首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Summary Evidence is presented that the transport of lipid-soluble ions through bilayer membranes occurs in three distinct steps: (1) adsorption to the membranesolution interface; (2) passage over an activation barrier to the opposite interface; and (3) desorption into the aqueous solution. Support for this mechanism comes from a consideration of the potential energy of the ion, which has a minimum in the interface. The formal analysis of the model shows that the rate constants of the individual transport steps can be determined from the relaxation of the electric current after a sudden change in the voltage. Such relaxation experiments have been carried out with dipicrylamine and tetraphenylborate as permeable ions. In both cases the rate-determining step is the jump from the adsorption site into the aqueous phase. Furthermore, it has been found that with increasing ion concentration the membrane conductance goes through a maximum. In accordance with the model recently developed by L. J. Bruner, this behavior is explained by a saturation of the interface, which leads to a blocking of the conductance at high concentrations.  相似文献   

5.
A charge pulse technique applied to the study of charge transfer at metal-solution interfaces has been used to determine the capacity and the conductance of a membrane bilayer at both zero time and zero voltage. The transport of hydrophobic ions across a glycerol-monooleate bilayer (tetraphenyl borate, picrate, dipicrylamine and tetraphenyl arsonium) has been investigated by this method. A theoretical approach to the problem has been proposed based on one analogous to that used for the compact double layer at metallic electrodes.  相似文献   

6.
A charge pulse technique applied to the study of charge transfer at metal-solution interfaces has been used to determine the capacity and the conductance of a membrane bilayer at both zero time and zero voltage. The transport of hydrophobic ion across a glycerol-monooleate bilayer (tetraphenyl borate, picrate, dipicrylamine and tetraphenyl arsonium) has been investigated by this method. A theoretical approach to the problem has been proposed based on one analogous to that used for the compact double layer at metallic electrodes.  相似文献   

7.
Theoretical membrane potential transient produced by applying a current step to nerve cells has been derived based on the compartment neuron model and also on the equivalent cylinder model developed by W. Rall. It is expressed as a sum of exponential functions as
i=0n?1 Ei[1?exp(tτi)]
where n is the number of compartments. The ratio of the amplitudes of the first and the second largest exponential functions, (E1E0), was found to be proportional to that of their respective time constants, (τ1τ0), in these neuron models. The constant of proportionality is given in a form that depends on the number of compartments as E1E0 = (1 + cosπn)τ1τ0. This theoretical result is discussed in the light of recent experimental results in cat red nucleus neurons.  相似文献   

8.
9.
Quantitative relationship between the proton diffusion potential in the unstirred layers near BLM and NH4Cl was investigated. It has been found that in the range of low concentrations of NH4Cl the potential value depends on the difference of salt concentrations on different sides of the membrane. At higher concentrations the potential value is the function of the ratio of salt concentrations at different BLM sides. In the limiting case the potential value equals 58 mV with NH4Cl concentrations ratio equaling ten. A model is suggested which quantitatively describes the experimental data. It has been shown that the results obtained can be used in determining BLM permeability for weak acids and bases.  相似文献   

10.
11.
Electrical relaxation studies have been made on lecithin bilayer membranes of varying chain length and degree of unsaturation, in the presence of dipicrylamine. Results obtained are generally consistent with a model for the transport of hydrophobic ions previously proposed by Ketterer, Neumcke, and L?uger (J. Membrane Biol. 5:225, 1971). This medel visualizes as three distinct steps the interfacial absorption, translocation, and desorption of ions. Measurements at high electric field yield directly the density of ions absorbed to the membrane-solution interface. Variation of temperature has permitted determination of activation enthalpies for the translocation step which are consistent with the assumption of an electrostatic barrier in the hydrocarbon core of the membrane. The change of enthalpy upon absorption of ions is, however, found to be negligible, the process being driven instead by an increase of entropy. It is suggested that this increase may be due to the destruction, upon absorption, of a highly ordered water structure which surrounds the hydrophic ion in the aqueous phase. Finally, it is shown that a decrease of transient membrane conductance observed at high concentration of hydrophobic ions, previously interpreted in terms of interfacial saturation, must instead by attributed to a more complex effect equivalent to a reduction of membrane fluidity.  相似文献   

12.
We have shown that the absorption of tetraphenylborate into black lipid membranes formed from either bacterial phosphatidylethanolamine or glycerolmonooleate produces concentration-dependent changes in the electrostatic potential between the membrane interior and the bulk aqueous phases. These potential changes were studied by a variety of techniques: voltage clamp, charge pulse, and "probe" measurements on black lipid membranes; electrophroetic mobility measurements on phospholipid vesicles; and surface potential measurements on phospholipid monolayers. The magnitude of the potential changes indicates that tetraphenylborate absorbs into a region of the membrane with a low dielectric constant, where it produces substantial boundary potentials, as first suggested by Markin et al. (1971). Many features of our data can be explained by a simple three-capacitor model, which we develop in a self-consistent manner. Some discrepancies between our data and the simple model suggest that discrete charge phenomena may be important within these thin membranes.  相似文献   

13.
The electrical characteristics of wide membrane channels such as those induced in lipid membranes by alamethicin have been analyzed using an electrodiffusion model. The channel is considered to be a water filled cylinder in which the potential energy barrier is a result of the difference in polarization energy of the ion environment when the ion is located inside as compared to outside of the channel. In addition, an electric field related to the channel structure is assumed. It is shown that without postulating any specific chemical ion-channel interaction one can reproduce experimental membrane potentials for NaCl, KCl, and CaCl2 concentration gradients with a single set of channel parameters. The calculations also yield experimental J-V characteristics of discrete conduction states. In addition, a simple mechanism of interchannel coupling based on the above model is discussed. The model suggests a unifying approach to the problem of the origin of interionic selectivity of membrane channels induced by polyene antibiotics.  相似文献   

14.
The possibility that bilirubin can diffuse through lipid bilayers is investigated with liposomes prepared from dipalmitoylphosphatidylcholine (DPPC), egg phosphatidylcholine (egg PC) with 22 mole percent cholesterol, and a lipid extract preparation from N115 neuroblastoma cells. Liposomes were prepared with internalized bilirubin and bovine or human serum albumin, and bilirubin efflux into an exogenous solution of human serum albumin was measured. Efflux from DPPC liposomes was significantly higher above the phase transition temperature than below it. This change was dependent on the lipid undergoing a phase transition and could not be accounted for by 6 K change in temperature. Maximum bilirubin efflux from egg PC-cholesterol liposomes was found to depend on the relative internal and external albumin pools, suggesting an equilibrium distribution of bilirubin between them. These observations demonstrate that bilirubin can diffuse freely through these lipid membranes.  相似文献   

15.
B Fuks  F Hombl 《Plant physiology》1996,112(2):759-766
Electrical measurements were carried out to investigate the contribution of chloroplast lipids to the passive proton permeability of both the thylakoid and inner-envelope membranes. Permeability coefficient and conductance to protons were measured for solvent-free bilayers made from monogalactosyldiglyceride:digalactosyldiglycerid: sulfoquinovosyldiglyceride:phosphatidylglycerol (2:1:0.5:0.5, w/w) in the presence of a pH gradient of 7.4/8.1. The permeability coefficient for protons in glycolipids was 5.5 +/- 1.1 x 10(-4) cm s-1 (n = 14). To determine whether this high H+ permeability could be explained by the presence of lipid contaminants such as weak acids, we investigated the effects of (a) bovine serum albumin, which can remove some amphiphilic molecules such as free fatty acids, (b) 6-ketocholestanol, which increases the membrane dipole potential, (c) oleic acid, and (d) chlorodecane, which increases the dielectric constant of the lipid bilayer. Our results show that free fatty acids are inefficient protonophores, as compared with carbonylcyanide-m-chlorphenythydrazone, and that the hypothesis of a weak acid mechanism is not valid with glycolipid bilayers. In the presence of deuterium oxide the H+ conductane was reduced significantly, indicating that proton transport through the glycolipid matrix could occur directly by a hydrogen bond process. The passive transport of H+ through the glycolipid matrix is discussed with regard to the activity of the thylakoid ATP synthase and the inner-envelope H(+)-ATPase.  相似文献   

16.
The ClC chloride channels control the ionic composition of the cytoplasm and the volume of cells, and regulate electrical excitability. Recently, it has been proposed that prokaryotic ClC channels are H+-Cl- exchange transporter. Although X-ray and molecular dynamics (MD) studies of bacterial ClC channels have investigated the filter open-close and ion permeation mechanism of channels, details have remained unclear. We performed MD simulations of ClC channels involving H+, Na+, K+, or H3O+ in the intracellular region to elucidate the open-close mechanism, and to clarify the role of H+ ion an H+-Cl- exchange transporter. Our simulations revealed that H+ and Na+ caused channel opening and the passage of Cl- ions. Na+ induced a bead-like string of Cl- -Na+-Cl--Na+-Cl- ions to form and permeate through ClC channels to the intracellular side with the widening of the channel pathway.  相似文献   

17.
Uranyl ions (UO22+) stabilize black lipid membranes (BLM's) as inferred from the doubling of the breakdown voltage and from a considerable increase in the lifetime of the BLM's. These effects are observed also in BLM's made of mono-olein and of oxidized cholesterol. The lytic effect of lysolecithin is significantly reduced in the presence of UO22+. Uranyl ions adsorb to the interface of BLM's made of phosphatidylcholine (PC) with a dissociation constant of about 3 : 10?6 M and thereby charge the interface of the membrane and attain almost stoichiometric binding of one molecule of uranyl ion per one molecule of PC at 1 M ionic strength and 20 μM of UO22+. The membrane conductance induced by ionophores is considerably reduced by UO22+ and it is inferred by various tests that this is due to the charging of the interface and not to changes in membrane fluidity.  相似文献   

18.
19.
20.
A hydrophobic uncharged fluorescent probe of 4-dimethylaminochalcone (DMC) interacted with synthetic phospholipid membranes. Comparison of absorption spectra and fluorescence of DMC in the membranes and organic solvents shows that in the membranes the DMC molecules are located not in the hydrocarbon layer but in the polar regions near the surface. The probe is distributed regularly along the surface forming no dimers and clusters. Polar groups which surround the probe in the membrane are less mobile than the molecules of organic solvents at the same temperature. The evaluation shows that the relaxation time of polar groups in the probe environment is longer than 0.15-10(-9) sec. The DMC molecules may be located in different sites of the membrane surface, which seem to differ from one another in the mobility of polar groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号