首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Mg(2+) on reactive oxygen species (ROS) and cell Ca(2+) during reoxygenation of hypoxic rat cardiomyocytes were studied. Oxidation of 2',7'-dichlorodihydrofluorescein (DCDHF) to dichlorofluorescein (DCF) and of dihydroethidium (DHE) to ethidium (ETH) within cells were used as markers for intracellular ROS levels and were determined by flow cytometry. DCDHF/DCF is sensitive to H(2)O(2) and nitric oxide (NO), and DHE/ETH is sensitive to the superoxide anion (O(2)(-).), respectively. Rapidly exchangeable cell Ca(2+) was determined by (45)Ca(2+) uptake. Cells were exposed to hypoxia for 1 h and reoxygenation for 2 h. ROS levels, determined as DCF fluorescence, were increased 100-130% during reoxygenation alone and further increased 60% by increasing extracellular Mg(2+) concentration to 5 mM at reoxygenation. ROS levels, measured as ETH fluorescence, were increased 16-24% during reoxygenation but were not affected by Mg(2+). Cell Ca(2+) increased three- to fourfold during reoxygenation. This increase was reduced 40% by 5 mM Mg(2+), 57% by 10 microM 3,4-dichlorobenzamil (DCB) (inhibitor of Na(+)/Ca(2+) exchange), and 75% by combining Mg(2+) and DCB. H(2)O(2) (25 and 500 microM) reduced Ca(2+) accumulation by 38 and 43%, respectively, whereas the NO donor S-nitroso-N-acetyl-penicillamine (1 mM) had no effect. Mg(2+) reduced hypoxia/reoxygenation-induced lactate dehydrogenase (LDH) release by 90%. In conclusion, elevation of extracellular Mg(2+) to 5 mM increased the fluorescence of the H(2)O(2)/NO-sensitive probe DCF without increasing that of the O(2)(-).-sensitive probe ETH, reduced Ca(2+) accumulation, and decreased LDH release during reoxygenation of hypoxic cardiomyocytes. The reduction in LDH release, reflecting the protective effect of Mg(2+), may be linked to the effect of Mg(2+) on Ca(2+) accumulation and/or ROS levels.  相似文献   

2.
Although Na+/H+ exchange (NHE) has been implicated in myocardial reperfusion injury, participation of coronary microvascular endothelial cells (CMECs) in this pathogenesis has been poorly understood. NHE-induced intracellular Ca2+ concentration ([Ca2+]i) overload in CMECs may increase the synthesis of intercellular adhesion molecules (ICAM), which is potentially involved in myocardial reperfusion injury. The present study tested the hypothesis that NHE plays a crucial role in [Ca2+]i overload and ICAM-1 synthesis in CMECs. Primary cultures of CMECs isolated from adult rat hearts were subjected to acidic hypoxia for 30 min followed by reoxygenation. Two structurally distinct NHE inhibitors, cariporide and 5-(N-N-dimethyl)-amiloride (DMA), had no significant effect on the acidic hypoxia-induced decrease in intracellular pH (pH(i)) of CMECs but significantly retarded pH(i) recovery after reoxygenation. These NHE inhibitors abolished the hypoxia- and reoxygenation-induced increase in [Ca2+]i. Expression of ICAM-1 mRNA was markedly increased in the vehicle-treated CMECs 3 h after reoxygenation, and this was significantly inhibited by treatment with cariporide, DMA, or Ca2+-free buffer. In addition, enhanced ICAM-I protein expression on the cell surface of CMECs 8 h after reoxygenation was attenuated by treatment with cariporide, DMA, or Ca2+-free buffer. These results suggest that NHE plays a crucial role in the rise of [Ca2+]i and ICAM-1 expression during acidic hypoxia/reoxygenation in CMECs. We propose that inhibition of ICAM-1 expression in CMECs may represent a novel mechanism of action of NHE inhibitors against ischemia-reperfusion injury.  相似文献   

3.
Reactive oxygen species (ROS) contribute to cell damage during reperfusion of the heart. ROS may exert their effects partly by interfering with Ca(2+) homeostasis of the myocardium. The purpose of this study was to investigate the effects of hydrogen peroxide (H(2)O(2)) on Ca(2+) accumulation during reoxygenation of isolated adult rat cardiomyocytes exposed to 1 h of hypoxia and to relate the effects to possible changes in release of lactate dehydrogenase (LDH), free intracellular Ca(2+) ([Ca(2+)](i)) and Mg(2+)([Mg(2+)](i)), and mitochondrial membrane potential (Deltapsim). Cell Ca(2+) was determined by (45)Ca(2+) uptake. Free [Mg(2+)](i) and [Ca(2+)](i) and Deltapsim were measured by flow cytometry. Reoxygenation-induced Ca(2+) accumulation was attenuated by 23 and 34% by 10 and 25 microM H(2)O(2), respectively, added at reoxygenation. H(2)O(2) at 100 and 250 microM increased cell Ca(2+) by 50 and 83%, respectively, whereas 500 microM H(2)O(2) decreased cell Ca(2+) by 20%. H(2)O(2) at (25 microM) reduced LDH release and [Mg(2+)](i) and increased Deltapsim, indicating cell protection, whereas 250 microM H(2)O(2) increased LDH release and [Mg(2+)](i) and decreased Deltapsim, indicating cell damage. Clonazepam (100 microM) attenuated the increase in Ca(2+) accumulation, the elevation of [Ca(2+)](i), and the decrease in Deltapsim induced by 100 and 250 microM H(2)O(2) during reoxygenation. We report for the first time that 25 microM H(2)O(2) attenuates Ca(2+) accumulation, LDH release, and dissipation of Deltapsim during reoxygenation of hypoxic cardiomyocytes, indicating cell protection.  相似文献   

4.
The neuroprotective effect of MK801 against hypoxia and/or reoxygenation-induced neuronal cell injury and its relationship to neuronal nitric oxide synthetase (nNOS) expression were examined in cultured rat cortical cells. Treatment of cortical neuronal cells with hypoxia (95% N(2)/5% CO(2)) for 2 h followed by reoxygenation for 24 h induced a release of lactate dehydrogenase (LDH) into the medium, and reduced the protein level of MAP-2 as well. MK801 attenuated the release of LDH and the reduction of the MAP-2 protein by hypoxia, suggesting a neuroprotective role of MK801. MK801 also diminished the number of nuclear condensation by hypoxia/reoxygenation. The NOS inhibitors 7-nitroindazole (7-NI) and N (G)-nitro-L-arginine methyl ester (L-NAME), as well as the Ca(2+) channel blocker nimodipine, reduced hypoxia-induced LDH, suggesting that nitric oxide (NO) and calcium homeostasis contribute to hypoxia and/or the reoxygenation-induced cell injury. The levels of nNOS immunoactivities and mRNA by RT-PCR were enhanced by hypoxia with time and, down regulated following 24 h reoxygenation after hypoxia, and were attenuated by MK801. In addition, the reduction of nNOS mRNA levels by hypoxia/reoxygenation was also diminished by MK801. Further delineation of the mechanisms of NO production and nNOS regulation are needed and may lead to additional strategies to protect neuronal cells against hypoxic/reoxygenation insults.  相似文献   

5.
There is increasing evidence that intracellular reactive oxygen species (ROS) play a role in cell signaling and that the NADPH oxidase is a major source of ROS in endothelial cells. At low concentrations, agonist stimulation of membrane receptors generates intracellular ROS and repetitive oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) in human endothelial cells. The present study was performed to examine whether ROS are important in the generation or maintenance of [Ca(2+)](i) oscillations in human aortic endothelial cells (HAEC) stimulated by histamine. Histamine (1 microm) increased the fluorescence of 2',7'-dihydrodichlorofluorescin diacetate in HAEC, an indicator of ROS production. This was partially inhibited by the NADPH oxidase inhibitor diphenyleneiodonium (DPI, 10 microm), by the farnesyltransferase inhibitor H-Ampamb-Phe-Met-OH (2 microm), and in HAEC transiently expressing Rac1(N17), a dominant negative allele of the protein Rac1, which is essential for NADPH oxidase activity. In indo 1-loaded HAEC, 1 microm histamine triggered [Ca(2+)](i) oscillations that were blocked by DPI or H-Ampamb-Phe-Met-OH. Histamine-stimulated [Ca(2+)](i) oscillations were not observed in HAEC lacking functional Rac1 protein but were observed when transfected cells were simultaneously exposed to a low concentration of hydrogen peroxide (10 microm), which by itself did not alter either [Ca(2+)](i) or levels of inositol 1,4,5-trisphosphate (Ins-1,4,5-P(3)). Thus, histamine generates ROS in HAEC at least partially via NADPH oxidase activation. NADPH oxidase-derived ROS are critical to the generation of [Ca(2+)](i) oscillations in HAEC during histamine stimulation, perhaps by increasing the sensitivity of the endoplasmic reticulum to Ins-1,4,5-P(3).  相似文献   

6.
Onset of the mitochondrial permeability transition (MPT) is the penultimate event leading to lethal cellular ischemia-reperfusion injury, but the mechanisms precipitating the MPT after reperfusion remain unclear. Here, we investigated the role of mitochondrial free Ca(2+) and reactive oxygen species (ROS) in pH- and MPT-dependent reperfusion injury to hepatocytes. Cultured rat hepatocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 4 h and then reoxygenated at pH 7.4 to simulate ischemia-reperfusion. Some cells were loaded with the Ca(2+) chelators, BAPTA/AM and 2-[(2-bis-[carboxymethyl]aono-5-methoxyphenyl)-methyl-6-methoxy-8-bis[carboxymethyl]aminoquinoline, either by a cold loading protocol for intramitochondrial loading or by warm incubation for cytosolic loading. Cell death was assessed by propidium iodide fluorometry and immunoblotting. Mitochondrial Ca(2+), inner membrane permeability, membrane potential, and ROS formation were monitored with Rhod-2, calcein, tetramethylrhodamine methylester, and dihydrodichlorofluorescein, respectively. Necrotic cell death increased after reoxygenation. Necrosis was blocked by 1 μM cyclosporin A, an MPT inhibitor, and by reoxygenation at pH 6.2. Confocal imaging of Rhod-2, calcein, and dichlorofluorescein revealed that an increase of mitochondrial Ca(2+) and ROS preceded onset of the MPT after reoxygenation. Intramitochondrial Ca(2+) chelation, but not cytosolic Ca(2+) chelation, prevented ROS formation and subsequent necrotic and apoptotic cell death. Reoxygenation with the antioxidants, desferal or diphenylphenylenediamine, also suppressed MPT-mediated cell death. However, inhibition of cytosolic ROS by apocynin or diphenyleneiodonium chloride failed to prevent reoxygenation-induced cell death. In conclusion, Ca(2+)-dependent mitochondrial ROS formation is the molecular signal culminating in onset of the MPT after reoxygenation of anoxic hepatocytes, leading to cell death.  相似文献   

7.
The cardiac Na(+)/Ca(2+) exchanger (NCX) contributes to cellular injury during hypoxia, as its altered function is largely responsible for a rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)). In addition, the NCX in guinea pig ventricular myocytes undergoes profound inhibition during hypoxia and rapid reactivation during reoxygenation. The mechanisms underlying these changes in NCX activity are likely complex due to the participation of multiple inhibitory factors including altered cytosolic Na(+) concentration, pH, and ATP. Our main hypothesis is that oxidative stress is an essential trigger for rapid NCX reactivation in guinea pig ventricular myocytes and is thus a critical factor in determining the timing and magnitude of Ca(2+) overload. This hypothesis was evaluated in cardiac myocytes using fluorescent indicators to measure [Ca(2+)](i) and oxidative stress. An NCX antisense oligonucleotide was used to decrease NCX protein expression in some experiments. Our results indicate that NCX activity is profoundly inhibited in hypoxic guinea pig ventricular myocytes but is reactivated within 1-2 min of reoxygenation at a time of rising oxidative stress. We also found that several interventions to decrease oxidative stress including antioxidants and diazoxide prevented NCX reactivation and Ca(2+) overload during reoxygenation. Furthermore, application of exogenous H(2)O(2) was sufficient by itself to reactivate the NCX during sustained hypoxia and could reverse the suppression of reoxygenation-mediated NCX reactivation by diazoxide. These data suggest that elevated oxidative stress in reoxygenated guinea pig ventricular myocytes is required for rapid NCX reactivation, and thus reactivation should be viewed as an active process rather than being due to the simple decline of NCX inhibition.  相似文献   

8.
Zhou SG  Xu LP  Liao DF  Lei XY  Yan FX  Zhu BY 《生理学报》2004,56(3):313-320
为研究环孢霉素A(cyclosporin A,CsA)对缺氧/复氧诱导人脐静脉内皮细胞(ECV-304)与中性粒细胞粘附的影响,本工作以缺氧/复氧诱导粘附为模型,采用D-N-乙酰氨基己糖苷酶比色法检测粘附率,流式细胞术检测ECV-304细胞表面粘附分子E-选择素(E-selectin)、细胞间粘附分子-1(ICAM-1)的表达,Fenton反应测定活性氧(reactive oxygen species,ROS)的含量,Westera-blot法检测ECV-304细胞亲环素A(cyclophilin A,CyPA)、磷酸化及总细胞外信号调节激酶(ERK1/2)蛋白的表达。结果发现,ECV-304细胞经缺氧/复氧处理后,ROS释放增多,E-selectin、ICAM-1的表达上调,其表面中性粒细胞的粘附增加,CsA能显著抑制缺氧/复氧的上述作用。缺氧/复氧后,CyPA蛋白表达明显上调,ERK1/2显著活化,细胞总ERK1/2蛋白表达无明显改变。CyPA抑制剂CsA以及CyPA反义寡核苷酸均明显减轻缺氧/复氧诱导的ERK1/2激活,显著减少ECV-304细胞与中性粒细胞柑附。ERK112信号通路特异性阻断剂PD98059亦显著抑制ECV-304细胞与中性粒细胞的粘附。上述结果提示,CsA抑制缺氧气/复氧诱导的ECV-304细胞与中性粒细胞粘附,并可能通过抑制ROS-Cyclophilin A-ERK112的信号转导途径实现。  相似文献   

9.
We have shown that intermittent interruption of immediate reflow at reperfusion (i.e., postconditioning) reduces infarct size in in vivo models after ischemia. Cardioprotection of postconditioning has been associated with attenuation of neutrophil-related events. However, it is unknown whether postconditioning before reoxygenation after hypoxia in cultured cardiomyocytes in the absence of neutrophils confers protection. This study tested the hypothesis that prevention of cardiomyocyte damage by hypoxic postconditioning (Postcon) is associated with a reduction in the generation of reactive oxygen species (ROS) and intracellular Ca(2+) overload. Primary cultured neonatal rat cardiomyocytes were exposed to 3 h of hypoxia followed by 6 h of reoxygenation. Cardiomyocytes were postconditioned after the 3-h index hypoxia by three cycles of 5 min of reoxygenation and 5 min of rehypoxia applied before 6 h of reoxygenation. Relative to sham control and hypoxia alone, the generation of ROS (increased lucigenin-enhanced chemiluminescence, SOD-inhibitable cytochrome c reduction, and generation of hydrogen peroxide) was significantly augmented after immediate reoxygenation as was the production of malondialdehyde, a product of lipid peroxidation. Concomitant with these changes, intracellular and mitochondrial Ca(2+) concentrations, which were detected by fluorescent fluo-4 AM and X-rhod-1 AM staining, respectively, were elevated. Cell viability assessed by propidium iodide staining was decreased consistent with increased levels of lactate dehydrogenase after reoxygenation. Postcon treatment at the onset of reoxygenation reduced ROS generation and malondialdehyde concentration in media and attenuated cardiomyocyte death assessed by propidium iodide and lactate dehydrogenase. Postcon treatment was associated with a decrease in intracellular and mitochondrial Ca(2+) concentrations. These data suggest that Postcon treatment reduces reoxygenation-induced injury in cardiomyocytes and is potentially mediated by attenuation of ROS generation, lipid peroxidation, and intracellular and mitochondrial Ca(2+) overload.  相似文献   

10.
Growing evidence suggests that Ca(2+) overload is one of the major contributors of myocardial ischemia/reperfusion-induced injury. Since Frizzled-2 receptor, a seven transmembrane protein, transduces downstream signaling by specialized binding of Wnt5a to increase intracellular Ca(2+) release, this work aimed to investigate the effect of Frizzled-2 on Ca(2+) accumulation in H9c2 cells, which were subjected to hypoxia/reoxygenation to mimic myocardial ischemia/reperfusion. After exposing H9c2 cells to hypoxia/reoxygenation, we observed higher expression of Frizzled-2 and Wnt5a as compared to control group cells. Hypoxia/reoxygenation-induced intracellular Ca(2+) accumulation approached that of cells transfected with frizzled-2 plasmid. In cells treated with RNAi specifically designed against frizzled-2, intracellular Ca(2+) in both hypoxia/reoxygenation-treated cells and plasmid-treated cells were decreased. Rats that underwent ischemia/reperfusion injury exhibited increased intracellular Ca(2+) with high expression levels of Frizzled-2 and Wnt5a as compared to the sham group. Our data indicates that upon binding to Wnt5a, increased Frizzled-2 expression after hypoxia/reoxygenation treatment activated intracellular calcium release in H9c2 cells. Our findings provide a new perspective in understanding calcium overload in myocardial ischemia/reperfusion.  相似文献   

11.
The function of bcl-2 in preventing cell death is well known, but the mechanisms whereby bcl-2 functions are not well characterized. One mechanism whereby bcl-2 is thought to function is by alleviating the effects of oxidative stress upon the cell. To examine whether Bcl-2 can protect cells against oxidative injury resulting from post-hypoxic reoxygenation (H/R), we subjected rat fibroblasts Rat-1 and their bcl-2 transfectants b5 to hypoxia (5% CO2, 95% N2) followed by reoxygenation (5% CO2, 95% air). The bcl-2 transfectants exhibited the cell viability superior to that of their parent non-transfectants upon treatment with reoxygenation after 24-, 48-, or 72-h hypoxia, but not upon normoxic serum-deprivation or upon serum-supplied hypoxic treatment alone. Thus bcl-2 transfection can prevent cell death of some types, which occurred during H/R but yet not appreciably until termination of hypoxia. The time-sequential events of H/R-induced cell death were shown to be executed via (1) reactive oxygen species (ROS) production at 1-12 h after H/R, (2) activation of caspases-1 and -3, at 1-3 h and 3-6 h after H/R, respectively, and (3) loss of mitochondrial membrane potential (DeltaPsi) at 3-12 h after H/R. These cell death-associated events were prevented entirely except caspase-1 activation by bcl-2 transfection, and were preceded by Bcl-2 upregulation which was executed as early as at 0-1 h after H/R for the bcl-2 transfectants but not their non-transfected counterpart cells. Thus upregulation of Bcl-2 proteins may play a role in prevention of H/R-induced diminishment of cell viability, but may be executed not yet during hypoxia itself and be actually operated as promptly as ready to go immediately after beginning of H/R, resulting in cytoprotection through blockage of either ROS generation, caspase-3 activation, or DeltaPsi decline.  相似文献   

12.
N-n-butyl haloperidol iodide (F(2)), a novel quaternary ammonium salt derivative of haloperidol, was reported to antagonize myocardial ischemia/reperfusion injuries. To investigate its mechanisms, we characterized the effects of F(2) on Na(+)/Ca(2+) exchanger currents (I(NCX)) and the L-type Ca(2+) channel current (I(Ca,L)) of cardiomyocytes during either hypoxia/reoxygenation or exposure to H(2)O(2). Using whole-cell patch-clamp techniques, the I(NCX) and I(Ca,L) were recorded from isolated rat ventricular myocytes. Exposure of cardiomyocytes to hypoxia/reoxygenation or H(2)O(2) enhanced the amplitude of the inward and outward of I(NCX) and I(Ca,L). F(2) especially inhibited the outward current of Na(+)/Ca(2+) exchanger, as well as the I(Ca,L), in a concentration-dependent manner. F(2) inhibits cardiomyocyte I(NCX) and I(Ca,L) after exposure to hypoxia/reoxygenation or H(2)O(2) to antagonize myocardial ischemia/reperfusion injury by inhibiting Ca(2+) overload.  相似文献   

13.
Extracellular Ca(2+) concentration ([Ca(2+)](o)) regulates the functions of many cell types through a G protein-coupled [Ca(2+)](o)-sensing receptor (CaR). Whether the receptor is functionally expressed in vascular endothelial cells is largely unknown. In cultured human aortic endothelial cells (HAEC), RT-PCR yielded the expected 555-bp product corresponding to the CaR, and CaR protein was demonstrated by fluorescence immunostaining and Western blot. RT-PCR also demonstrated the expression in HAEC of alternatively spliced variants of the CaR lacking exon 5. Although stimulation of fura 2-loaded HAEC by several CaR agonists (high [Ca(2+)](o), neomycin, and gadolinium) failed to increase intracellular Ca(2+) concentration ([Ca(2+)](i)), the CaR agonist spermine stimulated an increase in [Ca(2+)](i) that was diminished in buffer without Ca(2+) and was abolished after depletion of an intracellular Ca(2+) pool with thapsigargin or after blocking IP(3)- and ryanodine receptor-mediated Ca(2+) release with xestospongin C and with high concentration ryanodine, respectively. Spermine stimulated an increase in DAF-FM fluorescence in HAEC, consistent with NO production. Both the increase in [Ca(2+)](i) and in NO production were reduced or absent in HAEC transfected with siRNA specifically targeted to the CaR. HAEC express a functional CaR that responds to the endogenous polyamine spermine with an increase in [Ca(2+)](i), primarily due to release of IP(3)- and ryanodine-sensitive intracellular Ca(2+) stores, leading to the production of NO. Expression of alternatively spliced variants of the CaR may result in the absence of a functional response to other known CaR agonists in HAEC.  相似文献   

14.
The blood-brain barrier (BBB) is a metabolic and physiological barrier important for maintaining brain homeostasis. The aim of this study was to determine the role of PKC activation in BBB paracellular permeability changes induced by hypoxia and posthypoxic reoxygenation using in vitro and in vivo BBB models. In rat brain microvessel endothelial cells (RMECs) exposed to hypoxia (1% O2-99% N2; 24 h), a significant increase in total PKC activity was observed, and this was reduced by posthypoxic reoxygenation (95% room air-5% CO2) for 2 h. The expression of PKC-betaII, PKC-gamma, PKC-eta, PKC-mu, and PKC-lambda also increased following hypoxia (1% O2-99% N2; 24 h), and these protein levels remained elevated following posthypoxic reoxygenation (95% room air-5% CO2; 2 h). Increases in the expression of PKC-epsilon and PKC-zeta were also observed following posthypoxic reoxygenation (95% room air-5% CO2; 2 h). Moreover, inhibition of PKC with chelerythrine chloride (10 microM) attenuated the hypoxia-induced increases in [14C]sucrose permeability. Similar to what was observed in RMECs, total PKC activity was also stimulated in cerebral microvessels isolated from rats exposed to hypoxia (6% O2-94% N2; 1 h) and posthypoxic reoxygenation (room air; 10 min). In contrast, hypoxia (6% O2-94% N2; 1 h) and posthypoxic reoxygenation (room air; 10 min) significantly increased the expression levels of only PKC-gamma and PKC-theta in the in vivo hypoxia model. These data demonstrate that hypoxia-induced BBB paracellular permeability changes occur via a PKC-dependent mechanism, possibly by differentially regulating the protein expression of the 11 PKC isozymes.  相似文献   

15.
Disturbances of blood flow upon vascular occlusions and spasms result in hypoxia and acidosis, while its subsequent restoration leads to reoxygenation and pH normalization (re-alkalization) in ischemic sites of the vascular bed. The effect of hypoxia/reoxygenation on activation and stimulation of apoptosis in cultured human endothelial cells was studied. The cells were subjected to hypoxia (2% O2, 5% CO2, 93% N2) for 24 h followed by reoxygenation (21% O2, 5% CO2, 74% N2) for 5 h. Reoxygenation was carried out at different pH-6.4 (preservation of acidosis after hypoxia), 7.0, and 7.4 (partial and complete re-alkalization, respectively). Hypoxia only slightly (by ~30%) increased the cell adhesion molecule ICAM-1 content on the cell surface, whereas reoxygenation more than doubled its expression. The reoxygenation effect depended on the medium acidity, and ICAM-1 increase was more pronounced at pH 7.0 compared to that at pH 6.4 and 7.4. Neither hypoxia nor reoxygenation induced expression of two other cell adhesion molecules, VCAM and E-selectin. Incubation of cells under hypoxic conditions but not reoxygenation stimulated secretion of von Willebrand factor and increased its concentration in the culture medium by more than 4 times. The percentage of cells containing apoptosis marker, activated caspase-3, was increased by approximately 1.5 times upon hypoxia as well as hypoxia/reoxygenation. Maximal values were achieved when reoxygenation was performed at pH 7.0. These data show that hypoxia/reoxygenation stimulate pro-inflammatory activation (ICAM-1 expression) and apoptosis (caspase-3 activation) of endothelial cells, and the extracellular pH influences both processes.  相似文献   

16.
Endothelial dysfunction is characterized by increased levels of reactive oxygen species (ROS) and a prothrombotic state. The mechanisms linking thrombosis to ROS production in the endothelium are not well understood. We investigated the role of thrombin in regulating NADPH oxidase-dependent ROS production and expression of its subunit p22phox in the endothelial cell line EaHy926. Thrombin elicited a biphasic increase in ROS generation peaking within 15 min, but also at 3 h. The delayed response was accompanied by increased p22phox mRNA and protein expression. Two-photon confocal laser microscopy showed colocalization between p22phox and ROS production. Antioxidant treatment with vitamin C or diphenyleneiodonium abrogated thrombin-induced ROS production and p22phox expression, whereas H2O2 elevated ROS production and p22phox levels. Both responses were dependent on p38 MAP kinase and phosphatidylinositol-3-kinase (PI3 kinase)/Akt. Finally, p22phox was required for thrombin- or H2O2-stimulated proliferation. These data show that thrombin rapidly increases ROS production in endothelial cells, resulting, via activation of p38 MAP kinase and PI3 kinase/Akt, in upregulation of p22phox accompanied by a delayed increase in ROS generation and enhanced proliferation. These findings suggest a positive feedback mechanism whereby ROS, possibly generated by the NADPH oxidase, lead to elevated levels of p22phox and, thus, sustained ROS generation as is observed in endothelial dysfunction.  相似文献   

17.
To investigate the possible cellular mechanisms of the ischemia-induced impairments of cerebral microcirculation, we investigated the effects of hypoxia/reoxygenation on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in bovine brain microvascular endothelial cells (BBEC). In the cells kept in normal air, ATP elicited Ca(2+) oscillations in a concentration-dependent manner. When the cells were exposed to hypoxia for 6 h and subsequent reoxygenation for 45 min, the basal level of [Ca(2+)](i) was increased from 32.4 to 63.3 nM, and ATP did not induce Ca(2+) oscillations. Hypoxia/reoxygenation also inhibited capacitative Ca(2+) entry (CCE), which was evoked by thapsigargin (Delta[Ca(2+)](i-CCE): control, 62.3 +/- 3.1 nM; hypoxia/reoxygenation, 17.0 +/- 1.8 nM). The impairments of Ca(2+) oscillations and CCE, but not basal [Ca(2+)](i), were restored by superoxide dismutase and the inhibitors of mitochondrial electron transport, rotenone and thenoyltrifluoroacetone (TTFA). By using a superoxide anion (O(2)(-))-sensitive luciferin derivative MCLA, we confirmed that the production of O(2)(-) was induced by hypoxia/reoxygenation and was prevented by rotenone and TTFA. These results indicate that hypoxia/reoxygenation generates O(2)(-) at mitochondria and impairs some Ca(2+) mobilizing properties in BBEC.  相似文献   

18.
Hypoxia affects the physiological behavior of rat cortical synaptosomes   总被引:1,自引:0,他引:1  
Nerve cells, especially synaptosomes, are very susceptible to hypoxia and the subsequent oxidative stress. In this paper, we examined the effects of hypoxia (93% N(2):2% O(2):5% CO(2), v/v/v) on rat cortical synaptosomes by evaluating modifications of synaptosomal mitochondrial respiration rate and ATP production, membrane potential, intrasynaptosomal mitochondrial Ca(2+) concentration ([Ca(2+)](i)), and desferoxamine-chelatable free iron and esterified F2-isoprostane levels after different periods of hypoxia and after 30 min of reoxygenation. Oxygen consumption decreased significantly during 120 min of hypoxia and was restored after reoxygenation. At the same time, ATP production decreased and remained significantly lower even after reoxygenation. This involved a depolarization of the synaptosomal mitochondrial membrane, although the [Ca(2+)](i) remained practically unchanged. Indeed, iron and F2-isoprostane levels, representing useful prediction markers for neurodevelopmental outcome, increased significantly after hypoxia, and there was a strong correlation between the two variables. On the whole our results indicate that synaptosomal mitochondria undergo mitoptosis after 2 h of hypoxia.  相似文献   

19.
Peroxidases of the peroxiredoxin (Prx) family catalyze the reduction of H(2)O(2) and lipid peroxides. The effects of H(2)O(2), 12-O-tetradecanoylphorbol 13-acetate (TPA), and silica on the abundance of two cytosolic isoforms of Prx (PrxI and PrxII) were examined in Rat2 cells. TPA induces the production of reactive oxygen species (ROS) in various mammalian cell types, and silica induces the production of ROS in Rat2 cells. Whereas H(2)O(2) and TPA did not affect the concentration of PrxI or Prx II, silica triggered a rapid degradation of both Prx enzymes. Silica also induced degradation of the NF-kappaB inhibitor IkappaB-alpha. N-Acetylcysteine and diphenyleneiodonium, both of which inhibit the accumulation of intracellular ROS, each blocked silica-induced degradation of IkappaB-alpha but had no effect on that of the Prx enzymes, suggesting that ROS do not contribute to Prx proteolysis. The silica-induced degradation of Prx enzymes was also insensitive to the proteasome inhibitors MG132 and lactacystin, whereas IkappaB-alpha proteolysis was completely blocked by these inhibitors. Experiments with the Ca(2+) ionophore A23187 indicated that a Ca(2+)-dependent protease such as calpain might contribute substantially to silica-induced degradation of PrxII, but only moderately to that of PrxI. These results indicate that silica increases cellular oxidative stress not only by inducing ROS production, but also by triggering the degradation of Prx enzymes that are responsible for elimination of cellular ROS. Such aggravated oxidative stress might be important in the initial pathogenesis of silica-associated pulmonary diseases.  相似文献   

20.
目的:建立小胶质细胞缺氧再复氧损伤模型,观察产生ROS的NADPH氧化酶的重要功能亚基gp91phox的表达变化及清开灵的干预作用,丰富清开灵基于解毒通络法以祛除内毒恢复脉络的作用内涵。方法:体外培养小鼠胶质细胞BV2,细胞分为正常组、模型组和清开灵高、中、低剂量组,在1%O2三气培养箱中缺氧12小时再复氧12小时模拟缺血再灌注损伤,正常对照组在培养箱中培养24小时,实时荧光定量PCR法检测gp91phoxmRNA的转录水平,Western blot法检测gp91phox蛋白表达。结果:缺氧再复氧损伤后,模型组gp91phox基因转录水平和蛋白表达提高(P0.05);与模型组比较,清开灵低、中、高剂量组都有明显改善作用,其中低剂量(0.0625%)对基因转录降低更明显,高剂量组(0.25%)对gp91phox蛋白表达的抑制更显著,具有统计学意义(P0.05)。结论:清开灵可通过降低缺氧再复氧后小胶质细胞gp91phox的表达,减少活性氧的产生而抑制脑缺血损伤氧化应激反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号