首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mariner like elements (MLEs) are widely distributed type II transposons with an open reading frame (ORF) for transposase. We studied comparative phylogenetic evolution and inverted terminal repeat (ITR) conservation of MLEs from Indian saturniid silkmoth,Antheraea mylitta with other full length MLEs submitted in the database. Full length elements fromA. mylitta were inactive with multiple mutations. Many conserved amino acid blocks were identified after aligning transposase sequences. Mariner signature sequence, DD(34)D was almost invariable although a few new class of elements had different signatures.A. mylitta MLEs(Anmmar) get phylogenetically classified under cecropia subfamily and cluster closely with the elements from other Bombycoidea superfamily members implying vertical transmission from a common ancestor. ITR analysis showed a conserved sequence of AGGT(2-8N)ATAAGT for forward repeat and AGGT(2-8N)ATGAAAT for reverse repeat. These results and additional work may help us to understand the dynamics of MLE distribution inA. mylitta and construction of appropriate vectors for mariner mediated transgenics.  相似文献   

2.
Mariner-like elements (MLEs) are classII transposons with highly conserved sequence properties and are widespread in the genome of animal species living in continental environments. We describe here the first full-length MLE found in the genome of a marine crustacean species, the deep-sea hydrothermal crab Bythograea thermydron (Crustacea), named Bytmar1. A comparison of its sequence features with those of the MLEs contained in the genomes of continental species reveals several distinctive characteristics. First, Bytmar1 elements contains an ORF that may encode three transposase isoforms 349, 379, and 398 amino acids (aa) in long. The two biggest proteins are due to the presence of a 30- and 49-aa flag, respectively, at the N-terminal end of the 349-aa cardinal MLE transposase. Their GC contents are also significantly higher than those found in continental MLEs. This feature is mainly due to codon usage in the transposase ORF and directly interferes with the curvature propensities of the Bytmar1 nucleic acid sequence. Such an elevated GC content may interfere with the ability of Bytmar 1 to form an excision complex and, in consequence, with its efficiency to transpose. Finally, the origin of these characteristics and their possible consequences on transposition efficiency are discussed.Reviewing Editor: Dr. Nicolas Galtier  相似文献   

3.
Abstract Mariner transposons are widespread in eukaryote genomes and have been used as transposon vectors in insect transgenesis. We examined two closely related Helicoverpa species, the cotton bollworm Helicoverpa armigera and corn earworm Helicoverpa zea, for the presence of mariner‐like elements (MLEs). Multiple copies of two distinct MLEs, Hamar1 and Hamar2, were isolated in H. armigera, and a MLE showing a high degree of conservation to Hamar1 was detected in H. zea and was named Hzmar1. These MLEs belong to the cecropia subfamily, containing indels in the transposase coding region. Sequence analysis indicated the earlier invasion of Hamar1 and relatively recent activity of Hamar2.  相似文献   

4.
5.
Wallau GL  Hua-Van A  Capy P  Loreto EL 《Genetica》2011,139(3):327-338
The evolutionary history of mariner-like elements (MLEs) in 49 mainly Neotropical drosophilid species is described. So far, the investigations about the distribution of MLEs were performed mainly using hybridization assays with the Mos1 element (the first mariner active element described) in a widely range of drosophilid species and these sequences were found principally in species that arose in Afrotropical and Sino-Indian regions. Our analysis in mainly Neotropical drosophilid species shows that twenty-three species presented MLEs from three different subfamilies in their genomes: eighteen species had MLEs from subfamily mellifera, fifteen from subfamily mauritiana and three from subfamily irritans. Eleven of these species exhibited elements from more than one subfamily in their genome. In two subfamilies, the analyzed coding region was uninterrupted and contained conserved catalytic motifs. This suggests that these sequences were probably derived from active elements. The species with these putative active elements are Drosophila mediopunctata and D. busckii for the mauritiana subfamily, and D. paramediostriata for the mellifera subfamily. The phylogenetic analysis of MLE, shows a complex evolutionary pattern, exhibiting vertical transfer, stochastic loss and putative events of horizontal transmission occurring between different Drosophilidae species, and even those belonging to more distantly related taxa such as Bactrocera tryoni (Tephritidae family), Sphyracephala europaea (Diopsoidea superfamily) and Buenoa sp. (Hemiptera order). Moreover, our data show that the distribution of MLEs is not restricted to Afrotropical and Sino-Indian species. Conversely, these TEs are also widely distributed in drosophilid species arisen in the Neotropical region.  相似文献   

6.
The PIF/IS5 is a recently discovered superfamily of DNA transposons which include Pong-like elements and PIF-like elements and has been successively detected in the genomes of many flowering plants, fungi and diverse animals. Here we present the first comprehensive characterization and analysis of Pong-like elements in Bambusoideae subfamily. Eighty-two Pong-like elements were cloned and sequenced from 44 representative species of Bambusoideae. Phylogenetic analysis of 82 distinct Pong-like elements sequences showed that Pong-like elements were widespread, diverse and abundant in Bambusoideae. A molecular phylogeny of Bambusoideae was established by using the internal transcribed spacer sequence of nuclear ribosomal DNA (ITS) information. The comparison between ITS and Pong-like elements based trees reveals obviously incongruent. The results suggest that 1) there are multiple Pong-like element families in Bambusoideae; 2) a single Pong-like element family could be present in multiple bamboo species; 3) Pong-like elements from the same family from different bamboo species could be more similar than elements from different families in the same bamboo species or closely related species.  相似文献   

7.
8.
PIF-like elements are the first-described members of a recently discovered and widespread superfamily of DNA transposons, named PIF/Harbinger. Complete and partial PIF-like elements have been isolated from hundreds of plant species. Previously, we identified 139 partial PIF-like transposases in the Bambusoideae, of which three were from the bamboo species Phyllostachys pubescens. Here we report identification and isolation of the first full-length PIF-like element (PpPIF-1) from P. pubescens; identification was made by chromosome walking, based on a modified magnetic enrichment procedure that allows efficient cloning of flanking sequences up to 3 kb in length. PpPIF-1 is 5953 bp in length, with 20-bp imperfect inverted terminal repeats and 3-bp target site duplications. This element contains two open reading frames, one encoding a putative transposase, including the complete DDE-domain typical of PIF/Harbinger elements from plants, and the other encoding a DNA-binding protein. There are seven termination codons and two frameshift mutations in the open reading frames, probably due to vertical inactivation.  相似文献   

9.
Mariner-like elements (MLEs) are ubiquitous DNA mobile elements found in almost all eukaryote genomes. Nevertheless most of the known copies are inactive and the question of the genome invasion by MLEs remains largely hypothetical. We have previously reported the presence of highly homologous copies of MLEs in the genome of phylogenetically distant crustacea living in the same hydrothermal environment suggesting the possibility of horizontal transfer. In order to further support the hypothesis that horizontal transmission of MLEs might occur between crustacean sympatric species, we described here 85 MLE sequences found in the genome of a large spectrum of coastal crab species. The number of the MLEs copies in genomes was variable. Half of these MLEs fit with the irritans subfamily of MLEs whereas the second half grouped in a new subfamily called marmoratus. In addition, a molecular phylogeny of crabs was established by using the 16S information. The comparison between 16S and MLEs based trees reveals their incongruence, and suggests either the existence of horizontal transfer events between phylogenetically distant species, or an ancestral MLE polymorphism followed by different evolution and stochastic loss.  相似文献   

10.
The transposase of the mariner-like elements (MLEs) specifically binds as a dimer to the inverted terminal repeat of the transposon that encodes it. Two binding-motifs located within the inverted terminal sequences (ITR) are therefore recognized, as previously indicated, by biochemical data obtained with the Mos1 and Himar1 transposases. Here, we define the motifs that are involved in the binding of a MLE transposase to its ITR by analyzing the nucleic acid properties of the 5' and 3' ITR sequences from 45 MLEs, taking into account the fact that the transposase binds to the ITR, using its CRO binding domains and the general characteristics of the cro binding sites so far investigated. Our findings show that in all the MLE ITRs, the outer half was better conserved than the inner half. More interestingly, they allowed us to characterize conserved palindromic and mirror motifs specific to each "MLE species". The presence of the palindromic motifs was correlated to the binding of the transposase dimer, whereas the properties of the mirror motifs were shown to be responsible for the bend in each ITR that helps to stabilize transposase-ITR interactions.  相似文献   

11.
No mariner-like elements (MLEs) have been described until now in the genome of Drosophila melanogaster despite many experiments using molecular methods. However, analyses of sequence data from the Berkeley Drosophila Genome Project show that there are DNA sequences corresponding to pieces of MLE in the genome of D. melanogaster. The sequences of these elements have diverged considerably (about 40%) from any other sequences observed elsewhere. Moreover, the putative amino acid sequences encoded by the best conserved regions reveal that these sequences are clearly homologous to MLEs transposase.  相似文献   

12.
Horizontal transmission has been well documented as a major mechanism for the dissemination of mariner-like elements (MLEs) among species. Less well understood are mechanisms that limit vertical transmission of MLEs resulting in the "spotty" or discontinuous distribution observed in closely related species. In this article we present evidence that the genome of the common ancestor of the melanogaster species subgroup of Drosophila contained an MLE related to the mellifera (honey bee) subfamily. Horizontal transmission, approximately 3-10 MYA, is strongly suggested by the observation that the sequence of the MLE in Drosophila erecta is 97% identical in nucleotide sequence with that of an MLE in the cat flea, Ctenocephalides felis. The D. erecta MLE has a spotty distribution among species in the melanogaster subgroup. The element has a high copy number in D. erecta and D. orena, a moderate copy number in D. teissieri and D. yakuba, and was apparently lost ("stochastic loss") in the lineage leading to D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. In D. erecta, most copies are concentrated in the heterochromatin. Two copies from D. erecta, denoted De12 and De19, were cloned and sequenced, and they appear to be nonfunctional ("vertical inactivation"). It therefore appears that the predominant mode of MLE evolution is vertical inactivation and stochastic loss balanced against occasional reinvasion of lineages by horizontal transmission.   相似文献   

13.
Feschotte C  Swamy L  Wessler SR 《Genetics》2003,163(2):747-758
Stowaway is a superfamily of miniature inverted repeat transposable elements (MITEs) that is widespread and abundant in plant genomes. Like other MITEs, however, its origin and mode of amplification are poorly understood. Several lines of evidence point to plant mariner-like elements (MLEs) as the autonomous partners of the nonautonomous Stowaway MITEs. To better understand this relationship, we have taken advantage of the nearly complete genome sequences of two rice subspecies to generate the first inventory of virtually all MLEs and Stowaway families coexisting in a single plant species. Thirty-four different MLEs were found to group into three major clades and 25 families. More than 22,000 Stowaway MITEs were identified and classified into 36 families. On the basis of detailed sequence comparisons, MLEs were confirmed to be the best candidate autonomous elements for Stowaway MITEs. Surprisingly, however, sequence similarity between MLE and Stowaway families was restricted to the terminal inverted repeats (TIRs) and, in a few cases, to adjacent subterminal sequences. These data suggest a model whereby most of the Stowaway MITEs in rice were cross-mobilized by MLE transposases encoded by distantly related elements.  相似文献   

14.
Mariner-like elements (MLEs) are widespread transposable elements in animal genomes. They have been divided into at least five sub-families with differing host ranges. We investigated whether the ability of transposases encoded by Mos1, Himar1 and Mcmar1 to be actively imported into nuclei varies between host belonging to different eukaryotic taxa. Our findings demonstrate that nuclear importation could restrict the host range of some MLEs in certain eukaryotic lineages, depending on their expression level. We then focused on the nuclear localization signal (NLS) in these proteins, and showed that the first 175 N-terminal residues in the three transposases were required for nuclear importation. We found that two components are involved in the nuclear importation of the Mos1 transposase: an SV40 NLS-like motif (position: aa 168 to 174), and a dimerization sub-domain located within the first 80 residues. Sequence analyses revealed that the dimerization moiety is conserved among MLE transposases, but the Himar1 and Mcmar1 transposases do not contain any conserved NLS motif. This suggests that other NLS-like motifs must intervene in these proteins. Finally, we showed that the over-expression of the Mos1 transposase prevents its nuclear importation in HeLa cells, due to the assembly of transposase aggregates in the cytoplasm.  相似文献   

15.
Mariner-like elements (MLE) belong to the Tc1/mariner superfamily of class II transposons. We have analyzed the mariner related to the cecropia subfamily, and called mammal mar1, in four mammalian genomes, Bos taurus (Bovidae), Homo sapiens (Primata), Mus musculus (Rodentia), and Ovis aries (Ovidae). Three kinds of MLE sequences were found in all these species: full-length 1.3-kbp elements, shorter elements 80 bp–1.2 kbp, and single inverted terminal repeats (ITRs). All the 1.3-kbp genomic copies sequenced had an open reading frame encoding a transposase interrupted by stop codons or frame shifts. Phylogenetic analysis of the full-length elements suggested at least two distinct populations of mammal mar1 elements in each species. This was confirmed by using a statistical method that allows defining populations. Finally, the evolutionary origin of the mammal mar1 elements and the paradoxes are discussed. Received: 30 March 2000 / Accepted: 25 July 2000  相似文献   

16.
Zhang YJ  Ma PF  Li DZ 《PloS one》2011,6(5):e20596

Background

Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies.

Methodology/Principal Findings

Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae.

Conclusions/Significance

The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly.  相似文献   

17.
Mariners are a widespread and diverse family of animal transposons. Extremely similar mariners of the irritans subfamily are present in the genomes of three divergent insect host species, which strongly suggests that species-specific host factors are unnecessary for mobility. We tested this hypothesis by examining the activity of a purified transposase from one of these elements (Himar1) present in the horn fly, Haematobia irritans. Himar1 transposase was sufficient to reproduce transposition faithfully in an in vitro inter-plasmid transposition reaction. Further analyses showed that Himar1 transposase binds to the inverted terminal repeat sequences of its cognate transposon and mediates 5' and 3' cleavage of the element termini. Independence of species-specific host factors helps to explain why mariners have such a broad distribution and why they are capable of horizontal transfer between species.  相似文献   

18.
Transposable elements are DNA sequences present in all the large phylogenetic groups, both capable of changing position within the genome and constituting a significant part of eukaryotic genomes. The mariner family of transposons is one of the few which occurs in a wide variety of taxonomic groups, including freshwater planarians. Nevertheless, so far only five planarian species have been reported to carry mariner-like elements (MLEs), although several different species have been investigated. Regarding the number of copies of MLEs, Girardia tigrina is the only planarian species in which this has been evaluated, with an estimation of 8,000 copies of the element per haploid genome. Preliminary results obtained in our laboratory demonstrated that MLE is found in a large number of different species of planarians, including terrestrial. With this in mind, the aim was to evaluate the occurrence and estimate the number of MLE copies in different planarian species collected in south Brazil. Twenty-eight individuals from 15 planarian species were analyzed. By using PCR and the hybridization of nucleic acids, it was found that MLE was present in all the analyzed species, the number of copies being high, probably over 10(3) per haploid genome.  相似文献   

19.
Gui YJ  Zhou Y  Wang Y  Wang S  Wang SY  Hu Y  Bo SP  Chen H  Zhou CP  Ma NX  Zhang TZ  Fan LJ 《植物学报(英文版)》2010,52(11):1008-1015
Bamboo occupies an important phylogenetic node in the grass family and plays a significant role in the forest industry.We produced 1.2 Mb of tetraploid moso bamboo(Phyllostachys pubescens E.Mazel ex H.de Leh.)sequences from 13 bacterial artificial chromosome(BAC)clones,and these are the largest genomic sequences available so far from the subfamily Bambusoideae.The content of repetitive elements(36.2%)in bamboo is similar to that in rice.Both rice and sorghum exhibit high genomic synteny with bamboo,which suggests that rice and sorghum may be useful as models for decoding Bambusoideae genomes.  相似文献   

20.
转座元件mariner   总被引:2,自引:0,他引:2  
张卉  王小珂  马世俊 《遗传》2004,26(5):756-762
自mariner转座元件在Drosophila mauritiana中首次发现至今已经在包括人类在内的多种生物体中证实了mariner及类mariner元件(MLEs)的存在。MLEs属于mariner/Tc1超家族-II型转座元件中分布最广、种类最多的超家族之一。MLEs的转座酶都具有“D,D(34)D”的结构,并能催化MLEs通过“剪切和粘贴”机制进行转座。它们的宿主广泛和多样,能够进行种系传递,这都表明MLEs的转座不需要宿主特异元件的参与。 MLEs对多种生物尤其对脊椎动物的成功转化更支持了它们的不依赖宿主的转座机制,而且让人们看到了它们作为转基因载体的巨大潜能。 Abstract: Mariner and mariner-like elements (MLEs) have been found in a wide range of organisms including human since its discovery in Drosophila mauritiana. MLEs belong to the mariner/Tc1 superfamily, one of the most diverse and widespread Class II transposable elements. MLEs have a conserved “D,D(34)D” motif in their transposases and they transpose by cut-and-paste mechanisms. Their extraordinarily wide host range and horizontal transmission in distantly related species indicate that they do not need additional host-specific factors for transposition. The evidence that MLEs could transform a wide variety of organisms especially the vertebrates supported the host-independent mechanism and suggested the availability as a kind of potential transforming vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号