首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Throughout the Origin of Species, Darwin contrasts his theory of natural selection with the theory that God independently created each species. This makes it seem as though the Origin offers a scientific alternative to a theological worldview. A few months after the Origin appeared, however, the eminent anatomist Richard Owen published a review that pointed out the theological assumptions of Darwin's theory. Owen worked in the tradition of rational morphology, within which one might suggest that evolution occurs by processes that are continuous with those by which life arises from matter; in contrast, Darwin rested his account of life's origins on the notion that God created one or a few life forms upon which natural selection could act. Owen argued that Darwin's reliance on God to explain the origins of life makes his version of evolution no less supernatural than the special creationist that Darwin criticizes: although Darwin limits God to one or a few acts of creation, he still relies upon God to explain life's existence.  相似文献   

3.
The goal of this chapter is to suggest some organic compounds which may be indicative of prebiotic processes in hydrothermal systems or laboratory simulations of them. While the exact processes which led to the origins of life are not known, studies of life's origins of the past forty years have uncovered a plethora of potential precursor molecules. Some of these same molecules were probably present in hydrothermal systems if chemical processes there had a role in the origins of life. The types of molecules formed in primitive Earth simulation experiments and observed in the interstellar medium, on comets and meteorites will be reviewed in Section 2 of this chapter. Some reactions involving these molecules which may have been important in prebiotic syntheses will be outlined. Since near- to supercritical water is found in hydrothermal systems, its properties and aspects of organic chemistry in supercritical water at high temperature and pressure will be discussed in Section 3. Fischer-Tropsch type (FTT) reactions, which are a potential source of the building blocks of biological molecules in hydrothermal systems, are discussed in Section 4. In the concluding section, Section 5, the possible formation in hydrothermal systems of organic molecules that are believed to have been important for the origins of life is discussed.  相似文献   

4.
The Rid family of proteins is highly conserved and broadly distributed throughout the domains of life. Genetic and biochemical studies, primarily in Salmonella enterica, have defined a role for RidA in responding to endogenously generated reactive metabolites. The data show that 2‐aminoacrylate (2AA), a reactive enamine intermediate generated by some pyridoxal 5′‐phosphate‐dependent enzymes, accumulates in the absence of RidA. The accumulation of 2AA leads to covalent modification and inactivation of several enzymes involved in essential metabolic processes. This review describes the 2AA hydrolyzing activity of RidA and the effect of this biochemical activity on the metabolic network, which impacts organism fitness. The reported activity of RidA and the consequences encountered in vivo when RidA is absent have challenged fundamental assumptions in enzymology, biochemistry and cell metabolism regarding the fate of transiently generated reactive enamine intermediates. The current understanding of RidA in Salmonella and the broad distribution of Rid family proteins provide exciting opportunities for future studies to define metabolic roles of Rid family members from microbes to man.  相似文献   

5.
Modularity analysis offers a route to better understand the organization of cellular biochemical networks as well as to derive practically useful, simplified models of these complex systems. While there is general agreement regarding the qualitative properties of a biochemical module, there is no clear consensus on the quantitative criteria that may be used to systematically derive these modules. In this work, we investigate cyclical interactions as the defining characteristic of a biochemical module. We utilize a round trip distance metric, termed Shortest Retroactive Distance (ShReD), to characterize the retroactive connectivity between any two reactions in a biochemical network and to group together network components that mutually influence each other. We evaluate the metric on two types of networks that feature feedback interactions: (i) epidermal growth factor receptor (EGFR) signaling and (ii) liver metabolism supporting drug transformation. For both networks, the ShReD partitions found hierarchically arranged modules that confirm biological intuition. In addition, the partitions also revealed modules that are less intuitive. In particular, ShReD-based partition of the metabolic network identified a 'redox' module that couples reactions of glucose, pyruvate, lipid and drug metabolism through shared production and consumption of NADPH. Our results suggest that retroactive interactions arising from feedback loops and metabolic cycles significantly contribute to the modularity of biochemical networks. For metabolic networks, cofactors play an important role as allosteric effectors that mediate the retroactive interactions.  相似文献   

6.
Halomonas smyrnensis AADT is a halophilic, gram‐negative bacterium that can efficiently produce levan from sucrose as carbon source via levansucrase activity. However, systems‐based approaches are required to further enhance its metabolic performance for industrial application. As an important step toward this goal, the genome‐scale metabolic network of Chromohalobacter salexigens DSM3043, which is considered a model organism for halophilic bacteria, has been reconstructed based on its genome annotation, physiological information, and biochemical information. In the present work, the genome‐scale metabolic network of C. salexigens was recruited, and refined via integration of the available biochemical, physiological, and phenotypic features of H. smyrnensis AAD6T. The generic metabolic model, which comprises 1,393 metabolites and 1,108 reactions, was then systematically analyzed in silico using constraints‐based simulations. To elucidate the relationship between levan biosynthesis and other metabolic processes, an enzyme‐graph representation of the metabolic network and a graph decomposition technique were employed. Using the concept of control effective fluxes, significant links between several metabolic processes and levan biosynthesis were estimated. The major finding was the elucidation of the stimulatory effect of mannitol on levan biosynthesis, which was further verified experimentally via supplementation of mannitol to the fermentation medium. The optimal concentration of 30 g/L mannitol supplemented to the 50 g/L sucrose‐based medium resulted in a twofold increase in levan production in parallel with increased sucrose hydrolysis rate, accumulated extracellular glucose, and decreased fructose uptake rate. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1386–1397, 2013  相似文献   

7.
Computational simulation of large‐scale biochemical networks can be used to analyze and predict the metabolic behavior of an organism, such as a developing seed. Based on the biochemical literature, pathways databases and decision rules defining reaction directionality we reconstructed bna572, a stoichiometric metabolic network model representing Brassica napus seed storage metabolism. In the highly compartmentalized network about 25% of the 572 reactions are transport reactions interconnecting nine subcellular compartments and the environment. According to known physiological capabilities of developing B. napus embryos, four nutritional conditions were defined to simulate heterotrophy or photoheterotrophy, each in combination with the availability of inorganic nitrogen (ammonia, nitrate) or amino acids as nitrogen sources. Based on mathematical linear optimization the optimal solution space was comprehensively explored by flux variability analysis, thereby identifying for each reaction the range of flux values allowable under optimality. The range and variability of flux values was then categorized into flux variability types. Across the four nutritional conditions, approximately 13% of the reactions have variable flux values and 10–11% are substitutable (can be inactive), both indicating metabolic redundancy given, for example, by isoenzymes, subcellular compartmentalization or the presence of alternative pathways. About one‐third of the reactions are never used and are associated with pathways that are suboptimal for storage synthesis. Fifty‐seven reactions change flux variability type among the different nutritional conditions, indicating their function in metabolic adjustments. This predictive modeling framework allows analysis and quantitative exploration of storage metabolism of a developing B. napus oilseed.  相似文献   

8.
9.
Origins of life: a route to nanotechnology.   总被引:2,自引:0,他引:2  
The origins of life and nanotechnology are two seemingly disparate areas of scientific investigation. However, the fundamental questions of life's beginnings and the applied construction of a Drexlerian nanotechnology both share a similar problem; how did and how can self-reproducing molecular machines originate? Here we draw attention to the coincidence between nanotechnology and origins research with particular attention paid to the spontaneous adsorption and scanning tunneling microscopy investigation of purine and pyrimidine bases self-organized into monolayers, adsorbed to the surfaces of crystalline solids. These molecules which encode biological information in nucleic acids, can form supramolecular architectures exhibiting enantiomorphism with the complexity to store and encode putative protobiological information. We conclude that the application of nanotechnology to the investigation of life's origins, and vice versa, could provide a viable route to an evolution-driven synthetic life.  相似文献   

10.

A new definition of life is proposed and discussed in the present article. It is formulated by modifying and extending NASA’s working definition of life, which postulates that life is a “self-sustaining chemical system capable of Darwinian evolution”. The new definition includes a thermodynamical aspect of life as a far from equilibrium system and considers the flow of information from the environment to the living system. In our derivation of the definition of life we have assumed the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems that only subsequently acquired the capacity of genetic heredity. The new proposed definition of life is independent of the mode of evolution, regardless of whether Lamarckian or Darwinian evolution operated at the origins of life and throughout evolutionary history. The new definition of life presented herein is formulated in a minimal manner and it is general enough that it does not distinguish between individual (metabolic) network and the collective (ecological) one. The newly proposed definition of life may be of interest for astrobiology, research into the origins of life or for efforts to produce synthetic or artificial life, and it furthermore may also have implications in the cognitive and computer sciences.

  相似文献   

11.
12.
Origins of life: A comparison of theories and application to Mars   总被引:1,自引:0,他引:1  
The field of study that deals with the origins of life does not have a consensus for a theory of life's origin. An analysis of the range of theories offered shows that they share some common features that may be reliable predictors when considering the possible origins of life on another planet. The fundamental datum dealing with the origins of life is that life appeared early in the history of the Earth, probably before 3.5 Ga and possibly before 3.8 Ga. What might be called the standard theory (the Oparin-Haldane theory) posits the production of organic molecules on the early Earth followed by chemical reactions that produced increased organic complexity leading eventually to organic life capable of reproduction, mutation, and selection using organic material as nutrients. A distinct class of other theories (panspermia theories) suggests that life was carried to Earth from elsewhere — these theories receive some support from recent work on planetary impact processes. Other alternatives to the standard model suggest that life arose as an inorganic (clay) form and/or that the initial energy source was not organic material but chemical energy or sunlight. We find that the entire range of current theories suggests that liquid water is the quintessential environmental criterion for both the origin and sustenance of life. It is therefore of interest that during the time that life appeared on Earth we have evidence for liquid water present on the surface of Mars.  相似文献   

13.

Background  

We describe a function-driven approach to the analysis of metabolism which takes into account the phylogenetic origin of biochemical reactions to reveal subtle lineage-specific metabolic innovations, undetectable by more traditional methods based on sequence comparison. The origins of reactions and thus entire pathways are inferred using a simple taxonomic classification scheme that describes the evolutionary course of events towards the lineage of interest. We investigate the evolutionary history of the human metabolic network extracted from a metabolic database, construct a network of interconnected pathways and classify this network according to the taxonomic categories representing eukaryotes, metazoa and vertebrates.  相似文献   

14.
The first part of the paper offers philosophical landmarks on the general issue of defining life. §1 defends that the recognition of “life” has always been and remains primarily an intuitive process, for the scientist as for the layperson. However we should not expect, then, to be able to draw a definition from this original experience, because our cognitive apparatus has not been primarily designed for this. §2 is about definitions in general. Two kinds of definition should be carefully distinguished: lexical definitions (based upon current uses of a word), and stipulative or legislative definitions, which deliberately assign a meaning to a word, for the purpose of clarifying scientific or philosophical arguments. The present volume provides examples of these two kinds of definitions. §3 examines three traditional philosophical definitions of life, all of which have been elaborated prior to the emergence of biology as a specific scientific discipline: life as animation (Aristotle), life as mechanism, and life as organization (Kant). All three concepts constitute a common heritage that structures in depth a good deal of our cultural intuitions and vocabulary any time we try to think about “life”. The present volume offers examples of these three concepts in contemporary scientific discourse. The second part of the paper proposes a synthesis of the major debates developed in this volume. Three major questions have been discussed. A first issue (§4) is whether we should define life or not, and why. Most authors are skeptical about the possibility of defining life in a strong way, although all admit that criteria are useful in contexts such as exobiology, artificial life and the origins of life. §5 examines the possible kinds of definitions of life presented in the volume. Those authors who have explicitly defended that a definition of life is needed, can be classified into two categories. The first category (or standard view) refers to two conditions: individual self-maintenance and the open-ended evolution of a collection of similar entities. The other category refuse to include reproduction and evolution, and take a sort of psychic view of the living. §6 examines the relationship between the question of the definition of life and that of the origins of life. There is a close parallel between the general conceptions of the origins of life and the definitions of life.  相似文献   

15.
Objective: Impaired lung function is associated with obesity and insulin resistance. In this study, we investigated the relationship between metabolic syndrome and impaired lung function in adults. Research Methods and Procedures: A total of 46,514 subjects 20 years and over (21,669 men and 24,845 women, mean age = 37.3 ± 11.2 and 37.0 ± 11.3 years, respectively) were recruited from four nationwide MJ Health Screening Centers in Taiwan from 1998 to 2000. Metabolic syndrome was defined using the National Cholesterol Education Panel (NCEP) metabolic syndrome criteria or America Heart Association/National Heart Lung Blood Institute (AHA/NHLBI) criteria. The relationship between metabolic syndrome and lung function test was examined using multivariate logistic regression analysis. Results: The prevalence of impaired lung function was 11.1% in men and 14.0% in women. The prevalence of metabolic syndrome was 5.8% using NCEP criteria and 12.8% using AHA/NHLBI criteria. In multivariate logistic regression analysis with adjustment for age, gender, BMI, smoking, alcohol drinking, and physical activity, restrictive lung impairment was independently associated with increased risk of having metabolic syndrome (p < 0.01, odds ratios = 1.221 using NCEP criteria and 1.150 using AHA/NHLBI criteria). Discussion: Obesity and metabolic syndrome were associated with impaired lung function in adults in Taiwan. Our results imply that obesity and insulin resistance may be the common pathways underlying lung function impairment and metabolic syndrome. Moreover, lung function test may be applied as an additional evaluation for metabolic syndrome in a clinical setting.  相似文献   

16.
The genomic richness and intra-species heterogeneity of the prokaryotic world is suggestive of extensive biochemical diversity. In this study, metabolomic profiling permitted a phylogenetic assessment of metabolic diversification amongst environmental, medical and laboratory strains of Escherichia coli. Strikingly, no two E. coli isolates exhibited the same metabolite pool profile. Only 27% of detected metabolite spots in 2-dimensional high-performance thin layer chromatography (2DHPTLC) were found in all strains, indicating that a relatively small core of metabolism is conserved across a species. The population structure determined using metabolomics exhibited clustering of strains in parallel to genetic relatedness, as established by multi-locus DNA sequencing. On the other hand, metabolome patterns did not cluster in parallel with the pathogenicity or environmental origins of strains, but some unique spots were found in most bacteria. These results suggest that great metabolic diversity, to the point of individuality, is likely to be characteristic of a bacterial species. Furthermore, the high resolving power of 2DHPTLC metabolite fingerprinting provides an economic and powerful means of using metabolomics for the analysis of evolutionary relationships and the precise typing of organisms.  相似文献   

17.
The physiological parameters of heterothermy (e.g. minimum body temperature and oxygen consumption, percentage metabolic reduction, and bout length) were measured in two species of Elephantulus elephant shrews (Elephantulus myurus and Elephantulus rozeti; Macroscelidea) as a function of ambient temperature. Both species displayed deep torpor whereby the body temperatures of ca. 5 °C and oxygen consumption as low as 2% of basal metabolic rate were attained. Torpor bout length (n=57 bouts) never exceeded 24 h. These data are characteristic of both hibernation (minimum body temperature and metabolism) and daily torpor (bout length), and argue that these two physiological responses may not necessarily have separate evolutionary origins. Accepted: 26 July 2000  相似文献   

18.
Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health‐promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome‐scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome‐scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses.  相似文献   

19.
Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre‐existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution – historical continuity of a deterministic network that links past and present functional associations of its components.  相似文献   

20.
How enzymes have evolved to their present form is linked to the question of how pathways emerged and evolved into extant metabolic networks. To investigate this mechanism, we have explored the chemical diversity present in a largely unbiased data set of catalytic reactions processed by modern enzymes across the tree of life. In order to get a quantitative estimate of enzyme chemical diversity, we measure enzyme multispecificity or promiscuity using the reaction molecular signatures. Our main finding is that reactions that are catalyzed by a highly specific enzyme are shared by poorly divergent species, suggesting a later emergence of this function during evolution. In contrast, reactions that are catalyzed by highly promiscuous enzymes are more likely to appear uniformly distributed across species in the tree of life. From a functional point of view, promiscuous enzymes are mainly involved in amino acid and lipid metabolisms, which might be associated with the earliest form of biochemical reactions. In this way, results presented in this paper might assist us with the identification of primeval promiscuous catalytic functions contributing to life's minimal metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号