with 0.5 M salt resembled newly synthesized molecules in all properties tested; it was phosphorylated to a low degree, sedimented at 5S, and bound to viral DNA with high efficiency (greater than 70%). Two-dimensional phosphopeptide analysis of the individual subclasses revealed two distinct phosphorylation patterns, one characteristic for young, monomeric, and DNA-binding large T, the other for old, oligomeric, and non-DNA-binding large T. All sites previously identified in unfractionated large T (K.H. Scheidtmann et al., J. Virol. 44:116-133, 1982) were also phosphorylated in the various subclasses, but to different degrees. Peptide maps of the DNA-binding fraction, the 5S form, and the nuclear high-salt fraction showed two prominent phosphopeptides not previously characterized. Both peptides were derived from the amino-terminal region of large T, presumably involved in origin binding, and probably represent partially phosphorylated intermediates of known phosphopeptides. Our data show that the DNA-binding activity, age, and oligomerization of large T correlate with distinct states of phosphorylation. We propose that differential phosphorylation might play a role in the interaction of large T with DNA.  相似文献   

15.
In mKSA cells (a simian virus 40-transformed BALB/c mouse tumor cell line), plasma membrane-associated large T antigen (large T) is found in two subfractions of the plasma membrane; a minor amount of large T is recovered from the Nonidet P-40 (NP-40)-soluble plasma membrane fraction, whereas the majority is tightly bound to a substructure of the plasma membrane, the plasma membrane lamina (PML). Only PML-associated large T is fatty acid acylated (U. Klockmann and W. Deppert, EMBO J. 2:1151-1157, 1983). We have analyzed whether these two forms of plasma membrane-associated large T might differ in features like cell surface expression or metabolic stability. In addition, we have asked whether one of the two large Ts might represent the hypothetic, large T-related protein T* (D. F. Mark and P. Berg, Cold Spring Harbor Symp. Quant. Biol. 44:55-62, 1979). We show that in mKSA cells grown in suspension culture, large T associated with the PML is also exposed on the cell surface. This form of large T, therefore, exhibits properties of a transmembrane protein. Large T in the NP-40-soluble plasma membrane fraction could not be labeled with radioiodine on the cell surface and, for this reason, does not seem to be oriented towards the cell surface. In contrast, when mKSA cells were grown on substratum (culture dish), we found that in these cells both NP-40-soluble large T as well as large T anchored in the PML could be cell surface iodinated. We also have analyzed the plasma membrane association of surface T antigen in mKSA cells grown in a mouse as ascites tumor. In tumor cells, only PML-bound large T is cell surface associated. We conclude that differences in extractibility of cell surface-associated large T most likely depend on cell shape and are not an artifact of cell culture. Both NP-40-soluble and PML-bound large Ts are associated with the plasma membrane in a metabolically stable fashion. Neither of the two large Ts represents T*.  相似文献   

16.
Simian virus 40 large T antigen is a multifunctional protein that is encoded by the early region of the viral genome. We constructed fusion proteins between simian virus 40 large T antigen and beta-galactosidase by cloning HindIII fragments A and D of the virus into the HindIII sites of expression vectors pUR290, pUR291, and pUR292. Large amounts of the fusion protein were synthesized when the DNA fragment encoding part of simian virus 40 large T antigen was in frame with the lacZ gene of the expression vector. Using Western blotting and a competition radioimmunoassay, we assessed the binding of existing anti-T monoclonal and polyclonal antibodies to the two fusion proteins. Several monoclonal antibodies reacted with the protein encoded by the fragment A construction, but none reacted with the protein encoded by the fragment D construction. However, mice immunized with pure beta-galactosidase-HindIII fragment D fusion protein produced good levels of anti-T antibodies, which immunoprecipitated simian virus 40 large T antigen from lytically infected cells, enabling derivation of monoclonal antibodies to this region of large T antigen. Therefore, the fusion proteins allowed novel epitopes to be discovered on large T antigen and permitted the precise localization of epitopes recognized by existing antibodies. The same approach can also be used to produce antibodies against defined regions of any gene.  相似文献   

17.
We analyzed the subcellular distribution of nuclear transport-defective simian virus 40 Lys-128-mutant (cT-3 [R. E. Lanford and J. S. Butel, Cell 37:801-813, 1984] and d10 [D. Kalderon, W. D. Richardson, A. F. Markham, and A. E. Smith, Nature (London) 311:33-38, 1984]) large T antigens in various Lys-128-mutant-transformed rodent cells and in Lys-128-mutant d10-infected TC7 cells. Small but significant amounts of the mutant large T antigens were found in association with nuclear substructures, both in mutant-transformed and in mutant-infected cells. Experiments with TC7 cells made incompetent for cell division by 60Co irradiation supported the assumption that Lys-128-mutant large T antigen did not associate with nuclear components during mitosis but most likely was transported into the nucleus because the Lys-128 mutation was leaky for nuclear transport. Low-level simian virus 40 DNA replication and production of infectious mutant virus progeny in TC7 cells indicated that the association of Lys-128-mutant large T antigen with nuclear substructures is functional.  相似文献   

18.
A mutant simian virus 40 (SV40) large tumor (T) antigen bearing alanine instead of threonine at residue 124 (T124A) failed to replicate SV40 DNA in infected monkey cells (J. Schneider and E. Fanning, J. Virol. 62:1598-1605, 1988). We investigated the biochemical properties of T124A T antigen in greater detail by using purified protein from a baculovirus expression system. Purified T124A is defective in SV40 DNA replication in vitro, but does bind specifically to the viral origin under the conditions normally used for DNA replication. The mutant protein forms double-hexamer complexes at the origin in an ATP-dependent fashion, although the binding reaction requires somewhat higher protein concentrations than the wild-type protein. Binding of T124A protein results in local distortion of the origin DNA similar to that observed with the wild-type protein. These findings indicate that the replication defect of T124A protein is not due to failure to recognize and occupy the origin. Under some conditions T124A is capable of unwinding short origin DNA fragments. However, the mutant protein is almost completely defective in unwinding of circular plasmid DNA molecules containing the SV40 origin. Since the helicase activity of T124A is essentially identical to that of the wild-type protein, we conclude that the mutant is defective in the initial opening of the duplex at the origin, possibly as a result of altered hexamer-hexamer interactions. The phenotype of T124A suggests a possible role for phosphorylation of threonine 124 by cyclin-dependent kinases in controlling the origin unwinding activity of T antigen in infected cells.  相似文献   

19.
Casein kinase I has been shown to phosphorylate Ser123 and possibly Thr124, in simian virus 40 (SV40) large T antigen; the same sites are also modified in cultured cells incubated with 32Pi [Friedrich A. Gr?sser, Karl H. Scheidtmann, Polygena T. Tuazon, Jolinda A. Traugh & Gernot Walter (1988) Virology 165, 13-22]. The peptide, A-D-S-Q-H-S-T-P-P, which corresponds to the amino acid sequence 118-125 of SV40 large T antigen, was synthesized together with peptides containing changes in specific amino acid residues on either side of Ser123. These peptides were used as model substrates to determine the amino acids in the SV40 large T antigen important for recognition by casein kinase I. The native peptide identified above, with aspartate at the -4 position, was a poor substrate for casein kinase I in vitro. Peptides with acidic residues added at the -2 and -3 positions, preceding Ser123, were phosphorylated by casein kinase I with apparent Km values around 2 mM and Vmax values up to 500 pmol.min-1.ml-1. When acidic residues were added at both sides of the phosphorylatable serine, the peptide had a first-order rate constant over 20-fold higher than peptides with acidic amino acid residues at the N-terminus only; the apparent Km value was 0.65 mM with a Vmax of 2900 pmol.min-1.ml-1. The effects of modifying Ser120 to phosphoserine were examined by addition of a recognition sequence for the cAMP-dependent protein kinase prior to Ser120. Prior phosphorylation of the peptide at Ser120 lowered the apparent Km to 0.061 mM and increased the Vmax to 360 pmol.min-1.ml-1, a 50-fold decrease in Km for casein kinase I and a 6-fold increase in Vmax as compared to the non-phosphorylated peptide. This indicates that Ser120, which has been shown to be phosphorylated in vivo, provides an appropriate recognition determinant for casein kinase I.  相似文献   

20.
Simian virus 40 large T antigen from lytically infected cells has been purified to near homogeneity by immunochromatography of the cell extract on a protein A-Sepharose-monoclonal antibody column. The resulting T antigen retains biochemical activity; i.e., it hydrolyzes ATP and binds to simian virus 40 DNA at the origin of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号