首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of transgenic plants to produce novel products has great biotechnological potential as the relatively inexpensive inputs of light, water, and nutrients are utilised in return for potentially valuable bioactive metabolites, diagnostic proteins and vaccines. Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines of importance for both animals and humans. Vaccine purification is generally regarded as being integral to the preparation of safe and effective vaccines for use in humans. However, the use of crude plant extracts for animal immunisation may enable plant-made vaccines to become a cost-effective and efficacious approach to safely immunise large numbers of farm animals against diseases such as avian influenza. Since the technology associated with genetic transformation and large-scale propagation is very well established in Nicotiana, the genus has attributes well-suited for the production of plant-made vaccines. However the presence of potentially toxic alkaloids in Nicotiana extracts impedes their use as crude vaccine preparations. In the current study we describe a Nicotiana tabacum and N. glauca hybrid that expresses the HA glycoprotein of influenza A in its leaves but does not synthesize alkaloids. We demonstrate that injection with crude leaf extracts from these interspecific hybrid plants is a safe and effective approach for immunising mice. Moreover, this antigen-producing alkaloid-free, transgenic interspecific hybrid is vigorous, with a high capacity for vegetative shoot regeneration after harvesting. These plants are easily propagated by vegetative cuttings and have the added benefit of not producing viable pollen, thus reducing potential problems associated with bio-containment. Hence, these Nicotiana hybrids provide an advantageous production platform for partially purified, plant-made vaccines which may be particularly well suited for use in veterinary immunization programs.  相似文献   

2.
Antigen-specific antibody responses against a model antigen (the B subunit of the heat labile toxin of enterotoxigenic Escherichia coli, LTB) were studied in sheep following oral immunisation with plant-made and delivered vaccines. Delivery from a root-based vehicle resulted in antigen-specific immune responses in mucosal secretions of the abomasum and small intestine and mesenteric lymph nodes. Immune responses from the corresponding leaf-based vaccine were more robust and included stimulation of antigen-specific antibodies in mucosal secretions of the abomasum. These findings suggest that oral delivery of a plant bioencapsulated antigen can survive passage through the rumen to elicit mucosal and systemic immune responses in sheep. Moreover, the plant tissue used as the vaccine delivery vehicle affects the magnitude of these responses.  相似文献   

3.
Increasing numbers of plant-made vaccines and pharmaceuticals are entering the late stage of product development and commercialization. Despite the theoretical benefits of such production, expression of parasite antigens in plants, particularly those from Plasmodium , the causative parasites for malaria, have achieved only limited success. We have previously shown that stable transformation of tobacco plants with a plant-codon optimized form of the Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5) gene resulted in PyMSP4/5 expression of up to ∼0.25% of total soluble protein. In this report, we describe the rapid expression of PyMSP4/5 in Nicotiana benthamiana leaves using the deconstructed tobacco mosaic virus-based magnICON® expression system. PyMSP4/5 yields of up to 10% TSP or 1–2 mg/g of fresh weight were consistently achieved. Characterization of the recombinant plant-made PyMSP4/5 indicates that it is structurally similar to PyMSP4/5 expressed by Escherichia coli . It is notable that the plant-made PyMSP4/5 protein retained its immunogenicity following long-term storage at ambient temperature within freeze-dried leaves. With assistance from a mucosal adjuvant the PyMSP4/5-containing leaves induced PyMSP4/5-specific antibodies when delivered orally to naïve mice or mice primed by a DNA vaccine. This study provides evidence that immunogenic Plasmodium antigens can be produced in large quantities in plants using the magnICON® viral vector system.  相似文献   

4.
Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52–90 μg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.  相似文献   

5.
Plant Cell, Tissue and Organ Culture (PCTOC) - Transient expression systems for plants have several advantages for the development of innovative plant-made vaccines. This technology has the...  相似文献   

6.
Summary Exploiting plants as biological bioreactors for production and delivery of edible oral subunit vaccines is a promising application of biotechnology. Efforts to enhance expression levels of transgenes coding for antigenic proteins by exploiting promoters, targeting sequences, and enhancer elements have produced rather low quantities of the antigen in plant tissues, but enough to induce immune responses in feeding studies. This review will cover components of various gene constructs used in developing plant-based vaccines against a myriad of viral and bacterial diseases. Specifically, it will focus on sequences that are involved in targeting the antigen to mucosal tissues of the intestinal tract, thus enhancing the immunogenicity of the plant-based vaccine as well as those components that result in higher accumulation of the protein within the plant.  相似文献   

7.
A variety of plant species have been genetically modified to accumulate vaccine antigens for human and animal health and the first vaccine candidates are approaching the market. The regulatory burden for animal vaccines is less than that for human use and this has attracted the attention of researchers and companies, and investment in plant-made vaccines for animal infectious disease control is increasing. The dosage cost of vaccines for animal infectious diseases must be kept to a minimum, especially for non-lethal diseases that diminish animal welfare and growth, so efficient and economic production, storage and delivery are critical for commercialization. It has become clear that transgenic plants are an economic and efficient alternative to fermentation for large-scale production of vaccine antigens. The oral delivery of plant-made vaccines is particularly attractive since the expensive purification step can be avoided further reducing the cost per dose. This review covers the current status of plant-produced vaccines for the prevention of disease in animals and focuses on barriers to the development of such products and methods to overcome them.  相似文献   

8.
Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through ‘naturalized bioreactors’ may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.  相似文献   

9.
Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, γ-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera® (γ-Zein ER-accumulating domain) is the N-terminal proline-rich domain of γ-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera® domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera® domain. We demonstrated that Zera®-F1-V protein accumulation was at least 3× higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera® technology to induce protein body formation in non-seed tissues. Zera® expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera® technology to substantially increase the accumulation of value-added proteins in plants.  相似文献   

10.
Referee: Dr. Yoedono Sovyanhadi, Department of Biological Sciences, Oakwood College, 7000 Adventist Boulevard, NW, Huntsville, AL 35896 Over the last 2 decades, the number of emergent infectious diseases has increased at an alarming rate. Also disheartening is the rise of known infectious pathogens that have acquired extensive drug resistance and reemerged with greater virulence. More recently, the threat of bioweapons has rekindled an urgency for the development of mass immunization programs. In response to this increased infectious disease threat, efforts have been intensified to identify more effective, inexpensive, and more easily deliverable mucosal vaccination methods. One area of research currently under development is the genetic modification of plants for production of immunoprotective proteins. The ability of plants to synthesize complex proteins using the elements of sunlight, soil, air, and water makes them ideal organisms for harvesting large quantities of therapeutic proteins. The introduction of antigen or antibody encoding genes into the genome of a plant through stable transformation enables them to manufacture vaccine proteins that are directly applicable for use in disease treatment, unlike yeast, bacterial, insect or other expression systems that require purification steps before delivery. As an alternative to stable transformation, plants can be used to generate large quantities of vaccines by acting as hosts for genetically altered plant viruses in which antigen proteins can be expressed and later purified from infected plant tissues. In this review, we survey current experimental strategies for using edible plants to achieve passive and active immunization against infectious disease organisms. In addition, methods are described for the construction of transformed plants that can provide protection against autoimmune diseases. Concerns and present obstacles to effective immunization with plant-based vaccines for animals and humans are presented.  相似文献   

11.
转基因植物表达药用蛋白的研究进展   总被引:2,自引:0,他引:2  
基因工程技术的进步使得转基因植物广泛应用于工业、农业各个领域,尤其在医药制造领域。研究成果表明,转基因植物作为生物反应器在制备药用蛋白,如重组疫苗、重组动物抗体、细胞因子等方面较其他表达系统,如微生物及动物表达系统具有成本低、应用安全等优势,但在工业化技术方面仍存在障碍。  相似文献   

12.
Although educational programs have had some impact, immunization against HIV will be necessary to control the AIDS pandemic. To be effective, vaccination will need to be accessible and affordable, directed against multiple antigens, and delivered in multiple doses. Plant-based vaccines that are heat-stable and easy to produce and administer are suited to this type of strategy. Pilot studies by a number of groups have demonstrated that plant viral expression systems can produce HIV antigens in quantities that are appropriate for use in vaccines. In addition, these plant-made HIV antigens have been shown to be immunogenic. However, given the need for potent cross-clade humoral and T-cell immunity for protection against HIV, and the uncertainty surrounding the efficacy of protein subunit vaccines, it is most likely that plant-made HIV vaccines will find their niche as booster immunizations in prime-boost vaccination schedules.  相似文献   

13.
Significant potential advantages are associated with the production of vaccines in transgenic plants; however, no commercial product has emerged. An analysis of the strengths, weaknesses, opportunities and threats for plant-made vaccine technology is provided. The use of this technology for human vaccines will require significant investment and developmental efforts that cannot be supported entirely by the academic sector and is not currently supported financially by industry. A focus on downstream aspects to define potential products, conduct of additional basic clinical testing, and the incorporation of multidisciplinary strategic planning would accelerate the potential for commercialization in this field. Estimates of production cost per dose and volume of production are highly variable for a model vaccine produced in transgenic tomato, and can be influenced by the optimization of many factors. Commercialization of plant-made vaccine technology is likely to be led by the agricultural biotechnology sector rather than the pharmaceutical sector due to the disruptive nature of the technology and the complex intellectual property landscape. The next major milestones will be conduct of a phase II human clinical trial and demonstration of protection in humans. The achievement of these milestones would be accelerated by further basic investigation into mucosal immunity, the codevelopment of oral adjuvants, and the integration of quality control standards and good manufacturing practices for the production of preclinical and clinical batch materials.  相似文献   

14.
The induction of mucosal immunity is very important in conferring protection against pathogens that typically invade via mucosal surfaces. Delivery of a vaccine to a mucosal surface optimizes the induction of mucosal immunity. The apparent linked nature of the mucosal immune system allows delivery to any mucosal surface to potentially induce immunity at others. Oral administration is a very straightforward and inexpensive approach to deliver a vaccine to the mucosal lining of the gut. However, vaccines administered by this route are subject to proteolysis in the gastrointestinal tract. Thus, dose levels for protein subunit vaccines are likely to be very high and the antigen may need to be protected from proteolysis for oral delivery to be efficacious. Expression of candidate vaccine antigens in edible recombinant plant material offers an inexpensive means to deliver large doses of vaccines in encapsulated forms. Certain plant tissues can also stably store antigens for extensive periods of time at ambient temperatures, obviating the need for a cold-chain during vaccine storage and distribution, and so further limiting costs. Antigens can be expressed from transgenes stably incorporated into a host plant's nuclear or plastid genome, or from engineered plant viruses infected into plant tissues. Molecular approaches can serve to boost expression levels and target the expressed protein for appropriate post-translational modification. There is a wide range of options for processing plant tissues to allow for oral delivery of a palatable product. Alternatively, the expressed antigen can be enriched or purified prior to formulation in a tablet or capsule for oral delivery. Fusions to carrier molecules can stabilize the expressed antigen, aid in antigen enrichment or purification strategies, and facilitate delivery to effector sites in the gastrointestinal tract. Many antigens have been expressed in plants. In a few cases, vaccine candidates have entered into early phase clinical trials, and in the case of farmed animal vaccines into relevant animal trials.  相似文献   

15.
The production of vaccines in transgenic plants was first proposed in 1990 however no product has yet reached commercialization. There are several risks during the production and delivery stages of this technology, with potential impact on the environment and on human health. Risks to the environment include gene transfer and exposure to antigens or selectable marker proteins. Risks to human health include oral tolerance, allergenicity, inconsistent dosage, worker exposure and unintended exposure to antigens or selectable marker proteins in the food chain. These risks are controllable through appropriate regulatory measures at all stages of production and distribution of a potential plant-made vaccine. Successful use of this technology is highly dependant on stewardship and active risk management by the developers of this technology, and through quality standards for production, which will be set by regulatory agencies. Regulatory agencies can also negatively affect the future viability of this technology by requiring that all risks must be controlled, or by applying conventional regulations which are overly cumbersome for a plant production and oral delivery system. The value of new or replacement vaccines produced in plant cells and delivered orally must be considered alongside the probability and severity of potential risks in their production and use, and the cost of not deploying this technology – the risk of continuing with the status quo alternative.  相似文献   

16.
Vaccine antigens have been successfully produced in transgenic plants for oral immunization. Recently, a fusion strategy has been adopted to produce multicomponent vaccines and to target antigens to mucosal sites for enhanced oral immunogenicity. However, antigen fusions may not be folded correctly due to steric hindrance and may thus lose their potency. Here, we describe an Agrobacterium-mediated transient assay that provides enough antigen-expressing material at 2 days post-transfection to evaluate antigen conformation. Using the hepatitis B surface antigen (HBsAg) as a model antigen and the green fluorescent protein (GFP) as a model fusion partner, we showed that transiently expressed HBsAg and an HBsAg fusion with GFP at the N-terminus (GFP:HBsAg), but not the HBsAg fusion with GFP at the C-terminus (HBsAg:GFP), formed the 'a' determinant and virus-like particles (VLPs), similar to yeast-derived vaccine HBsAg. Thus, it is feasible to modify the HBsAg with an N-terminal fusion of up to 239 amino acids without altering its major antigenic properties. Our results also demonstrate that the Agrobacterium-mediated transient expression system can be used to evaluate the conformation of plant-based vaccines or other pharmaceutical proteins in a high-throughput manner.  相似文献   

17.
Until recently, low accumulation levels have been the major bottleneck for plant-made recombinant protein production. However, several breakthroughs have been described in the past few years allowing for very high accumulation levels, mainly through chloroplast transformation and transient expression, coupled with subcellular targeting and protein fusions. Another important factor influencing our ability to use plants for the production of recombinant proteins is the availability of quick and simple purification strategies. Recent developments using oleosin, zein, ELP and hydrophobin fusion tags have shown promise as efficient and cost-effective methods for non-chromatographic separation. Furthermore, plant glycosylation is a major barrier to the parenteral administration of plant-made biopharmaceuticals because of potential immunogenicity concerns. A major effort has been invested in humanizing plant glycosylation, and several groups have been able to reduce or eliminate immunogenic glycans while introducing mammalian-specific glycans. Finally, biosafety issues and public perception are essential for the acceptance of plants as bioreactors for the production of proteins. Over recent years, it has become clear that food and feed plants carry an inherent risk of contaminating our food supply, and thus much effort has focused on the use of non-food plants. Presently, Nicotiana benthamiana has emerged as the preferred host for transient expression, while tobacco is most frequently used for chloroplast transformation. In this review, we focus on the main issues hindering the economical production of recombinant proteins in plants, describing the current efforts for addressing these limitations, and we include an extensive list of recent patents generated with the intention of solving these limitations.  相似文献   

18.
Viruses-like particles (VLPs), assembled from capsid structural subunits of several different viruses, have found a number of biomedical applications such as vaccines and novel delivery systems for nucleic acids and small molecules. Production of recombinant proteins in different plant systems has been intensely investigated and improved upon in the last two decades. Plant-derived antibodies, vaccines, and microbicides have received great attention and shown immense promise. In the case of mucosal vaccines, orally delivered plant-produced VLPs require minimal processing of the plant tissue, thus offering an inexpensive and safe alternative to more conventional live attenuated and killed virus vaccines. For other applications which require higher level of purification, recent progress in expression levels using plant viral vectors have shown that plants can compete with traditional fermentation systems. In this review, the different methods used in the production of VLPs in green plants are described. Specific examples of expression, assembly, and immunogenicity of several plant-derived VLPs are presented.  相似文献   

19.
Vaccines are a proven method of controlling disease. However there are issues with the delivery and administration of vaccines. A particular problem is that the majority of vaccines currently used are injected, which can be unsafe if needles are reused in areas where blood-borne diseases are prevalent. Vaccines targeting the mucosal immune system avoid many of the problems associated with injections. One potential form of mucosal vaccine is based on the expression of vaccine antigens in plants. Current research in this area has focused on the expression of immunogens from the plant's nuclear genome but low expression levels generally achieved using this system have limited progress. In recent work we have used the model antigen, TetC, which confers resistance to Tetanus infection, to demonstrate the feasibility of expressing vaccine antigens at high levels in the plant chloroplast.  相似文献   

20.
Malaria is a major global health problem for which effective control measures are urgently needed. Considerable effort has been focused on the development of effective vaccines against the causative parasite and protective vaccine trials are now being reported. Due to the relative poverty and lack of infrastructure in malaria-endemic areas, a successful immunisation strategy will depend critically on cheap and scaleable methods of vaccine production, distribution and delivery. One promising technology is transgenic plants, both as a bioreactor for the vaccine-manufacturing process as well as a matrix for oral immunisation. In this study, we investigated the feasibility of using transgenic plants to induce protective immunity against malaria infection using Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5) in a mouse model of malaria infection. Our data show that the PyMSP4/5 protein can be produced in plants in a configuration that reacts with protective antibodies. Optimisation of codon usage for the PyMSP4/5 gene resulted in significantly increased antigen expression in plants. PyMSP4/5 protein from the codon-optimised construct accumulated to 0.25% of total soluble protein, a sixfold increase over the native gene sequence. Tobacco-made PyMSP4/5 was able to induce antigen-specific antibodies in mice following parenteral delivery, as well as boost the antibody responses induced by DNA vaccination when delivered parenterally or orally. We believe this is the first report to show that plant-made malaria antigens are immunogenic. However, the antibody levels were not high enough to protect the immunised mice against a lethal challenge with P. yoelii. Further strategies are needed to achieve a protective dose, including improvements to antigen expression levels in plants and strategies to enhance the immunogenicity of the expressed antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号