共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bovine lens gamma-glutamylcysteine synthetase. Inhibition by glutathione and adenine nucleotides 总被引:1,自引:0,他引:1
Steady-state kinetic analysis shows that glutathione binds reversibly to both Mg . enzyme and Mg . enzyme . L-glutamate forms of gamma-glutamylcysteine synthetase to form inactive complexes. The Ki values for binding to these two species of enzyme are 4 mM and 0.4 mM, respectively; those for S-methyl glutathione are 16 mM and 0.5 mM, respectively. These data suggest that glutathione is an important feedback inhibitor and contributes to the regulation of glutathione synthesis by modulating the synthesis rate of the precursor dipeptide. Adenosine 5'-diphosphate (5'ADP) is also an inhibitor and competes with both ATP and L-beta-chloroalanine for Mg . enzyme . L-glutamate and Mg . enzyme . L-glutamylphosphate, respectively. Under physiological conditions in the lens, 5' ADP competes effectively with L-cysteine for Mg . enzyme . L-glutamylphosphate, owing to the low concentration of L-cysteine, and less effectively with ATP for Mg . enzyme . L-glutamate, because of a high concentration of ATP. 相似文献
3.
4.
Regulation of human neutrophil functions by adenine nucleotides 总被引:3,自引:0,他引:3
S T McGarrity A H Stephenson R O Webster 《Journal of immunology (Baltimore, Md. : 1950)》1989,142(6):1986-1994
Previous work has shown that platelet-derived adenine nucleotides modulate neutrophil superoxide anion (O2-) generation. Additional studies were undertaken to characterize the effects of authentic adenosine (ADO) and its nucleotide derivatives on the inflammatory functions of human neutrophils. Stimulus-specific inhibition of neutrophil O2- generation by ADO in response to FMLP was verified. In addition, the ability of ATP, ADP, and AMP to limit neutrophil O2- generation induced by FMLP (0.2 to 0.5 microM) was demonstrated. The concentration producing 50% inhibition for nucleotide inhibition of neutrophil O2- generation was in the rank order of ADO (0.1 microM) less than AMP (0.5 microM) less than ADP less than or equal to ATP (5 microM). Guanine and inosine nucleotides (0.01 to 100 microM) did not inhibit FMLP-stimulated neutrophil O2- generation. Neutrophil degranulation in response to FMLP was only modestly inhibited by adenine nucleotides and ADO. Adenosine and ADP failed to affect chemotaxis of neutrophils stimulated with FMLP. The inability of non-metabolizable analogs to mimic the inhibitory effects of authentic ATP or ADP on the neutrophil O2- response suggested that metabolism of added nucleotides is necessary for their effectiveness. Both TLC and HPLC confirmed that ATP and ADP were converted to AMP and ADO after their incubation with unstimulated or FMLP-activated neutrophils. The addition of adenosine deaminase to neutrophil reaction mixtures in which conversion of added nucleotides was apparent removed detectable ADO but failed to completely abrogate the inhibition of neutrophil O2- generation by accumulated AMP. The kinetics of inhibition of FMLP-induced neutrophil O2- generation by ATP and ADP also indicated that conversion of these nucleotides to ADO and/or AMP may be essential for their ability to reduce neutrophil responses. 相似文献
5.
Vesna A. Eterović Lian Li Andrew Palma Mark G. McNamee 《Cellular and molecular neurobiology》1990,10(3):423-433
1. Nicotinic acetylcholine receptors (nAChR)4 from BC3H1 cells (which express a skeletal muscle-type receptor) and from Torpedo californica electric organ were expressed in Xenopus laevis oocytes and studied with a voltage-clamp technique. 2. We found that bath application of ATP in the micromolar to millimolar range increased the ACh-elicited current in both muscle and electrocyte receptors. The effect of ATP increased with successive applications. This "use-dependent" increase in potentiation was Ca2+ dependent, while the potentiation itself was not. 3. Four other nucleotides were tested on muscle nAChR: ADP, AMP, adenosine, and GTP. Of these, only ADP was a potentiator, but its effect was not use dependent. Neither ATP nor ADP affected the resting potential of the oocyte membrane. 4. ADP potentiated the response to suberyldicholine and nicotine, as well as ACh. 5. Finally, ADP reversed the phencyclidine-induced block of ACh currents in oocytes expressing muscle nAChR. 相似文献
6.
7.
8.
J S Holcenberg 《Biochimica et biophysica acta》1969,185(1):228-238
9.
Inhibition of plant asparagine synthetase by monoterpene cineoles 总被引:15,自引:0,他引:15
Asparagine (Asn) synthetase (AS) is the key enzyme in Asn biosynthesis and plays an important role in nitrogen mobilization. Despite its important physiological function, little research has been done documenting inhibitors of plant AS. Plant growth inhibition caused by the natural monoterpene 1,4-cineole and its structurally related herbicide cinmethylin was reversed 65% and 55%, respectively, by providing 100 microM Asn exogenously. Reversion of the phytotoxic effect was dependent on the concentration of Asn. The presence of either 1,4-cineole or cinmethylin stimulated root uptake of [(14)C]Asn by lettuce (Lactuca sativa) seedlings. Although the physiological responses suggested that both compounds affected Asn biosynthesis, biochemical analysis of AS activity showed that the natural monoterpene was a potent inhibitor (I(50) = approximately 0. 5 microM) of the enzyme, whereas the commercial product was not inhibitory up to levels of 10 mM. Analysis of the putative metabolite, 2-hydroxy-1,4-cineole, showed that the cis-enantiomer was much more active than the trans-enantiomer, suggesting that the hydroxyl group was involved in the specific ligand/active site interaction. This is the first report that AS is a suitable herbicide target site, and that cinmethylin is apparently a proherbicide that requires metabolic bioactivation via cleavage of the benzyl-ether side chain. 相似文献
10.
11.
Regulation of femoral vascular resistance by adenine nucleotides via endothelial and smooth muscle receptors 总被引:1,自引:0,他引:1
It is well established that adenosine (ADO) and adenine nucleotides are potent vasodilators, but their role in local blood flow control is still under debate. Recent findings on contribution of vascular endothelium to the vasomotor regulation pointed out this problem. In the present study the effects of adenine nucleotides were investigated in vivo on the femoral arterial flow (FAF) and femoral vascular resistance (FVR). Selective suppression of the endothelium mediated dilation was achieved by gossypol (35 mumol/l). On intact hindlimbs ADO (4 mmol/l) and ATP (0.5 mmol/l) elicited 3.5-fold increase of FAF, in average. Resistance decreased by 6.24 +/- 0.58 and 7.23 +/- 1.12 peripheral resistance units (PRU100), respectively. After gossypol, ATP-induced dilation was either significantly suppressed (resistance-decrease was 3.70 +/- 0.58 PRU100; p less than 0.02 vs control) or turned to strong constriction (FAF decreased by 50%). ADO-induced dilation remained unchanged. These results, in agreement with in vitro data, suggest that adenosine directly relaxes the vascular smooth muscle of resistance vessels via P1-purinoceptors, while ATP-induced vasomotion is composed of a dilator effect mediated by endothelial P2y-receptors, and a direct constrictor effect on the vascular smooth muscle via P2x-purinoceptors. 相似文献
12.
A highly conserved protein motif characteristic of Class II aminoacyl tRNA synthetases was found to align with a region of Escherichia coli asparagine synthetase A. The alignment was most striking for aspartyl tRNA synthetase, an enzyme with catalytic similarities to asparagine synthetase. To test whether this sequence reflects a conserved function, site-directed mutagenesis was used to replace the codon for Arg298 of asparagine synthetase A, which aligns with an invariant arginine in the Class II aminoacyl tRNA synthetases. The resulting genes were expressed in E. coli, and the gene products were assayed for asparagine synthetase activity in vitro. Every substitution of Arg298, even to a lysine, resulted in a loss of asparagine synthetase activity. Directed random mutagenesis was then used to create a variety of codon changes which resulted in amino acid substitutions within the conserved motif surrounding Arg298. Of the 15 mutant enzymes with amino acid substitutions yielding soluble enzyme, 13 with changes within the conserved region were found to have lost activity. These results are consistent with the possibility that asparagine synthetase A, one of the two unrelated asparagine synthetases in E. coli, evolved from an ancestral aminoacyl tRNA synthetase. 相似文献
13.
S Hongo M Fujimori S Shioda Y Nakai M Takeda T Sato 《Archives of biochemistry and biophysics》1992,295(1):120-125
We studied immunochemical properties of rat testicular asparagine synthetase. Western blot analysis of testis extract with polyclonal antibody raised against purified asparagine synthetase revealed an immunoreactive band at 62 kDa. The pancreas, brain, thymus, and spleen also showed 62-kDa bands. The intensities of these bands were roughly proportional to the specific activities of the enzyme in these tissues. The antibody showed some degree of cross-reactivity to asparagine synthetases from human, beef, pig, mouse, guinea pig, chicken, and frog, but not carp. But the enzyme from human HL-60 cells and lower vertebrates reacted with the antibody less strongly than enzyme from rats. The N-terminal amino acid sequence of the enzyme, determined by the Edman degradation method, in 10 recovered residues was identical to that of human asparagine synthetase deduced from corresponding cDNA (I.L. Andrulis et al., 1987, Mol. Cell. Biol. 7, 2435-2443). Immunohistochemical staining of the testis showed the presence of asparagine synthetase mainly in Sertoli cells in the seminiferous tubules. 相似文献
14.
15.
16.
17.
Glutamine synthetase (L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2) from Anabaena cylindrica was inhibited by alanine, glycine, serine and aspartate. The effects of alanine and serine were uncompetitive with respect to glutamate, while those of glycine and asparatate were uncompetitive with respect to glutamate, while those of glycine and aspartate were non-competitive and mixed type respectively. Different pairs of amino acids and their various combinations caused a cumulative inhibition of the enzyme activity. Glutamine synthetase was also inhibited by ADP and AMP and both nucleotides affected the enzyme competitively with respect to ATP and non-competitively for glutamate. Inorganic pyrophosphate, between 2 and 3 mM, produced a very pronounced inhibiton of enzyme activity. The inhibition by PPi was uncompetitive for ATP. Various combinations of the adenine nucleotides, PPi and Pi exerted a cumulative inhibitory effect on the enzyme activity, as did the amino acids, in different combinations with either adenine nucleotides, PPi or Pi. The effects of the adenine nucleotides and the amino acids were more pronounced at higher concentrations of ammonia. Except for serine similar responses of these effectors were obtained with increasing concentrations of Mg2+. It is proposed that changes in the free concentrations of Mg2+ are important in energy-dependent regulation of the enzyme activity in this alga. 相似文献
18.
Asparagine synthetase was increased in cultured mouse spleen lymphocytes after stimulation by phytohemagglutinin. After a lag period of about 24h, the enzyme activity level rose sharply by 48h, reached its maximum at 72h, and decreased thereafter. The time course of the change in the enzyme activity was similar to that of the change in the rate of DNA synthesis. From the results that there was no increase of the activity of asparagine synthetase at the time induction of ornithine decarboxylase would occur (6h), it seems unlikely that asparagine synthesized in the cells contributes to the enhancement of ornithine decarboxylase during the activation of lymphocytes. The increase of asparagine synthetase activity was inhibited by cycloheximide and somewhat by actinomycin D, suggesting de novo enzyme synthesis during the stimulation. 相似文献
19.