首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The topological state of DNA in hyperthermophilic archaea appears to correspond to a linking excess in comparison with DNA in mesophilic organisms. Since DNA binding proteins often contribute to the control of DNA topology by affecting DNA geometry in the presence of DNA topoisomerases, we tested whether the histone-like protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus alters DNA conformation. In ligase-mediated supercoiling assays carried out at 37, 60, 70, 80 and 90 degrees C we found that DNA binding of increasing amounts of Sso7d led to a progressive decrease in plasmid linking number (Lk), producing negative supercoiling. Identical unwinding effects were observed when recombinant non-methylated Sso7d was used. For a given Sso7d concentration the DNA unwinding induced was augmented with increasing temperature. However, after correction for the overwinding effect of high temperature on DNA, plasmids ligated at 60-90 degrees C exhibited similar sigma values at the highest Sso7d concentrations assayed. These results suggest that Sso7d may play a compensatory role in vivo by counteracting the overwinding effect of high temperature on DNA. Additionally, Sso7d unwinding could be involved in the topological changes observed during thermal stress (heat and cold shock), playing an analogous role in crenarchaeal cells to that proposed for HU in bacteria.  相似文献   

2.
Topoisomerase III from the hyperthermophilic archaeon Sulfolobus solfataricus (Sso topo III) is optimally active in DNA relaxation at 75 degrees C. We report here that Sso topo III-catalysed DNA cleavage and religation differed significantly in temperature dependence: the enzyme was most active in cleaving ssDNA containing a cleavage site at 25-50 degrees C, but was efficient in rejoining the cleaved DNA strand only at higher temperatures (e.g. > or = 45 degrees C). The failure of Sso topo III to rejoin the cleaved DNA strand efficiently appeared to be responsible for the inability of the enzyme to relax negatively supercoiled DNA at low temperature (e.g. 25 degrees C). Intriguingly, Sso topo III facilitated DNA annealing although it showed higher affinity for ssDNA than for dsDNA. Religation of the DNA strand cleaved by Sso topo III was drastically enhanced when the DNA was allowed to anneal to a complementary non-cleaved oligonucleotide, presumably as a result of destabilization of the interaction between the enzyme and the cleaved strand through the formation of duplex DNA. A region in the non-cleaved strand corresponding to a sequence containing six bases on the 5' side and two bases on the 3' side of the cleavage site in the cleaved strand was crucial to the annealing-promoted religation. However, the annealing-promoted religation was relatively insensitive to mismatches in this region and the region conserved for oligonucleotide cleavage, except for that at the 5' end of the broken strand. These results suggest that Sso topo III is well suited for a role in DNA rewinding, whether it leads to homoduplex or heteroduplex formation.  相似文献   

3.
Sso7d is a 62-residue, basic protein from the hyperthermophilic archaeon Sulfolobus solfataricus. Around neutral pH, it exhibits a denaturation temperature close to 100 degrees C and a non-sequence-specific DNA binding activity. Here, we report the characterization by circular dichroism and fluorescence measurements of a variant form of Sso7d truncated at leucine 54 (L54Delta). It is shown that L54Delta has a folded conformation at neutral pH and that its thermal unfolding is a reversible process, represented well by the two-state N <=> D transition model, with a denaturation temperature of 53 degrees C. Fluorescence titration experiments indicate that L54Delta binds tightly to calf thymus DNA, even though the binding parameters are smaller than those of the wild-type protein. Therefore, the truncation of eight residues at the C-terminus of Sso7d markedly affects the thermal stability of the protein, which nevertheless retains a folded structure and DNA binding activity.  相似文献   

4.
Protein aggregation is associated with a number of human pathologies including Alzheimer's and Creutzfeldt-Jakob diseases and the systemic amyloidoses. In this study, we used the acylphosphatase from the hyperthermophilic Archaea Sulfolobus solfataricus (Sso AcP) to investigate the mechanism of aggregation under conditions in which the protein maintains a folded structure. In the presence of 15-25% (v/v) trifluoroethanol, Sso AcP was found to form aggregates able to bind specific dyes such as thioflavine T, Congo red, and 1-anilino-8-naphthalenesulfonic acid. The presence of aggregates was confirmed by circular dichroism and dynamic light scattering. Electron microscopy revealed the presence of small aggregates generally referred to as amyloid protofibrils. The monomeric form adopted by Sso AcP prior to aggregation under these conditions retained enzymatic activity; in addition, folding was remarkably faster than unfolding. These observations indicate that Sso AcP adopts a folded, although possibly distorted, conformation prior to aggregation. Most important, aggregation appeared to be 100-fold faster than unfolding under these conditions. Although aggregation of Sso AcP was faster at higher trifluoroethanol concentrations, in which the protein adopted a partially unfolded conformation, these findings suggest that the early events of amyloid fibril formation may involve an aggregation process consisting of the assembly of protein molecules in their folded state. This conclusion has a biological relevance as globular proteins normally spend most of their lifetime in folded structures.  相似文献   

5.
The tryptophanyl emission decay of the mesophilic beta-galactosidase from Aspergillus oryzae free in buffer and entrapped in agarose gel is investigated as a function of temperature and compared to that of the hyperthermophilic enzyme from Sulfolobus solfataricus. Both enzymes are tetrameric proteins with a large number of tryptophanyl residues, so the fluorescence emission can provide information on the conformational dynamics of the overall protein structure rather than that of the local environment. The tryptophanyl emission decays are best fitted by bimodal Lorentzian distributions. The long-lived component is ascribed to close, deeply buried tryptophanyl residues with reduced mobility; the short-lived one arises from tryptophanyl residues located in more flexible external regions of each subunit, some of which are involved in forming the catalytic site. The center of both lifetime distribution components at each temperature increases when going from the free in solution mesophilic enzyme to the gel-entrapped and hyperthermophilic enzyme, thus indicating that confinement of the mesophilic enzyme in the agarose gel limits the freedom of the polypeptide chain. A more complex dependence is observed for the distribution widths. Computer modeling techniques are used to recognize that the catalytic sites are similar for the mesophilic and hyperthermophilic beta-galactosidases. The effect due to gel entrapment is considered in dynamic simulations by imposing harmonic restraints to solvent-exposed atoms of the protein with the exclusion of those around the active site. The temperature dependence of the tryptophanyl fluorescence emission decay and the dynamic simulation confirm that more rigid structures, as in the case of the immobilized and/or hyperthermophilic enzyme, require higher temperatures to achieve the requisite conformational dynamics for an effective catalytic action and strongly suggest a link between conformational rigidity and enhanced thermal stability.  相似文献   

6.
We have biochemically and kinetically characterized the polymerase and exonuclease activities of the third B-family polymerase (Dpo3) from the hyperthermophilic Crenarchaeon, Sulfolobus solfataricus (Sso). We have established through mutagenesis that despite incomplete sequence conservation, the polymerase and exonuclease active sites are functionally conserved in Dpo3. Using pre-steady-state kinetics, we can measure the fidelity of nucleotide incorporation by Dpo3 from the polymerase active site alone to be 10(3)-10(4) at 37 °C. The functional exonuclease proofreading active site will increase fidelity by at least 10(2), making Dpo3 comparable to other DNA polymerases in this family. Additionally, Dpo3's exonuclease activity is modulated by temperature, where a loss of promiscuous degradation activity can be attributed to a reorganization of the exonuclease domain when it is bound to primer-template DNA at high temperatures. Unexpectedly, the DNA binding affinity is weak compared with those of other DNA polymerases of this family. A comparison of the fidelity, polymerization kinetics, and associated functional exonuclease domain with those previously reported for other Sso polymerases (Dpo1 and Dpo4) illustrates that Dpo3 is a potential player in the proper maintenance of the archaeal genome.  相似文献   

7.
In the first step of this study, type 2 isopentenyl diphosphate isomerase (IDI2) from Pyrococcus furiosus (pf-IDI2), a hyperthermophilic microorganism, was cloned and overexpressed in E. coli. After purification, hyperthermophilic behavior of this protein was approached by means of enzymatic assays and thermal denaturation studies. Compared with the mesophilic Streptococcus pneumoniae IDI2, which unfolds and looses activity above 50 degrees C, pf-IDI2 is still folded and active at 80 degrees C. Molecular modeling was applied, in a parallel step, to understand the molecular basis of thermal stability. Comparison of IDI2 from S. pneumoniae, T. thermophilus, and P. furiosus suggested that additional charged residues present in the hyperthermophilic enzyme might contribute to its higher thermal stability. This could increase the number of salt bridges between monomers of IDI2 in P. furiosus enzyme and, hence, decrease flexibility of loops or N-terminal segment, thereby enhancing its thermal stability.  相似文献   

8.
We have isolated a chaperonin from the hyperthermophilic archaeon Sulfolobus solfataricus based on its ability to inhibit the spontaneous refolding at 50 degrees C of dimeric S. solfataricus malic enzyme. The chaperonin, a 920-kDa oligomer of 57-kDa subunits, displays a potassium-dependent ATPase activity with an optimum temperature at 80 degrees C. S. solfataricus chaperonin promotes correct refoldings of several guanidine hydrochloride-denatured enzymes from thermophilic and mesophilic sources. At a molar ratio of chaperonin oligomer to single polypeptide chain of 1:1, S. solfataricus chaperonin completely inhibits spontaneous refoldings and suppresses aggregation upon dilution of the denaturant; refoldings resume upon ATP hydrolysis, with yields of active molecules and rates of folding notably higher than in spontaneous processes. S. solfataricus chaperonin prevents the irreversible inactivations at 90 degrees C of several thermophilic enzymes by the binding of the denaturation intermediate; the time-courses of inactivations are unaffected and most activity is regained upon hydrolysis of ATP. S. solfataricus chaperonin completely prevents the formation of aggregates during thermal inactivation of chicken egg white lysozyme at 70 degrees C, without affecting the rate of activity loss; ATP hydrolysis results in the recovery of most lytic activity. Tryptophan fluorescence measurements provide evidence that S. solfataricus chaperonin undergoes a dramatic conformational rearrangement in the presence of ATP/Mg, and that the hydrolysis of ATP is not required for the conformational change. The ATP/Mg-induced conformation of the chaperonin is fully unable to bind the protein substrates, probably due to disappearance or modification of the substrate binding sites. This is the first archaeal chaperonin whose involvement in protein folding has been demonstrated.  相似文献   

9.
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.  相似文献   

10.
Comparative analysis of genome sequence data from mesophilic and hyperthermophilic micro-organisms has revealed a strong bias against specific thermolabile amino-acid residues (i.e. N and Q) in hyperthermophilic proteins. The N + Q content of class II xylose isomerases (XIs) from mesophiles, moderate thermophiles, and hyperthermophiles was examined. It was found to correlate inversely with the growth temperature of the source organism in all cases examined, except for the previously uncharacterized XI from Bacillus licheniformis DSM13 (BLXI), which had an N + Q content comparable to that of homologs from much more thermophilic sources. To determine whether BLXI behaves as a thermostable enzyme, it was expressed in Escherichia coli, and the thermostability and activity properties of the recombinant enzyme were studied. Indeed, it was optimally active at 70-72 degrees C, which is significantly higher than the optimal growth temperature (37 degrees C) of B. licheniformis. The kinetic properties of BLXI, determined at 60 degrees C with glucose and xylose as substrates, were comparable to those of other class II XIs. The stability of BLXI was dependent on the metallic cation present in its two metal-binding sites. The enzyme thermostability increased in the order apoenzyme < Mg2+-enzyme < Co2+-enzyme approximately Mn2+-enzyme, with melting temperatures of 50.3 degrees C, 53.3 degrees C, 73.4 degrees C, and 73.6 degrees C. BLXI inactivation was first-order in all conditions examined. The energy of activation for irreversible inactivation was also strongly influenced by the metal present, ranging from 342 kJ x mol(-1) (apoenzyme) to 604 kJ x mol(-1) (Mg2+-enzyme) to 1166 kJ x mol(-1) (Co2+-enzyme). These results suggest that the first irreversible event in BLXI unfolding is the release of one or both of its metals from the active site. Although N + Q content was an indicator of thermostability for class II XIs, this pattern may not hold for other sets of homologous enzymes. In fact, the extremely thermostable alpha-amylase from B. licheniformis was found to have an average N + Q content compared with homologous enzymes from a variety of mesophilic and thermophilic sources. Thus, it would appear that protein thermostability is a function of more complex molecular determinants than amino-acid content alone.  相似文献   

11.
Plasmid topology varies transiently in hyperthermophilic archaea during thermal stress. As in mesophilic bacteria, DNA linking number (Lk) increases during heat shock and decreases during cold shock. Despite this correspondence, plasmid DNA topology and proteins presumably involved in DNA topological control in each case are different. Plasmid DNA in hyperthermophilic archaea is found in a topological form from relaxed to positively supercoiled in contrast to the negatively supercoiled state typical of bacteria, eukaryotes and mesophilic archaea. We have analysed the regulation of DNA topological changes during thermal stress in Sulfolobus islandicus (kingdom Crenarchaeota), which harbours two plasmids, pRN1 and pRN2. In parallel with plasmid topological variations, we analysed levels of reverse gyrase, topoisomerase VI (Topo VI) and the small DNA-binding protein Sis7, as well as topoisomerase activities in crude extracts during heat shock from 80 degrees C to 85-87 degrees C, and cold shock from 80 degrees C to 65 degrees C. Quantitative changes in reverse gyrase, Topo VI and Sis7 were not significant. In support of this, inhibition of protein synthesis in S. islandicus during shocks did not alter plasmid topological dynamics, suggesting that an increase in topoisomerase levels is not needed for control of DNA topology during thermal stress. A reverse gyrase activity was detected in crude extracts, which was strongly dependent on the assay temperature. It was inhibited at 65 degrees C, but was greatly enhanced at 85 degrees C. However, the intrinsic reverse gyrase activity did not vary with heat or cold shock. These results suggest that the control of DNA topology during stress in Sulfolobus relies primarily on the physical effect of temperature on topoisomerase activities and on the geometry of DNA itself. Additionally, we have detected an enhanced thermoresistance of reverse gyrase activities in cultures subject to prolonged heat shock (but not cold shock). This acquired thermotolerance at the enzymatic level is abolished when cultures are treated with puromycin, suggesting a requirement for protein synthesis.  相似文献   

12.
Evidence is accumulating that normally folded proteins retain a significant tendency to form amyloid fibrils through a direct assembly of monomers in their native-like conformation. However, the factors promoting such processes are not yet well understood. The acylphosphatase from Sulfolobus solfataricus (Sso AcP) aggregates under conditions in which a native-like state is initially populated and forms, as a first step, aggregates in which the monomers maintain their native-like topology. An unstructured N-terminal segment and an edge beta-strand were previously shown to play a major role in the process. Using kinetic experiments on a set of Sso AcP variants we shall show that the major event of the first step is the establishment of an inter-molecular interaction between the unstructured segment of one Sso AcP molecule and the globular unit of another molecule. This interaction is determined by the primary sequence of the unstructured segment and not by its physico-chemical properties. Moreover, we shall show that the conversion of these initial aggregates into amyloid-like protofibrils is an intra-molecular process in which the Sso AcP molecules undergo conformational modifications. The obtained results allow the formulation of a model for the assembly of Sso AcP into amyloid-like aggregates at a molecular level.  相似文献   

13.
Comparison of the three-dimensional structure of hyperthermophilic and mesophilic β-glycosidases shows differences in secondary structure composition. The enzymes from hyperthermophilic archaea have a significantly larger number of β-strands arranged in supernumerary β-sheets compared to mesophilic enzymes from bacteria and other organisms. Amino acid replacements designed to alter the structure of the supernumerary β-strands were introduced by site directed mutagenesis into the sequence encoding the β-glycosidase from Sulfolobus solfataricus. Most of the replacements caused almost complete loss of activity but some yielded enzyme variants whose activities were affected specifically at higher temperatures. Far-UV CD spectra recorded as a function of temperature for both wild type β-glycosidase and mutant V349G, one of the mutants with reduced activity at higher temperatures, were similar, showing that the protein structure of the mutant was stable at the highest temperatures assayed. The properties of mutant V349G show a difference between thermostability (stability of the protein structure at high temperatures) and thermophilicity (optimal activity at high temperatures).  相似文献   

14.
Cheung YY  Lam SY  Chu WK  Allen MD  Bycroft M  Wong KB 《Biochemistry》2005,44(12):4601-4611
Acylphosphatases catalyze the hydrolysis of the carboxyl-phosphate bond in acyl phosphates. Although acylphosphatase-like sequences are found in all three domains of life, no structure of acylphosphatase has been reported for bacteria and archaea so far. Here, we report the characterization of enzymatic activities and crystal structure of an archaeal acylphosphatase. A putative acylphosphatase gene (PhAcP) was cloned from the genomic DNA of Pyrococcus horikoshii and was expressed in Escherichia coli. Enzymatic parameters of the recombinant PhAcP were measured using benzoyl phosphate as the substrate. Our data suggest that, while PhAcP is less efficient than other mammalian homologues at 25 degrees C, the thermophilic enzyme is fully active at the optimal growth temperature (98 degrees C) of P. horikoshii. PhAcP is extremely stable; its apparent melting temperature was 111.5 degrees C and free energy of unfolding at 25 degrees C was 54 kJ mol(-)(1). The 1.5 A crystal structure of PhAcP adopts an alpha/beta sandwich fold that is common to other acylphosphatases. PhAcP forms a dimer in the crystal structure via antiparallel association of strand 4. Structural comparison to mesophilic acylphosphatases reveals significant differences in the conformation of the L5 loop connecting strands 4 and 5. The extreme thermostability of PhAcP can be attributed to an extensive ion-pair network consisting of 13 charge residues on the beta sheet of the protein. The reduced catalytic efficiency of PhAcP at 25 degrees C may be due to a less flexible active-site residue, Arg20, which forms a salt bridge to the C-terminal carboxyl group. New insights into catalysis were gained by docking acetyl phosphate to the active site of PhAcP.  相似文献   

15.
Sso7d is a 62-residue protein from the hyperthemophilic archaeon Sulfolobus solfataricus with a denaturation temperature close to 100 degrees C around neutral pH. An engineered form of Sso7d truncated at leucine 54 (L54Delta) is significantly less stable, with a denaturation temperature of 53 degrees C. Molecular dynamics (MD) studies of Sso7d and its truncated form at two different temperatures have been performed. The results of the MD simulations at 300 K indicate that: (1) the flexibility of Sso7d chain at 300 K agrees with that detected from X-ray and NMR structural studies; (2) L54Delta remains stable in the native folded conformation and possesses an overall dynamic behavior similar to that of the parent protein. MD simulations performed at 500 K, 10 ns long, indicate that, while Sso7d is in-silico resistant to high temperature, the truncated variant partially unfolds, revealing the early phases of the thermal unfolding pathway of the protein. Analysis of the trajectories of L54Delta suggests that the unzipping of the N-terminal and C-terminal beta-strands should be the first event of the unfolding pathway, and points out the regions more resistant to thermal unfolding. These findings allow one to understand the role played by specific interactions connecting the two ends of the chain for the high thermal stability of Sso7d, and support recent hypotheses on its folding mechanism emerged from site-directed mutagenesis studies.  相似文献   

16.
Isocitrate dehydrogenase (IDH) has been studied extensively due to its central role in the Krebs cycle, catalyzing the oxidative NAD(P)(+)-dependent decarboxylation of isocitrate to alpha-ketoglutarate and CO(2). Here, we present the first crystal structure of IDH from a psychrophilic bacterium, Desulfotalea psychrophila (DpIDH). The structural information is combined with a detailed biochemical characterization and a comparative study with IDHs from the mesophilic bacterium Desulfitobacterium hafniense (DhIDH), porcine (PcIDH), human cytosolic (HcIDH) and the hyperthermophilic Thermotoga maritima (TmIDH). DpIDH was found to have a higher melting temperature (T(m)=66.9 degrees C) than its mesophilic homologues and a suboptimal catalytic efficiency at low temperatures. The thermodynamic activation parameters indicated a disordered active site, as seen also for the drastic increase in K(m) for isocitrate at elevated temperatures. A methionine cluster situated at the dimeric interface between the two active sites and a cluster of destabilizing charged amino acids in a region close to the active site might explain the poor isocitrate affinity. On the other hand, DpIDH was optimized for interacting with NADP(+) and the crystal structure revealed unique interactions with the cofactor. The highly acidic surface, destabilizing charged residues, fewer ion pairs and reduced size of ionic networks in DpIDH suggest a flexible global structure. However, strategic placement of ionic interactions stabilizing the N and C termini, and additional ionic interactions in the clasp domain as well as two enlarged aromatic clusters might counteract the destabilizing interactions and promote the increased thermal stability. The structure analysis of DpIDH illustrates how psychrophilic enzymes can adjust their flexibility in dynamic regions during their catalytic cycle without compromising the global stability of the protein.  相似文献   

17.
Enzymes from thermophilic organisms are stable and active at temperatures which rapidly denature mesophilic proteins. However, there is not yet a complete understanding of the structural basis of their thermostability and thermoactivity since for each protein there seems to exist special networks of interactions that make it stable under the desired conditions. Here we have investigated the activity and conformational dynamics above 100 degrees C of the beta-glycosidase isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. This has been made possible using a special stainless steel optical pressure cell which allowed us to perform enzyme assays and fluorescence measurements up to 160 degrees C without boiling the sample. The beta-glycosidase from S. solfataricus showed maximal activity at 125 degrees C. The time-resolved fluorescence studies showed that the intrinsic tryptophanyl fluorescence emission of the protein was represented by a bimodal distribution with Lorential shape and that temperature strongly affected the protein conformational dynamics. Remarkably, the tryptophan emission reveals that the indolic residues remain shielded from the solvent even at 125 degrees C, as shown by shielding from quenching and restricted tryptophan solubility. The relationship between enzyme activity and protein structural dynamics is discussed.  相似文献   

18.
The folding process of the acylphosphatase from Sulfolobus solfataricus (Sso AcP) has been followed, starting from the fully unfolded state, using a variety of spectroscopic probes, including intrinsic fluorescence, circular dichroism, and ANS binding. The results indicate that an ensemble of partially folded or misfolded species form rapidly on the submillisecond time scale after initiation of folding. This conformational ensemble produces a pronounced downward curvature in the Chevron plot, appears to possess a content of secondary structure similar to that of the native state, as revealed by far-UV circular dichroism, and appears to have surface-exposed hydrophobic clusters, as indicated by the ability of this ensemble to bind to 8-anilino-1-naphthalenesulfonic acid (ANS). Sso AcP folds from this conformational state with a rate constant of ca. 5 s(-1) at pH 5.5 and 37 degrees C. A minor slow exponential phase detected during folding (rate constant of 0.2 s(-1) under these conditions) is accelerated by cyclophilin A and is absent in a mutant of Sso AcP in which alanine replaces the proline residue at position 50. This indicates that for a lower fraction of Sso AcP molecules the folding process is rate-limited by the cis-trans isomerism of the peptide bond preceding Pro50. A comparative analysis with four other homologous proteins from the acylphosphatase superfamily shows that sequence hydrophobicity is an important determinant of the conformational stability of partially folded states that may accumulate during folding of a protein. A low net charge and a high propensity to form alpha-helical structure also emerge as possibly important determinants of the stability of partially folded states. A significant correlation is also observed between folding rate and hydrophobic content of the sequence within this superfamily, lending support to the idea that sequence hydrophobicity, in addition to relative contact order and conformational stability of the native state, is a key determinant of folding rate.  相似文献   

19.
Sso7d and Sac7d are two small chromatin proteins from the hyperthermophilic archaeabacterium Sulfolobus solfataricus and Sulfolobus acidocaldarius, respectively. The crystal structures of Sso7d-GTGATCGC, Sac7d-GTGATCGC and Sac7d-GTGATCAC have been determined and refined at 1.45 A, 2.2 A and 2.2 A, respectively, to investigate the DNA binding property of Sso7d/Sac7d in the presence of a T-G mismatch base-pair. Detailed structural analysis revealed that the intercalation site includes the T-G mismatch base-pair and Sso7d/Sac7d bind to that mismatch base-pair in a manner similar to regular DNA. In the Sso7d-GTGATCGC complex, a new inter-strand hydrogen bond between T2O4 and C14N4 is formed and well-order bridging water molecules are found. The results suggest that the less stable DNA stacking site involving a T-G mismatch may be a preferred site for protein side-chain intercalation.  相似文献   

20.
Sopina VA 《Tsitologiia》2001,43(6):electrothermal
In free-living amoebae (Amoeba proteus, strain B), cultured at 10 and 25 degrees C, we compared the number, activity, and thermostability of separate electromorphs of Triton-soluble acid phosphatase (AcP) revealed by disc-electrophoresis in polyacrylamide gel using 2-naphthyl phosphate (pH 4.0) as a substrate. No differences in the number of AcP electromorphs and their mobility were observed at both these temperatures. The total activity of AcP electromorphas per unit of cellular protein and their total thermostability were lower in amoebae acclimated to 10 degrees C than to 25 degrees C. The above decrease may be a consequence of a simultaneous decrease in the activity and thermostability of two tartrate-sensitive electromorphs, both being of lysosomal nature. The total activity and thermostability of tartrate-resistant AcP electromorphs did not differ in amoebae acclimated to the two above temperatures. In amoebae cultured at 10 degrees C the fall of activity and thermostability of lysosomal AcP correlates with the decrease in their primary cell thermoresistance and phagocytic activity. The obtained results confirm the earlier conclusion (Vysotskaya et al., 1994) that lysosomes may be involved in acclimation of electrothermal animals to changing environmental temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号