首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gaind S  Nain L 《Biodegradation》2007,18(4):495-503
A field experiment was conducted to evaluate the relative contribution of organic fertilizers (paddy straw, microbial inoculants and vermicompost) and inorganic fertilizers (urea and superphosphate) in improving pH, C, N, humus, microbial biomass, dehydrogenase, phosphatase, cellulase, β-glucosidase and xylanase activities of soil under wheat crop. Vermicompost fertilization resulted in highest microbial biomass, available phosphorus, and nitrogen content of wheat soil. It was also found effective in minimizing the alkalinity of soil compared to other treatments as indicated by pH change. However incorporation of paddy straw in conjunction with N60P60 and T. reesei inoculation resulted in maximum dehydrogenase, alkaline phosphatase and highest humus content of soil. Mixed inoculation of A. awamori and T. reesei did not prove effective in improving the soil biochemical properties in comparison to single inoculation of T. reesei. Results showed that in situ incorporation of paddy straw in combination with N60P60 and T. reesei inoculation can be used as an effective measure for valuable disposal of paddy straw and to improve the soil health by reducing mineral fertilization.  相似文献   

2.
In the dairy calf feeding, supplementation of forage to the starter feed is commonly practiced. However, data are insufficient about how changes in particle size (PS) of forage affect calf performance and behavior in a free-choice forage provision system. This study aimed to assess the effects of supplementing wheat straw varying in PS on performance, skeletal growth characteristics, ruminal pH, nutritional behaviors, and blood metabolites of dairy calves. Forty-eight Holstein calves (43.8 ± 3.2 kg of BW) from d 15 of age were randomly assigned to one of the four treatments (n = 12/treatment; six males and six females): (1) starter without wheat straw supplementation (CON), (2) CON supplemented with wheat straw chopped at 1 mm geometrical mean particle length (GMPL) (fine PS), (3) CON supplemented with wheat straw at 4 mm GMPL (medium PS), and (4) CON supplemented with wheat straw at 7 mm GMPL (long PS). The calves were given ad libitum access to feed and water throughout the study. All calves were weaned on d 56 of age and continued the experiment until d 90. The starter, wheat straw, and total solid feed intakes were not affected by GMPL of wheat straw; however, CON calves had a lower solid feed-, total DM- and NDF-intake than calves offered wheat straw. Further, ADG, weaning, and final BWs as well as feed efficiency were similar between treatments. No difference was observed in growth rate of hip height, hip width, body barrel, wither height, and heart girth among treatments, however, wheat straw supplemented calves tended to have greater body length at weaning. Blood concentration of serum β-hydroxy butyrate was greater in wheat straw supplemented calves compared with CON calves on d 56 and 90. Calves supplemented with wheat straw spent more time eating starter and forage, lying and ruminating and less time for standing and non-nutritional behaviors compared with the CON calves on d 49 and 63 of the study. Moreover, calves offered wheat straw had greater ruminal pH than CON calves at 4 and 8 h after offering starter feed on d 35. In conclusion, supplementing wheat straw as a free-choice increased solid feed intake, rumen pH, and calves' welfare, however, PS of wheat straw had no effect.  相似文献   

3.
Soil nitrogen heterogeneity in a Dehesa ecosystem   总被引:1,自引:0,他引:1  
The C mineralization and N transformations during the decomposition of sunflower stalks (Helianthus annuus L.) and wheat straw (Triticum aestivum L.) with and without addition of (NH4)2SO4 (27.53 atom% 15N) were studied in a Vertisol. Soil samples were incubated under aerobic conditions for 224 days at 22 °C. The plant residues were added at a rate of 5.2 g kg-1 soil. Nitrogen was applied at a rate of 50.7 mg N kg-1 soil. Carbon dioxide emission and inorganic N content in soil were periodically determined. Gross N immobilization and remineralization were calculated on the basis of the isotopic dilution technique. At the end of the incubation period a 15N balance was established. Respectively, 68 and 45% of the applied residue-C mineralized from the sunflower stalks and wheat straw after 224 days. Both crop residues caused losses of up to 25% of added 15N after 224 days of incubation. These 15N losses were about three times larger than in the control soil, and were probably due to denitrification. The net immobilization of soil derived N following residue incorporation was largest in the case of wheat straw, depleting all soil inorganic N. In the wheat straw treatment with added (NH4)2SO4 soil inorganic N remained available, resulting in an enhanced initial C mineralization and N immobilization compared to the treatment without added N. In the case of the sunflower stalks, the high inorganic N content of the stalks suppressed the effects of N addition on C mineralization and N immobilization/mineralization. Gross N immobilization amounted to 31.9 and 28.2 mg N g-1 added C after 14 days for wheat straw and sunflower stalks, respectively. At the end of the incubation, about 35% of the newly immobilized N was remineralized in both plant residue treatments. Gross N immobilization plotted against decomposed C suggests that fairly uniform C-N relationships exist during the decomposition of divers C substrates. The results demonstrate that low fertilizer N use efficiencies may be expected in a wheat-sunflower cropping system with incorporation of crop residues, as the fertilizer N applied becomes largely immobilized in the soil organic fraction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Summary The production of xylanase from Bacillus coagulans has been studied with respect to the environmental parameters, the carbon source and the concentration of carbon source at the shake flask level. Among the various carbon sources used, wheat straw powder favoured higher enzyme production. Xylan isolated from wheat straw gave higher enzyme production as compared to the birchwood xylan. Maximum enzyme activity of 165 IU/ml was obtained with 2% wheat straw xylan in a shake flask study. Improvement of xylanase production was achieved by increasing the wheat straw powder concentration up to 3%. Enzyme has optimum activity at a temperature of 55 °C and pH of 7. The concentrated crude enzyme was found to reduce the kappa number of enzyme-treated eucalyptus pulp by␣5.45% with a marginal increase in the CED viscosity of the enzyme treated pulp as compared to the non-enzymatically treated pulp.  相似文献   

5.
Bacillus azotofixans is a recently described species capable of fixing molecular nitrogen efficiently.Ecological studies performed in monoxenic wheat cultures, both in 0.7% agar and in vermiculite-sand mixture, showed that no acetylene reduction occurred and that this bacteria did not grow when supplied only with the wheat plant root exudates. However, after glucose addition to the 0.7% agar cultures, acetylene reduction ability (ARA) was detected. Comparing ARA for media with glucose both with and without plants, it was observed that the plants supply some component leading to the increase of the nitrogenase activity, since the ARA doubled in the samples containing plants.In wheat straw cultures a fast growth of the bacteria was observed in the first 24 hours after inoculation, but no acetylene reduction was detected. After glucose addition to the media with and without straw, nitrogenase activity was detected.  相似文献   

6.
The production of extracellular xylanase by a locally isolated strain of Aspergillus tubingensis JP-1 was studied under solid-state fermentation. Among the various agro residues used wheat straw was found to be the best for high yield of xylanase with poor cellulase production. The influence of various parameters such as initial pH, moisture, moistening agents, nitrogen sources, additives, surfactants and pretreatment of substrates were investigated. The production of the xylanase reached a peak in 8 days using untreated wheat straw with modified MS medium, pH 6.0 at 1:5 moisture level at 30 °C. Under optimized conditions yield as high as 6,887 ± 16 U/g of untreated wheat straw was achieved. Crude xylanase was used for enzymatic saccharification of agro-residues like wheat straw, rice bran, wheat bran, sugarcane bagasse and industrial paper pulp. Dilute alkali (1 N NaOH) and acid (1 N H2SO4) pretreatment were found to be beneficial for the efficient enzymatic hydrolysis of wheat straw. Dilute alkali and acid-pretreated wheat straw yielded 688 and 543 mg/g reducing sugar, respectively. Yield of 726 mg/g reducing sugar was obtained from paper pulp after 48 h of incubation.  相似文献   

7.
New information on N uptake and transport of inorganic and organic N in arbuscular mycorrhizal fungi is reviewed here. Hyphae of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) were shown to transport N supplied as 15N-Gly to wheat plants after a 48 h labelling period in semi-hydroponic (Perlite), non-sterile, compartmentalised pot cultures. Of the 15N supplied to hyphae in pot cultures over 48 h, 0.2 and 6% was transported to plants supplied with insufficient N or sufficient N, respectively. The increased 15N uptake at the higher N supply was related to the higher hyphal length density at the higher N supply. These findings were supported by results from in vitro and monoxenic studies. Excised hyphae from four Glomus isolates (BEG 84, 107, 108 and 110) acquired N from both inorganic (15NH4 15NO3, 15NO3 or 15NH4 +) and organic (15N-Gly and 15N-Glu, except in BEG 84 where amino acid uptake was not tested) sources in vitro during short-term experiments. Confirming these studies under sterile conditions where no bacterial mineralisation of organic N occurred, monoxenic cultures of Glomus intraradices Schenk and Smith were shown to transport N from organic sources (15N-Gly and 15N-Glu) to Ri T-DNA transformed, AM-colonised carrot roots in a long-term experiment. The higher N uptake (also from organic N) by isolates from nutrient poor sites (BEG 108 and 110) compared to that from a conventional agricultural field implied that ecotypic differences occur. Although the arbuscular mycorrhizal isolates used contributed to the acquisition of N from both inorganic and organic sources by the host plants/roots used, this was not enough to increase the N nutritional status of the mycorrhizal compared to non-mycorrhizal hosts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
In the present work, the production of ligninolytic enzymes by semi-solid-statecultures of Phanerochaete chrysosporium BKM-F-1767 (ATCC 24725),employing different lignocellulosic wastes as support, was investigated. Thewaste materials employed were grape seeds, wheat straw and wood shavings.Maximum lignin peroxidase activities of 1620 ± 123 U/l, 364 ± 35 U/l and 571 ± 42 U/l were attained, respectively. Nevertheless, lowmanganese-dependent peroxidase activities were found, being insignificantin the grape seed cultures. Moreover, the in vivo decolourisation of a model dye compound, the polymeric dye Poly R-478 (polyvinylamine sulfonateanthrapyridone), by the above-mentioned cultures was monitored to assessthe degrading capability of the extracellular liquid secreted by such cultures.The percentage of biological decolourisation attained by grape seed and woodshaving cultures was around 74% and 63%, respectively, whereas it was ratherlow (40%) in the wheat straw ones.  相似文献   

9.
Summary A laboratory incubation experiment followed by a greenhouse experiment was made in a silty clay loam at Pantnagar, India, to recycle plant utilizable N from crop residues such as maize stubble, soybean hay andmoong straw. The beneficial effect of recycled N was tested by a wheat crop. Soybean hay yielded the most NO3–N upon mineralization and also gave the highest wheat grain yield. Maize stubble mineralized the least NO3–N and gave the lowest grain yield.Moong straw occupied an intermediate position. An intervening period of 30–45 days would be required for the residues in question to release plant utilizable NO3–N in sufficient quantities. From a practical view point, soybean hay appears to be an ideal choice of a residue capable of providing sufficient supplemental N for a succeding wheat crop and can be easily fitted into the prevalent cropping sequence.  相似文献   

10.
Summary The incorporation of undecomposed wheat straw in the soil along-with the micro-organisms favourably increased the yield of groundnut crop. An increase of 37 per cent in yield was recorded when wheat straw was inoculated withPenicillium digitatum and the C:P ratio was adjusted to 65. Inoculated treatments of narrower C:P ratio gave a higher yield than wider C:P ratio treatments inoculated with the same cultures. An increase in nitrogen uptake by groundnut plants was recorded due to incorporation of straw alongwith the micro-organisms in soil. The organic carbon and nitrogen content of the soil increased with all the treatments except control. The highest increase in organic carbon and nitrogen of the soil was observed with a treatment of wheat straw of 65 C:P ratio inoculated withS. coccosporum. The yield of wheat crop after groundnut was significantly more with several treatments than control plots. The highest increase of 79 per cent in grain yield of wheat was observed in the plots previouslq received with wheat straw of 200 C:P ratio.This paper is based on the data presented at IV Southern Regional Conference on Microbial Inoculants, held at Parbhani during 3–4 July 1978.  相似文献   

11.
Summary Trichoderma reesei QM 9414 was grown on wheat straw as the sole carbon source. The straw was pretreated by physical and chemical methods. The particle size of straw was less than 0.177 mm. Growth of T. reesei QM 9414 was maximal with alkali-pretreated straw whereas cellulase production was optimal when physically pretreated straw was used as substrate. Cellulase yields expressed as IU enzyme activity/g cellulose present in the cultures were considerably higher when alkali pretreatment of wheat straw was omitted. Cellulase yields of 666 IU/g cellulose for filter paper activity (FPA) are the highest described for cultures of T. reesei QM 9414 carried out in analogous conditions. Crystallinity index of the cellulose contained in wheat straw increased slightly after alkali pretreatment. This increase did not decrease cellulose accessibility to the fungus. Delignification of wheat straw was not necessary to achieve the best cellulase production.  相似文献   

12.
Hyenstrand  P.  Burkert  U.  Pettersson  A.  Blomqvist  P. 《Hydrobiologia》2000,435(1-3):91-98
In this study, we evaluated growth responses of the green alga Scenedesmus and the cyanobacterium Synechococcus supplied with inorganic nitrogen in different ways. A competitive situation in which nitrogen was limiting was created in mixed cultures as well as in cultures growing in the same vessel but separated by a permeable dialysis membrane. Supplying inorganic nitrogen in small pulses at a high frequency favoured the cyanobacterium Synechococcus, whereas batch additions favoured the green alga Scenedesmus. When using a large-pulse/low-frequency supply mode, the yield of the green alga was higher when ammonium was added as nitrogen source compared to when nitrate was added. By contrast, the yield of the cyanobacterium was higher in the nitrate regime. However, uptake experiments using unialgal cultures showed that both organisms depleted the medium of ammonium more rapidly than they depleted the medium of nitrate; i.e. the higher yield of the cyanobacterium in the nitrate regime than in the ammonium regime can be attributed to the effects of competition with the green alga. Since nitrate assimilation involves the consumption of reductive power, we suggest that the outcome of competition was governed by the fact that green alga was light limited and therefore better able to compete for ammonium than for nitrate. The results from the laboratory studies are discussed in relation to results from an enclosure experiment performed in Lake Erken, Sweden. In that field experiment, in which additions of both phosphate and ammonium were applied every second day to 350-l enclosures, the green algal biomass increased exponentially during an incubation period of 22 days.  相似文献   

13.
The strain Aspergillus fumigatus XC6 isolated from mildewing rice straw was evaluated for its ability to decolorize a dye industry effluent. The strain was capable of decolorizing dyes effluent over a pH range 3.0–8.0 with the dyes as sole carbon and nitrogen sources. The optimum pH was 3.0; however, supplemented with either appropriate nitrogen sources (0.2% NH4Cl or (NH4)2SO4 ) or carbon sources (1.0% sucrose or potato starch), the strain decolorized the effluent completely at the original pH of the dyes effluent. Therefore, A. fumigatus XC6 is an efficient strain for the decolorization of reactive textile dyes effluents, and it might be a practical alternative in dyeing wastewater treatment.  相似文献   

14.
Summary The screening of micro-organisms decomposing wheat straw was done under laboratory conditions on the basis of the amount of carbon mineralized from wheat straw during a period of four months. In general, inoculation of wheat straw with different micro-organisms had favorable effect on the amount of carbon mineralized. Among the bacterial and fungus cultures isolated from baited wheat straw an Aspergillus sp. (Isolate No. 18) proved to be the most rapid wheat straw decomposer under laboratory conditions. re]19751008  相似文献   

15.
Conservation tillage in its version of permanent bed planting under zero-tillage with crop residue retention has been proposed as an alternative wheat production system for northwest Mexico. However, little is known about the dynamics of C and N in soils under wheat/maize on permanent beds (PB) where straw was burned, removed, partly removed or retained, as opposed to conventionally tilled beds (CTB) where straw was incorporated. We investigated the dynamics of soil C and N and normalized difference vegetative index (NDVI) crop values in zero-tilled PB and CTB after 26 successive maize and wheat crops. Organic C and total N were respectively, 1.15 and 1.17 times greater in PB with straw partly removed and with straw retained on the surface, than in CTB with straw incorporated. Organic C and total N were 1.10 times greater in soils with 300 kg N ha−1 added than in unfertilized soil. Cumulative production of CO2 was lower under CTB with straw incorporated than under PB treatments, and CO2 production increased with increments in inorganic fertilizer. The N-mineralization rate was 1.18 times greater than in unamended soils when 150 kg inorganic N ha−1 was applied, and 1.48 times greater when 300 kg inorganic N ha−1 was added. The N-mineralization rate was significantly (1.66 times) greater in PB where the straw was burned or retained on the surface than in CTB where the straw was incorporated, but significantly (1.25 times) lower than in PB with straw partly removed. The NDVI values reached a maximum 56 days after planting and decreased thereafter. The NDVI for unfertilized soil were similar for CTB with straw incorporated, PB with straw partly removed, and PB with straw retained on the surface, but significantly lower for PB with straw burned and PB with straw removed. In soils to which 150 or 300 kg N ha−1 was added, NDVI was significantly lower for PB with straw burned than for other treatments. Among other things, this suggests the utility of rotating maize or wheat with crops whose residues have lower C–N ratios, thus avoiding immobilization of large amounts of N for extended periods. PB with residue burning, however, is an unsustainable practice leading to low crop performance and soil and environmental degradation.  相似文献   

16.
Summary Rhizoctonia root rot of gram caused byR. bataticola was significantly controlled by the amendment of soil with wheat straw, maize straw and sorghum straws. Amendment of soil with sarson straw was almost ineffective. Organic amendments with urd, mung and Trifolium straws increased the disease. It appears that perhaps a comparatively high C/N ratio of the organic amendment controls the root rot disease of gram. Evidence is also presented which suggests that certain organic amendments increase growth of gram.  相似文献   

17.
Mycelial growth, intracellular activity of proteases, laccases and β-1,3-glucanases, and cytoplasmic protein were evaluated in the vegetative phase of Pleurotus ostreatus grown on wheat straw and in wheat-grain-based media in Petri dishes and in bottles. The productivity of the wheat straw and wheat-grain-based spawn in cylindrical polyethylene bags containing 5 kg of chopped straw was also determined. We observed high activity of proteases and high content of intracellular protein in cultures grown on wheat straw. This suggests that the proteases are not secreted into the medium and that the protein is an important cellular reserve. On the contrary, cultures grown on wheat straw secreted laccases into the medium, which could be induced by this substrate. P. ostreatus grown on media prepared with a combination of wheat straw and wheat grain showed a high radial growth rate in Petri dishes and a high level of mycelial growth in bottles. The productivities of wheat straw and wheat-grain-based spawn were similar. Our results show that cheaper and more productive mushroom spawn can be prepared by developing the mycelium on wheat straw and wheat-grain-based substrates.  相似文献   

18.
The recombinant xylanase B (XynB) of Thermotoga maritima MSB8 was found to be highly specific towards xylans and exhibit very low activity towards carboxymethylcellulose in previous study. XynB was thermostable at neutral to alkaline pH region at 90°C and retained more than 90% activity after 1 h over the pH range of pH 6.1 to 11.1. The suitability of XynB for use in the biobleaching of wheat straw pulp was investigated. Pretreatment of the pulp with XynB resulted in a substantial improvement in the bleachability of wheat straw pulp. When XynB at 10 U g−1 was used to treat wheat straw pulp, it reduced pulp kappa number by 1.1 point, enhanced pulp brightness by 5.5% (% ISO) and improved other pulp properties, such as tensile index and breaking length. Biobleaching of wheat straw pulp with XynB saved active chlorine up to 34.5% while still maintaining the brightness at the control level. Besides, pretreatment of pulp with XynB was also effective at an alkaline pH as high as pH 10.1. This is the first report on the potential application of XynB from T. maritima MSB8 in the pulp and paper sector.  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) are crucial for ecosystem functioning, and thus have potential use for sustainable agriculture. In this study, we investigated the impact of organic and mineral fertilizers on the AMF community composition and content of Glomalin-related soil protein (GRSP) in a field experimental station which was established in 1979, in the Loess Plateau of China. Roots and soils were sampled three times during the growing period of winter wheat in 2008. The treatments including: N (inorganic N), NP (inorganic N and P), SNP (straw, inorganic N and P), M (farmyard manure), MNP (farmyard manure, inorganic N and P), and CK (no fertilization). AMF communities of root and soil samples were analyzed using PCR-DGGE, cloning and sequencing techniques; and GRSP content was determined by Bradford assay. Our results indicated that spore density, GRSP, and AMF community varied significantly in soils of long-term fertilization plots at three different wheat growing stages. The effects of wheat growing period on AMF community in roots were much more evident than fertilization regimes. However, the diversity of AMF was low in our study field. Up to five AMF phylotypes appeared in each sample, with the overwhelming dominance of a Glomus-like phylotype affiliated to G. mosseae. GRSP content was correlated positively with organic carbon, total phosphorus, available phosphorus, soil pH, and spore densities, but correlated negatively with soil C/N (P?<?0.05). The results of our study highlight that the richness of AMF in Loess Plateau agricultural region is low, and long-term fertilization, especially amendments with manure and straw, has beneficial effects on accumulation of soil organic carbon, spore density, GRSP content, and AMF diversity. Host phenology, edaphic factors (influenced by long-term fertilization), and habitats interacted to affect the AMF community and agoecosystem functioning. Additionally, soil moisture and pH make a greater contribution than other determined soil parameters to the AMF community dynamics in such a special semi-arid agroecosystem where crops rely greatly on rainfall.  相似文献   

20.
Two Streptomyces strains, UAH 30 and UAH 51, have been shown to decolourise a paper-mill effluent obtained after semichemical alkaline pulping of wheat straw. Fractionation of the effluent decolourised by strains UAH 30 and UAH 51 showed that 60% and 80% respectively of the alkali-lignin fraction have been removed from the effluent after 7 days of growth. 13C NMR cross polarization and magic angle spinning (CPMAS) spectra of the alkali-lignin remaining in the effluent after decolourisation revealed a decrease in the relative amount of aromatic lignin units compared to that obtained from the untreated effluent along with a reduction in the ratio of syringyl:guaiacyl units. Gas chromatography/mass spectrometry analysis of the low-molecular-mass compounds extracted from the decolourised effluent revealed the presence of new aromatic lignin-related compounds that were not present in the untreated control effluent. This was linked to a general depolymerization of larger lignin molecules occurring during decolourisation by the two Streptomyces strains. Identification of low-molecular-mass aromatic compounds extracted from the decolourised effluent revealed only the presence of p-hydroxyphenyl units in effluents decolourised by the strain UAH 30 while p-hydroxyphenyl, guaiacyl and syringyl units were detected in effluents decolourised by Streptomyces strain UAH 51. The study indicates that, while decolourisation is a common feature of the two Streptomyces strains, the mechanisms involved in the degradation of the lignin fractions may be different and strain-specific. Received: 8 July 1996 / Received revision: 9 October 1996 / Accepted: 14 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号