首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
镇达  陈茂彬 《微生物学报》2008,35(3):0358-0362
氯代硝基芳香烃是一类环境中难以降解的有毒污染物。一株高效分解4-氯硝基苯的假单胞菌分离于4-氯硝基苯污染土壤, 可以完全降解4-氯硝基苯, 并以之为C源、N源生长。为阐明其降解4-氯硝基苯的代谢途径, 通过对以底物生长的降解菌的酶学分析, 检测到其还原降解的两个关键酶即初始酶硝基还原酶和苯环开环酶2-氨基-5-氯酚1, 6-双加氧酶的活性; 结合其它检测如培养液中降解产物分析、相关底物生长实验结果, 确定了其降解途径是通过部分还原途径。  相似文献   

2.
假单胞菌ZWL73降解4-氯硝基苯的代谢途径研究   总被引:2,自引:1,他引:1  
镇达  陈茂彬 《微生物学通报》2008,35(3):0358-0362
氯代硝基芳香烃是一类环境中难以降解的有毒污染物.一株高效分解4-氯硝基苯的假单胞菌分离于4-氯硝基苯污染土壤,可以完全降解4-氯硝基苯,并以之为C源、N源生长.为阐明其降解4-氯硝基苯的代谢途径,通过对以底物生长的降解茵的酶学分析,检测到其还原降解的两个关键酶即初始酶硝基还原酶和苯环开环酶2-氨基-5-氯酚1,6-双加氧酶的活性:结合其它检测如培养液中降解产物分析、相关底物生长实验结果,确定了其降解途径是通过部分还原途径.  相似文献   

3.
The genes encoding enzymes involved in the initial reactions during degradation of 4-chloronitrobenzene (4CNB) were characterized from the 4CNB utilizer Pseudomonas putida ZWL73, in which a partial reductive pathway was adopted. A DNA fragment containing genes coding for chloronitrobenzene nitroreductase (CnbA) and hydroxylaminobenzene mutase (CnbB) were PCR-amplified and subsequently sequenced. These two genes were actively expressed in Escherichia coli, and recombinant E. coli cells catalyzed the conversion of 4CNB to 2-amino-5-chlorophenol, which is the ring-cleavage substrate in the degradation of 4CNB. Phylogenetic analyses on sequences of chloronitrobenzene nitroreductase and hydroxylaminobenzene mutase revealed that these two enzymes are closely related to the functionally identified nitrobenzene nitroreductase and hydroxylaminobenzene mutase from Pseudomonas strains JS45 and HS12. The nitroreductase from strain ZWL73 showed a higher specific activity toward 4CNB than nitrobenzene (approximately at a ratio of 1.6:1 for the recombinant or 2:1 for the wild type), which is in contrast to the case where the nitroreductase from nitrobenzene utilizers Pseudomonas pseudoalcaligenes JS45 with an apparently lower specific activity against 4CNB than nitrobenzene (0.16:1) [Kadiyala et al. Appl Environ Microbiol 69:6520–6526, 2003]. This suggests that the nitroreductase from 4-chloronitrobenzene utilizer P. putida ZWL73 may have evolved to prefer chloronitrobenzene to nitrobenzene as its substrate.Y.X. and J.-F.W. equally contributed to this work.  相似文献   

4.
Complexity involved in the transport of soils and the restrictive legislation for the area makes on-site bioremediation the strategy of choice to reduce hydrocarbons contamination in Antarctica. The effect of biostimulation (with N and P) and bioaugmentation (with two bacterial consortia and a mix of bacterial strains) was analysed by using microcosms set up on metal trays containing 2·5 kg of contaminated soil from Marambio Station. At the end of the assay (45 days), all biostimulated systems showed significant increases in total heterotrophic aerobic and hydrocarbon-degrading bacterial counts. However, no differences were detected between bioaugmented and nonbioaugmented systems, except for J13 system which seemed to exert a negative effect on the natural bacterial flora. Hydrocarbons removal efficiencies agreed with changes in bacterial counts reaching 86 and 81% in M10 (bioaugmented) and CC (biostimulated only) systems. Results confirmed the feasibility of the application of bioremediation strategies to reduce hydrocarbon contamination in Antarctic soils and showed that, when soils are chronically contaminated, biostimulation is the best option. Bioaugmentation with hydrocarbon-degrading bacteria at numbers comparable to the total heterotrophic aerobic counts showed by the natural microflora did not improve the process and showed that they would turn the procedure unnecessarily more complex.  相似文献   

5.
Biodegradation of petroleum hydrocarbons in cold environments, including Alpine soils, is a result of indigenous cold-adapted microorganisms able to degrade these contaminants. In the present study, the prevalence of seven genotypes involved in the degradation of n-alkanes (Pseudomonas putida GPo1 alkB; Acinetobacter spp. alkM; Rhodococcus spp. alkB1, and Rhodococcus spp. alkB2), aromatic hydrocarbons (P. putida xylE), and polycyclic aromatic hydrocarbons (P. putida ndoB and Mycobacterium sp. strain PYR-1 nidA) was determined in 12 oil-contaminated (428 to 30,644 mg of total petroleum hydrocarbons [TPH]/kg of soil) and 8 pristine Alpine soils from Tyrol (Austria) by PCR hybridization analyses of total soil community DNA, using oligonucleotide primers and DNA probes specific for each genotype. The soils investigated were also analyzed for various physical, chemical, and microbiological parameters, and statistical correlations between all parameters were determined. Genotypes containing genes from gram-negative bacteria (P. putida alkB, xylE, and ndoB and Acinetobacter alkM) were detected to a significantly higher percentage in the contaminated (50 to 75%) than in the pristine (0 to 12.5%) soils, indicating that these organisms had been enriched in soils following contamination. There was a highly significant positive correlation (P < 0.001) between the level of contamination and the number of genotypes containing genes from P. putida and Acinetobacter sp. but no significant correlation between the TPH content and the number of genotypes containing genes from gram-positive bacteria (Rhodococcus alkB1 and alkB2 and Mycobacterium nidA). These genotypes were detected at a high frequency in both contaminated (41.7 to 75%) and pristine (37.5 to 50%) soils, indicating that they are already present in substantial numbers before a contamination event. No correlation was found between the prevalence of hydrocarbon-degradative genotypes and biological activities (respiration, fluorescein diacetate hydrolysis, lipase activity) or numbers of culturable hydrocarbon-degrading soil microorganisms; there also was no correlation between the numbers of hydrocarbon degraders and the contamination level. The measured biological activities showed significant positive correlation with each other, with the organic matter content, and partially with the TPH content and a significant negative correlation with the soil dry-mass content (P < 0.05 to 0.001).  相似文献   

6.
Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes.  相似文献   

7.
Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes.  相似文献   

8.
A strain of Pseudomonas putida (2NP8) capable of growing on both 2-nitrophenol and 3-nitrophenol, but not on nitrobenzene (NB), was isolated from municipal activated sludge. 2-Nitrophenol was degraded by this strain with production of nitrite. Degradation of 3-nitrophenol resulted in the formation of ammonia. Cells grown on 2-nitrophenol did not degrade nitrobenzene. A specific nitrobenzene degradation activity was induced by 3-nitrophenol. Ammonia, nitrosobenzene, and hydroxylaminobenzene have been detected as metabolites of nitrobenzene degradation by cells grown in the presence of 3-nitrophenol. These results indicated a NB cometabolism mediated by 3-nitrophenol nitroreductase.  相似文献   

9.
A strain of Pseudomonas putida ZWL73 was isolated from soil contaminated with chloronitrobenzenes and identified by 16S rDNA sequencing. This bacterium released chloride and ammonia into the medium when grown on 4-chloronitrobenzene (4CNB) as the sole source of carbon, nitrogen and energy. A plasmid designated pZWL73 of approximately 100 kb in this strain was found to be responsible for 4CNB degradation. This was based on the fact that the plasmid-cured strains showed 4CNB phenotype and the 4CNB+ phenotype could be conjugally transferred. The cell-free extracts of strain ZWL73 exhibited chloronitrobenzene nitroreductase and 2-amino-5-chlorophenol 1, 6-dioxygenase (2A5CPDO) activities, but neither activity was found from that of the plasmid-cured strain. We have also cloned a 4.9-kb EcoRI fragment exhibiting 2A5CPDO activity. Sequencing results revealed β-subunit (cnbCa) and α subunit (cnbCb) of a meta-cleavage dioxygenase, which were subsequently expressed in E. coli with 2A5CPDO activity. The phylogenetic analysis suggested that 2A5CPDO may form a new subgroup in class III meta-cleavage dioxygenase with its close homologs. # D.Z. and H.L. equally contributed to this work.  相似文献   

10.
Introduced degraders often do not survive when applied to polluted sites; however, the potential for successful bioaugmentation may be increased if newly activated soil (containing indigenous degrader populations recently exposed to the contaminant) or potentially active soil (containing indigenous degrader populations not previously exposed to the contaminant) is used as the inoculant. To investigate this concept, Madera and Oversite soils were amended with 0 or 500 micrograms of 2-, 3-, or 4-chlorobenzoate per gram soil. The Madera degraded 2-chlorobenzoate while the Oversite degraded 3- and 4-chlorobenzoate. After 22 days of incubation, non-active soils that had not degraded chlorobenzoate were bioaugmented with the appropriate activated soil that had been exposed to and degraded chlorobenzoate. Thus, Oversite soil that had not degraded 2-chlorobenzoate was bioaugmented with Madera soil that had degraded 2-chlorobenzoate. Likewise, Madera soil that had not degraded 3- or 4-chlorobenzoate was bioaugmented with the Oversite soil that had degraded 3- or 4-chlorobenzoate. Additionally, the non-active soils were bioaugmented with the corresponding potentially active soils. The Oversite soil amended with activated Madera soil degraded the 2-chlorobenzoate within 3 days of bioaugmentation. The Madera soil amended with activated Oversite soils degraded the 3- and 4-chlorobenzoate within 20 and 6 days, respectively. Large degrader populations developed in microcosms bioaugmented with activated soil, and shifts in the 3- and 4-CB degrader community structures occurred following bioaugmentation. In contrast, bioaugmentation with potentially active soil did not impact degradation. The results indicate the potential for bioaugmentation with newly activated soil to enhance contaminant degradation.  相似文献   

11.
The biodegradation of nitrobenzene was attempted by using Pseudomonas putida TB 103 which possesses the hybrid pathway combining the tod and the tol pathways. Analysis of the metabolic flux of nitrobenzene through the hybrid pathway indicated that nitrobenzene was initially oxidized to cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene by toluene dioxygenase in the tod pathway and then channeled into the tol pathway, leading to the complete biodegradation of nitrobenzene. A crucial metabolic step redirecting the metabolic flux of nitrobenzene from the tod to the tol pathway was determined from the genetic and biochemical studies on the enzymes involved in the tol pathway. From these results, it was found that toluate-cis-glycol dehydrogenase could convert cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene to catechol in the presence of NAD(+) with liberation of nitrite and the reduced form of NAD(+) (NADH) into the medium. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
Various typing methods have been suggested to differentiate isolates of P. putida species with the aim of developing epidemiological tools. 34 P putida strains were isolated from the samples of crude oil and oil derivates contaminated soil (n=27), biopreparates used for biodegradation of soil contamination (n=3) and hospital materials (n=4). The biochemical typing was assessed using ID32GN tests (bio-Merieux). The strains were grouped into 11 biotypes. Antibiotic-containing discs were used for routine antibiogramsby disc diffusion assay. The strains were most resistant to cefoperazone and ticarcillin (29.4% and 26.5% of strains, respectively). The intracellular esterases of P. putida were separated by polyacrylamide gel electrophoresis and stained with Fast Blue using alpha-naphthyl acetate, beta-naphthyl propionate and indoxyl acetate as substrates. On the basis of the indicators dye migration the electrophoresis process was observed. By calculating the RF (retention factor) the distribution of stripes was obtained with great accuracy. The use of biochemical tests, sensitivity tests and zymotyping provides the possibility to inter- and intraspecies differentiation of P. putida.  相似文献   

13.
Biotransformation products of hydroxylaminobenzene and aminophenol produced by 3-nitrophenol-grown cells of Pseudomonas putida 2NP8, a strain grown on 2- and 3-nitrophenol, were characterized. Ammonia, 2-aminophenol, 4-aminophenol, 4-benzoquinone, N-acetyl-4-aminophenol, N-acetyl-2-aminophenol, 2-aminophenoxazine-3-one, 4-hydroquinone, and catechol were produced from hydroxylaminobenzene. Ammonia, N-acetyl-2-aminophenol, and 2-aminophenoxazine-3-one were produced from 2-aminophenol. All of these metabolites were also found in the nitrobenzene transformation medium, and this demonstrated that they were metabolites of nitrobenzene transformation via hydroxylaminobenzene. Production of 2-aminophenoxazine-3-one indicated that oxidation of 2-aminophenol via imine occurred. Rapid release of ammonia from 2-aminophenol transformation indicated that hydrolysis of the imine intermediate was the dominant reaction. The low level of 2-aminophenoxazine-3-one indicated that formation of this compound was probably due to a spontaneous reaction accompanying oxidation of 2-aminophenol via imine. 4-Hydroquinone and catechol were reduction products of 2- and 4-benzoquinones. Based on these transformation products, we propose a new ammonia release pathway via oxidation of aminophenol to benzoquinone monoimine and subsequent hydrolysis for transformation of nitroaromatic compounds by 3-nitrophenol-grown cells of P. putida 2NP8. We propose a parallel mechanism for 3-nitrophenol degradation in P. putida 2NP8, in which all of the possible intermediates are postulated.  相似文献   

14.
Biodegradation of petroleum hydrocarbons in cold environments, including Alpine soils, is a result of indigenous cold-adapted microorganisms able to degrade these contaminants. In the present study, the prevalence of seven genotypes involved in the degradation of n-alkanes (Pseudomonas putida GPo1 alkB; Acinetobacter spp. alkM; Rhodococcus spp. alkB1, and Rhodococcus spp. alkB2), aromatic hydrocarbons (P. putida xylE), and polycyclic aromatic hydrocarbons (P. putida ndoB and Mycobacterium sp. strain PYR-1 nidA) was determined in 12 oil-contaminated (428 to 30,644 mg of total petroleum hydrocarbons [TPH]/kg of soil) and 8 pristine Alpine soils from Tyrol (Austria) by PCR hybridization analyses of total soil community DNA, using oligonucleotide primers and DNA probes specific for each genotype. The soils investigated were also analyzed for various physical, chemical, and microbiological parameters, and statistical correlations between all parameters were determined. Genotypes containing genes from gram-negative bacteria (P. putida alkB, xylE, and ndoB and Acinetobacter alkM) were detected to a significantly higher percentage in the contaminated (50 to 75%) than in the pristine (0 to 12.5%) soils, indicating that these organisms had been enriched in soils following contamination. There was a highly significant positive correlation (P < 0.001) between the level of contamination and the number of genotypes containing genes from P. putida and Acinetobacter sp. but no significant correlation between the TPH content and the number of genotypes containing genes from gram-positive bacteria (Rhodococcus alkB1 and alkB2 and Mycobacterium nidA). These genotypes were detected at a high frequency in both contaminated (41.7 to 75%) and pristine (37.5 to 50%) soils, indicating that they are already present in substantial numbers before a contamination event. No correlation was found between the prevalence of hydrocarbon-degradative genotypes and biological activities (respiration, fluorescein diacetate hydrolysis, lipase activity) or numbers of culturable hydrocarbon-degrading soil microorganisms; there also was no correlation between the numbers of hydrocarbon degraders and the contamination level. The measured biological activities showed significant positive correlation with each other, with the organic matter content, and partially with the TPH content and a significant negative correlation with the soil dry-mass content (P < 0.05 to 0.001).  相似文献   

15.
Fluorescent pseudomonads were present in chernozem soil not influenced by plant roots (10(3)-10(4) per g dry soil) in the rhizosphere soil of various plants (10(4)-10(5) per g soil) and on roots (10(3) to 10(7) per g fresh roots), depending on the species and age of the plant. Relative species representation of fluorescent pseudomonads changed on the roots and in the plant rhizosphere as compared with free soil. Pseudomonas fluorescens, representing 60-93% of the population of fluorescent pseudomonads predominated on the roots of all plants investigated. Somewhat different results were obtained in rhizosphere soil. Relatively higher numbers of P. fluorescens were detected in the rhizosphere soil of cucumber and maize, numbers in the rhizosphere soil of wheat were practically the same as in free soil and higher numbers of P. putida were found in the rhizosphere soil of barley. Almost all components contained in the root exudates of the plants studied, including beta-pyrazolylalanine from the root exudates of cucumbers were utilized as carbon and energy sources. Root exudates of wheat and maize were utilized by the strain P. putida K2 with an efficiency of 73-91%, depending on species and age of the plant.  相似文献   

16.
The degradation of polycyclic aromatic hydrocarbons (PAHs) by an undefined culture obtained from a PAH-polluted soil and the same culture bioaugmented with three PAH-degrading strains was studied in carbon-limited chemostat cultures. The PAHs were degraded efficiently by the soil culture and bioaugmentation did not significantly improve the PAH degrading performance. The presence of PAHs did, however, influence the bacterial composition of the bioaugmented and non-bioaugmented soil cultures, resulting in the increase in cell concentration of sphingomonad strains. the initial enhancement of the degradation of the PAHs by biostimulation gradually disappeared and only the presence of salicylate in the additional carbon sources had a lasting slightly stimulating effect on the degradation of phenanthrene. The results suggest that bioaugmentation and biostimulation have limited potential to enhance PAH bioremediation by culture already proficient in the degradation of such contaminants.  相似文献   

17.
18.
To generate mutants with altered lipopolysaccharides (LPS) of the wild-type Pseudomonas putida KT2442, we used the mini-Tn 5luxAB -Km transposon. A mutant was found among luminescent colonies and selected as a negative clone in enzyme-linked immunosorbent assay (ELISA) with monoclonal antibody (mAb) 7.3B, which recognizes the O-antigen of P. putida LPS. The DNA region of the LPS mutant interrupted by the minitransposon insertion was cloned and sequenced. Comparison of the deduced amino acid sequence with protein sequence databases showed similarity to the O-antigen polymerase (Wzy) of Salmonella enterica (muenchen). The wild-type gene was rescued by polymerase chain reaction (PCR), cloned into a broad-host-range plasmid and used to carry out complementation assays. The cloned gene was able to restore the wild-type phenotype of the P. putida wzy mutant. We constructed an isogenic mutant of the luminescent wzy mutant to which an oprL mutation was transferred by homologous recombination with an oprL :: xylE cassette. The wzy mutants of P. putida were more sensitive to SDS, deoxycholate and EDTA than the corresponding parental strains. We analysed the ability of wzy , oprL and wzy oprL mutants of P. putida to colonize soil. In comparison with the wild-type strain, the ability of single mutants to colonize soil decreased; this characteristic was more evident for the double mutant, especially at high temperatures.  相似文献   

19.
The effectiveness of bioaugmentation in the improvement of the start-up of a biofilm airlift reactor to perform partial nitrification was investigated. Two identical biofilm airlift reactors were inoculated. The non-bioaugmented reactor (NB-reactor) was inoculated with conventional activated sludge, whereas the bioaugmented reactor (B-reactor) was seeded with the same conventional activated sludge but bioaugmented with nitrifying activated sludge from a pilot plant performing full nitritation under stable conditions (100% oxidation of influent ammonium to nitrite). The fraction of specialized nitrifying activated sludge in the inoculum of the B-reactor was only 6% (measured as dry matter). To simplify comparison of the results, operational parameters were equivalent for both reactors. Partial nitrification was achieved significantly faster in the B-reactor, showing a very stable operation. The results obtained by fluorescence in situ hybridization assays showed that the specialized nitrifying biomass added to the B-reactor remained in the biofilm throughout the start-up period.  相似文献   

20.
A remote site in the Tallgrass Prairie Preserve of Oklahoma (The Nature Conservancy) was contaminated with crude oil from a pipeline break and is being bioremediated using landfarming techniques. Landfarming is designed to stimulate microbial-based catabolism of petroleum through combined dilution/mixing and fertilization-based effects. To evaluate nitrogen-based effects during remediation, the site was sectioned and treated with urea, ammonium sulfate, or ammonium nitrate. Samples were obtained from prairie soil without chemical nitrogen addition and with or without hydrocarbon contamination. Nitrogen cycling dynamics were followed by measuring ammonium, nitrite, nitrate, and volatile nitric oxide (NOx) levels. Nitrifying and denitrifying bacterial numbers were estimated and compared to soil oxygen, carbon dioxide, and methane levels as well as to overall total petroleum hydrocarbon (TPH) reduction. For a prairie ecosystem of this type, a high level of fertilization, particularly with nitrogen, can have ecological effects almost as profound as the petroleum contamination itself. Fertilization of the oil-contaminated soil with the reduced and/or oxidized forms of nitrogen quickly resulted in elevated steady-state levels of both ammonium and nitrate, and exceptionally high levels of NOx released from soil. Although nitrogen fertilization increased microbial nitrogen metabolism and nitrogen cycling, it had minimal effects on the overall remediation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号