首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A K(+)-channel protein of the sarcoplasmic reticulum (SR) was purified by assaying the channel activity in a planar lipid bilayer system. The light fraction of SR vesicles was solubilized in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and fractionated by an anion-exchange chromatography and followed by gel filtration chromatography and affinity chromatography with concanavalin A. All fractions in each steps were mixed with asolectin solubilized in CHAPS and reconstituted into vesicles by dialysis. The channel activity of each fraction was assayed after the reconstituted vesicles had been fused into a planar lipid bilayer. The final fraction which showed the K(+)-channel activity contained only 100 kDa protein in a silver-stained gel after SDS-PAGE and an anti-Ca(2+)-ATPase antibody did not recognize the protein. The characteristics of the K(+)-channel were identical to those observed in native SR vesicles when using the same method. The channel showed a single-channel conductance of 120 pS in 0.1 M KCl and marked voltage dependence. The channel did not permeate Ca2+ and Cl- and was blocked by neomycin B.  相似文献   

2.
Highly purified Na+-channels isolated from rat brain have been reconstituted into virtually solvent-free planar lipid bilayer membranes. Two different types of electrically excitable channels were detected in the absence of any neurotoxins. The activity of both channels was blocked by saxitoxin. The first channel type is highly selective for Na+ over K+ (approximately 10:1), it shows a bursting behavior, a conductance of 25 pS in Na+-Ringer and undergoes continuous opening and closing events for periods of minutes within a defined range of negative membranes voltages. The second channel type has a conductance of 150 pS and a lower selectivity for Na+ and K+ (2.2:1); only a few opening and closing events are observed with this channel after one voltage jump. The latter type of channel is also found with highly purified Na+-channel from Electrophorus electricus electroplax. A qualitative analysis of the physicochemical and pharmacological properties of the high conductance channel has been carried out. Channel properties are affected not only by saxitoxin but also by a scorpion (Centruroides suffusus suffusus) toxin and a sea anemone (Anemonia sulcata) toxin both known to be selective for the Na+-channel. The spontaneous transformation of the large conductance channel type into the small one has been considered; the two channel types may represent the expression of activity of different conformational states of the same protein.  相似文献   

3.
Using density gradient centrifugation and [3H]ryanodine as a specific marker, the ryanodine receptor-Ca2+ release channel complex from Chaps-solubilized canine cardiac sarcoplasmic reticulum (SR) has been purified in the form of an approximately 30 S complex, comprised of Mr approximately 400,000 polypeptides. Purification resulted in a specific activity of approximately 450 pmol bound ryanodine/mg of protein, a 60-70% recovery of ryanodine binding activity, and retention of the high affinity ryanodine binding site (KD = 3 nM). Negative stain electron microscopy revealed a 4-fold symmetric, four-leaf clover structure, which could fill a box approximately 30 x 30 nm and was thus morphologically similar to the SR-transverse-tubule, junctionally associated foot structure. The structural, sedimentation, and ryanodine binding data strongly suggest there is one high affinity ryanodine binding site/30 S complex, comprised of four Mr approximately 400,000 subunits. Upon reconstitution into planar lipid bilayers, the purified complex exhibited a Ca2+ conductance (70 pS in 50 mM Ca2+) similar to that of the native cardiac Ca2+ release channel (75 pS). The reconstituted complex was also found to conduct Na+ (550 pS in 500 mM Na+) and often to display complex Na+ subconducting states. The purified channel could be activated by micromolar Ca2+ or millimolar ATP, inhibited by millimolar Mg2+ or micromolar ruthenium red, and modified to a long-lived open subconducting state by ryanodine. The sedimentation, subunit composition, morphological, and ryanodine binding characteristics of the purified cardiac ryanodine receptor-Ca2+ release channel complex were similar to those previously described for the purified ryanodine receptor-Ca2+ release channel complex from fast-twitch skeletal muscle.  相似文献   

4.
Single Ca2+ channels from brain microsomal membranes were reconstituted in bilayers made at the tips of patch-clamp micropipettes. The single-channel conductance was defined to be 107 pS in 50 mM Ca2+. The channel activity was stimulated by nucleotides and inositol 1,4,5-trisphosphate (Ins-P3), and was inhibited by ruthenium red. Na+ added asymmetrically to the membrane bilayer induced an increase in the Ca2+-channel activity. The described characteristics of these Ca2+ channels suggest that they may be responsible for the Ca2+ transport across the membranes of the endoplasmic reticulum system triggering and modulating various neurosecretory and excitatory processes in nerve cells.  相似文献   

5.
The beta 2 gap junction protein (Cx26) was expressed in an insect cell line by infection with a baculovirus vector containing the rat beta 2 cDNA. Isolated beta 2 gap junction connexons were reconstituted into planar lipid bilayers. Single channel activity was observed with a unitary conductance of 35-45 pS in 200 mM KCl. Channels with conductance values of 60 pS and 90-110 pS also coexisted with the lower conducting channel suggesting that there are channels with different conductance properties within a population of connexons. Channel activity was observed at voltages of up to 150 mV. Furthermore, the characterization of these channel properties from the beta 2 connexons that were generated by this heterologous expression system has provided the basis for identifying an endogenous beta 2 connexon channel in material reconstituted from native rat liver gap junctions.  相似文献   

6.
Ramjeesingh M  Li C  Huan LJ  Garami E  Wang Y  Bear CE 《Biochemistry》2000,39(45):13838-13847
The chloride channel ClC-2 is thought to be essential for chloride homeostasis in neurons and critical for chloride secretion by the developing respiratory tract. In the present work, we investigated the quaternary structure of ClC-2 required to mediate chloride conduction. We found using chemical cross-linking and a novel PAGE system that tagged ClC-2 expressed in Sf9 cells exists as oligomers. Fusion of membranes from Sf9 cells expressing this protein confers double-barreled channel activity, with each pore exhibiting a unitary conductance of 32 pS. Polyhistidine-tagged ClC-2 from Sf9 cells can be purified as monomers, dimers, and tetramers. Purified, reconstituted ClC-2 monomers do not possess channel function whereas both purified ClC-2 dimers and tetramers do mediate chloride flux. In planar bilayers, reconstitution of dimeric ClC-2 leads to the appearance of a single, anion selective 32 pS pore, and tetrameric ClC-2 confers double-barreled channel activity similar to that observed in Sf9 membranes. These reconstitution studies suggest that a ClC-2 dimer is the minimum functional structure and that ClC-2 tetramers likely mediate double-barreled channel function.  相似文献   

7.
A protein fraction isolated from detergent-solubilized mitochondrial membranes by affinity chromatography on immobilized quinine was reconstituted into phospholipid vesicles by detergent dialysis. Vesicles were fused to a diameter of 10 microns or larger by dehydration and rehydration. Patch clamp recordings carried out in detached mode with a symmetrical solution of 150 mM KCl, 5 mM HEPES, and 0.1 mM CaCl2 revealed conductance increments of 140 pS. Transitions of 40 pS were less frequently observed. Control vesicles which lacked protein showed no channel activity. The probability for the 140 pS channel to be open increased with increasing voltage in the range from 20 to 80 mV (positive potentials relative to what was the vesicle interior prior to excision), while the single channel conductance remained essentially constant. The 140 pS channel did not open at negative voltages. The voltage dependence suggests asymmetric incorporation of the 140 pS channel into vesicle membranes during reconstitution.  相似文献   

8.
Voltage-dependent calcium channels are vital to cardiac muscle contraction. Therefore it is very important to isolate physiologically active channel proteins, however there have been few reports on their solubilization and reconstitution. Highly purified sarcolemmal membranes from bovine cardiac muscle were solubilized with octylglucoside, partially purified by gel filtration, and reconstituted into planar lipid bilayer by the direct insertion method. At least, two cation channel activities were observed: one with about 4.2 pS and the other with about 28 pS in conductance. From the reversal potential, it was concluded that Ba2+ ions are the current carrier through these two channels.  相似文献   

9.
《FEBS letters》1993,320(3):261-266
Nicotinic cholinergic receptors are membrane proteins composed of five subunits organized around a central aqueous pore. A pentameric channel protein, T5M2δ, that emulates the presumed pore-forming structure of this receptor was generated by assembling five helix-forming peptide modules at the lysine ε-amino groups of the 11-residue template [K*AK*KK*PGK*EK*G], where * indicates attachment sites. Helical modules represent the sequence of the M2 segment of the Torpedo californica acetylcholine receptor (AChR) δ subunit; M2 segments are considered involved in pore-lining. Purified T5M2δ migrates in SDS-PAGE with an apparent Mr˜14,000, concordant with a protein of 126 residues. T5M2δ forms cation-selective channels when reconstituted in planar lipid bilayers. The single channel conductance in symmetric 0.5 M K.C1 is 40 pS. This value approximates the 45 pS single channel conductance characteristic of authentic purified Torpedo AChR, recorded under otherwise identical conditions. These results, together with conformational energy calculations, support the notion that a bundle of five amphipathic a-helices is a plausible structural motif underlying the inner bundle that forms the pore of the pentameric AChR channel.  相似文献   

10.
The presence of a sarcoplasmic reticulum (SR) K+-selective ion-channel has been known for >30 years yet the molecular identity of this channel has remained a mystery. Recently, an SR trimeric intracellular cation channel (TRIC-A) was identified but it did not exhibit all expected characteristics of the SR K+-channel. We show that a related SR protein, TRIC-B, also behaves as a cation-selective ion-channel. Comparison of the single-channel properties of purified TRIC-A and TRIC-B in symmetrical 210 mM K+ solutions, show that TRIC-B has a single-channel conductance of 138 pS with subconductance levels of 59 and 35 pS, whereas TRIC-A exhibits full- and subconductance open states of 192 and 129 pS respectively. We suggest that the K+-current fluctuations observed after incorporating cardiac or skeletal SR into bilayers, can be explained by the gating of both TRIC-A and TRIC-B channels suggesting that the SR K+-channel is not a single, distinct entity. Importantly, TRIC-A is regulated strongly by trans-membrane voltage whereas TRIC-B is activated primarily by micromolar cytosolic Ca2+ and inhibited by luminal Ca2+. Thus, TRIC-A and TRIC-B channels are regulated by different mechanisms, thereby providing maximum flexibility and scope for facilitating monovalent cation flux across the SR membrane.  相似文献   

11.
A Corcia  I Pecht  S Hemmerich  S Ran  B Rivnay 《Biochemistry》1988,27(19):7499-7506
Ion channels, activated upon IgE-Fc epsilon receptor aggregation by specific antigen, were studied in micropipet-supported lipid bilayers. These bilayers were reconstituted with purified IgE-Fc epsilon receptor complex and the intact 110-kDa channel-forming protein, both isolated from plasma membranes of rat basophilic leukemia cells (line RBL-2H3). In order to identify the current carrier through these ion channels and to determine their ion selectivity, we investigated the currents flowing through the IgE-Fc epsilon receptor gated channels in the presence of a gradient of Ca2+ ions. Thus, the solution in which the micropipet-supported bilayer was immersed contained 1.8 mM CaCl2, while the interior of the micropipet contained 0.1 microM Ca2+ (buffered with EGTA). Both solutions also contained 150 mM of a monovalent cation chloride salt (either K+ or Na+). The currents induced upon specific aggregation of the IgE (by either antigen or anti-IgE antibodies) were examined over a range of potentials imposed on the bilayer. The type of conductance event most frequently observed under the employed experimental conditions was a channel that has a slope conductance of 3 pS and a reversal potential practically identical with the calculated value for the reversal potential of calcium (134 +/- 11 mV in the presence of sodium, 125 +/- 13 mV in the presence of potassium). These results indicate that this channel is highly selective for calcium against the monovalent cations sodium and potassium. This same channel has a conductance of 4-5 pS in the presence of symmetrical solutions containing only 100 mM CaCl2 and 8 pS in the presence of 0.5 M NaCl with no calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The synaptic vesicle protein synaptophysin was solubilized from rat brain synaptosomes with a relatively low concentration of Triton X-100 (0.2%) and was highly purified (above 95%) using a rapid single chromatography step on hydroxyapatite/celite resin. Purified synaptophysin was reconstituted into a planar lipid bilayer and the channel activity of synaptophysin was characterized. In asymmetric KCl solutions (cis 300 mM/trans 100 mM), synaptophysin formed a fast-fluctuating channel with a conductance of 414 +/- 13 pS at +60 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation-selective. Synaptophysin channels showed higher selectivity for K(+) over Cl(-) (P(K(+))/P(Cl(-)) > 8) and preferred K(+) over Li(+), Na(+), Rb(+), Cs(+), or choline(+). The synaptophysin channel is impermeable to Ca(2+), which has no effect on its channel activity. This study is the second demonstration of purified synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amounts of purified synaptophysin and of its characteristic channel properties might help to establish the role of synaptophysin in synaptic transmission.  相似文献   

13.
The miniature viral K+ channel Kcv represents the pore module of all K+ channels. A synthetic gene of Kcv with an elevated GC content compared to that of the wild-type gene was expressed heterologously in Pichia pastoris, and the purified protein was functionally reconstituted into liposomes. Biochemical assays reveal a remarkable cation selective stability of the channel tetramer via SDS-PAGE. Only cations, which permeate Kcv, were able to protect the oligomer against disassembly into monomers at high temperatures. Electrophysiological characterization of the single Kcv channel reveals a saturating conductance (lambda(max)) of 360 pS; the single-channel current-voltage relation was strongly rectifying with a negative slope conductance at extreme voltages. The channel was highly selective for K+ and was blocked by Ba2+ and in a side specific manner by Na+ and Cs+ also. The channel conducted Rb+, but as a consequence, the channel was shifted into a hyperactive state. We conclude that specific binding interactions of cations in the conductive pathway are an important determinant of channel stability and function.  相似文献   

14.
The cerebellar inositol 1,4,5-trisphosphate (InsP3) receptor is a high molecular weight glycoprotein abundantly expressed in Purkinje cells. The subunit structure of the InsP3 receptor protein was examined by cross-linking experiments. Agarose-polyacrylamide gel electrophoresis of the cross-linked materials demonstrated that the cerebellar InsP3 receptor protein is composed of four noncovalently bound identical subunits each with a Mr of 320,000 in both purified and microsome-bound states. Chromatography of the purified receptor on a calmodulin-Sepharose column demonstrated a Ca2(+)-dependent interaction of the InsP3 receptor with calmodulin. Photoaffinity labeling of the cerebellar microsomal fraction with [alpha-32P]8-azidoadenosine 5'-triphosphate revealed the presence of ATP-binding site in the InsP3 receptor. Scatchard analysis of the purified InsP3 receptor revealed the Bmax and Kd values for ATP binding of 2.3 pmol/micrograms and 17 microM, respectively. Reconstitution of the purified InsP3 receptor into the planar lipid bilayer indicated channel activity in the purified receptor. It exhibited a calcium conductance (26 pS in 53 mM Ca2+) and sodium conductance (21 pS in 100-500 mM asymmetric Na+ solutions) with permeability ratios of PCa/PTris = 6.3 and PNa/PCl = 5.4. The purified channel was activated with submillimolar ATP in the presence of InsP3 and modified to reach a large conductance state.  相似文献   

15.
The properties of the channel of the purified acetylcholine receptor (AChR) were investigated after reconstitution in planar lipid bilayers. The time course of the agonist-induced conductance exhibits a transient peak that relaxes to a steady state value. The macroscopic steady state membrane conductance increases with agonist concentration, reaching saturation at 10(-5) M for carbamylcholine (CCh). The agonist-induced membrane conductance was inhibited by d-tubocurarine (50% inhibition, IC50, at approximately 10(-6) M) and hexamethonium (IC50 approximately 10(-5) M). The single channel conductance, gamma, is ohmic and independent of the agonist. At 0.3 M monovalent salt concentrations, gamma = 28 pS for Na+, 30 pS for Rb+, 38 pS for Cs+, and 50 pS for NH+4. The distribution of channel open times was fit by a sum of two exponentials, reflecting the existence of two distinct open states. tau o1 and tau o2, the fast and slow components of the distribution of open times, are independent of the agonist concentration: for CCh this was verified in the range of 10(-6) M less than C less than 10(-3)M. tau 01 and tau o2 are approximately three times longer for suberyldicholine ( SubCh ) than for CCh. tau o1 and tau o2 are moderately voltage dependent, increasing as the applied voltage in the compartment containing agonist is made more positive with respect to the other. At desensitizing concentrations of agonist, the AChR channel openings occurred in a characteristic pattern of sudden paroxysms of channel activity followed by quiescent periods. A local anesthetic derivative of lidocaine ( QX -222) reduced both tau o1 and tau o2. This effect was dependent on both the concentration of QX -222 and the applied voltage. Thus, the AChR purified from Torpedo electric organ and reconstituted in planar lipid bilayers exhibits ion conduction and kinetic and pharmacological properties similar to AChR in intact muscle postsynaptic membranes.  相似文献   

16.
Summary Freshly isolated epithelial cells from hen colon were investigated using the patch-clamp technique. The aim of this investigation was to characterise the cellular conducting site for Cl- secretion. In cell-attached mode two types of Cl--channels were found. Both showed distinct outward rectification. The channel types differed in single channel conductances and the marked voltage dependence of the open probabilities. A low conductance Cl--channel was observed with a mean conductance at negative holding potentials of g-=9 pS, and of g+=34 pS at positive potentials. This channel was predominantly open at negative potentials, corresponding to cell hyperpolarization. The second channel type observed had conductances of g-=35 pS and g+=77 pS, and showed increasing open probabilities with increasing holding potentials (cell depolarisation). Both channel types were blockable by the Cl--channel blocker NPPB. These data in combination with previously published transepithelial transport data on hen colon indicate that these channels are the Cl- secretory sites in colon epithelium.Abbreviations DNSO dimethylsulfoxide - EGTA ethyleneglycol triacetic acid - g+, g- single channel conductance at positive and negative voltages - HEPES N-(2-hydroxy-ethyl)piperazine-N-(2-ethane-sulfonic acid) - i single channel current - NMDG N-methyl-d-glucosamine - NPPB 5-hitro-2-(3-phenylpropylamino)-benzoate - Po open probability - Vp holding potential  相似文献   

17.
Electric conductance was studied across micropipette-supported planar lipid bilayers, reconstituted with IgE-Fc epsilon receptor and the cromolyn-binding protein (CBP) isolated from membranes of rat basophilic leukemia cells (RBL-2H3). Currents were observed following the addition of aggregating agents, specific for either of the two proteins. The results show that the two proteins are necessary and sufficient for the opening of cation channels. Both aggregation of Fc epsilon receptor via IgE with a specific antigen and of CBP by anti-CBP induce channels with similar conductances and open-time distributions. In the presence of 1.8 mM calcium, the most frequently observed channels have a conductance of 1-2 pS. At 100 mM calcium conductance increased to 4-5 pS. Channels induced by antigen were susceptible to blocking by the anti-allergic drug cromolyn. These results suggest that CBP acts as the core of the cation channel and that the channel conductance and open-time characteristics are independent of the mode of aggregation.  相似文献   

18.
mRNA and protein analyses have previously shown that the diaphragm expresses two ryanodine receptor isoforms: RyR1 and RyR3. RyR1 is the main Ca2+-releasing pathway in this muscle type. We now report the conducting, gating, and immunological properties of the native and purified forms of the less abundant RyR3 channel. The conductance of this native Ca2+-release channel was 330 pS in 50 mM/250 mM trans/cis CsCH3SO3. It was activated by Ca2+ concentrations of 1-1000 microM, and did not inactivate at mM concentrations of Ca2+. Both isoforms were purified by either a sucrose density gradient or immunoprecipitation as > 450 kDa proteins on SDS-PAGE. Western blot analysis confirmed the presence of RyR1 and RyR3, which displayed conductances of 740 +/- 30 and 800 +/- 25 pS, respectively, in 250 mM KCl. We thus provide evidence that one form of the diaphragm SR Ca2+-release channels may be classified as RyR3, with gating properties different from those of the well-characterized RyR1 and RyR2 isoforms.  相似文献   

19.
We purified the ATPase Fo sector from a nonoverexpressing strain of Escherichia coli, reconstituted it into lipid vesicles made of either asolectin or two different mixtures of purified lipids, and measured proton flux through the reconstituted proton channel. We measured single-channel conductances and found that Fo activity depends on both lipids and reconstitution methods. In asolectin vesicles, Fo has a single-channel conductance of about 0.2 fS. Additionally, the relatively impure Fo prepared from cells carrying single-copy ATPase genes allowed us to observe two other fluxes, a nonselective cation leak (C(L)) and a slow H+ flux (Hs). Unlike the Fo flux, these fluxes could not be blocked by the Fo inhibitor DCCD. The C, reduces the total apparent trapped volume inside vesicles and therefore must equilibrate both H+ and K+ in the vesicles that contain it. When reconstituted into bilayers, these Fo preparations displayed a 120 pS cation channel with characteristics consistent with C(L) flux. The Hs conducts only H+ but at a slower rate than the Fo. We were therefore able to: 1) quantitate the single-channel conductance of the Fo, 2) demonstrate that our Fo purification method co-purified other membrane proteins that have ion-conduction properties, and 3) show that certain lipids are necessary for functional reconstitution of Fo.  相似文献   

20.
Protein P trimers isolated and purified from Pseudomonas aeruginosa outer membrane were reconstituted in planar lipid bilayer membranes from diphytanoyl phosphatidylcholine. The protein trimers formed highly anion-specific channels with an average single channel conductance of 160 pS in 0.1 M Cl solution. A variety of different nonvalent anions were found to be permeable through the channel, which suggests a channel diameter between 0.5 and 0.7 nm. The selectivity for the halides followed the Eisenman sequence AVI (without At-). The ion transport through the protein P channel could be explained reasonably well by a one-site, two-barrier model. The stability constant of the binding of Cl- to the site was 20 M-1 at neutral pH. The binding of anions to the site was pH dependent, which suggested that several charges are involved in the closely spaced selectivity filter. Permeability ratios for different anions as calculated from bi-ionic potentials showed agreement with corresponding ratios of single channel conductances. The protein P channels were not voltage-gated and had lifetimes of the order of several minutes. The current-voltage curves were linear for membrane potentials up to 150 mV, which suggested that Nernst-Planck-type barriers rather than Eyring barriers were involved in the movement of anions through the protein P channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号